用户名: 密码: 验证码:
金属增强泡沫玻璃基复合材料吸波性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以硼硅酸盐泡沫玻璃为基体,添加钴、镍和铜等金属粉末,制备吸波复合材料。通过XRD分析样品组成,SEM观察试样孔结构,用波导法测试了复合材料在X波段(8.2—12.4GHz)的复介电常数、复磁导率并计算得到复合材料的反射率。
     结果表明:对于不加金属粉末的泡沫玻璃,石墨量为2.0wt%的试样,随着频率增加,复介电常数实部和虚部分别从3.25和1.3下降到3和1。复磁导率实部在0.96—1.07之间,虚部在0.02—0.13之间。反射率在整个X波段均低于-2dB,在12.4GHz达到最小值为-6dB,对应厚度为3mm。
     对于含钴泡沫玻璃,当钴粉添加量比较低时,样品具有低密度和高气孔率,当钴粉对泡沫玻璃质量比大于3:20时,试样平均孔径和气孔率随着添加量增加而迅速降低,密度增加。随着质量比增加,泡沫玻璃的复介电常数实部在4.5—50之间变化;复介电常数虚部随着质量比变大而增加,其值在2.7—50范围变动;当质量比大于5:20时,实部和虚部均急剧增加。随着质量比变大,复磁导率实部数值在0.95—1.1之间变化;虚部随着质量比变大而增加,其值在0.02—0.32范围变化。Co3试样(钴粉对泡沫玻璃质量比为3:20),反射率在整个X波段,反射率均小于-11dB,在9.6GHz得到最小反射率为-15.1dB,对应厚度为3.5mm。对于含镍泡沫玻璃,Ni1试样(镍粉对泡沫玻璃质量比为1:20)在9.5—11GHz频段,反射率低于-10dB;对应厚度为4mm。
     对于含铜泡沫玻璃,Cu4试样(铜粉对泡沫玻璃质量比为4:20)的反射率在8.3—10.8GHz频段,反射率均低于-10dB,对应厚度为4mm。
     泡沫玻璃基复合材料对微波的损耗主要来自介电损耗,加入金属粉末能够提高泡沫玻璃的介电损耗,改善玻璃基体与空气之间的阻抗匹配,进而提高复合材料的吸波性能。
In this paper, microwave absorbing composites were prepared by adding cobalt, nickel and copper metal filler into foam glass as a matrix. Scanning electron microscope (SEM) and X-ray diffraction (XRD) were used to characterize pore structure and constituents of samples. Complex permittivity and permeability of composites were measured by wave guide method in X-band (8.2—12.4GHz) and reflection loss was calculated based on permittivity and permeability.
     Results indicate that: Real part of complex permittivity for foam glass with 2wt % graphite declined from 3.25 to 3 with frequency, as well as imaginary part decreased from 1.3 to 1; Real part of complex permeability lied between 0.96 and 1.07, while imaginary part varied from 0.02 to 0.13. Reflection loss of foam glass less than -2dB was obtained in all X-band and the minimum reflectivity was -6dB at 12.4GHz with a thickness of 3mm.
     The cobalt-containing foam glass with low metal powder additive had low density and high porosity. When the mass ratio of metal filler to foam glass is larger than 3:20, porosity of composite decreased rapidly with metal powder additive, while density increased. As mass ratio increased, real part of permittivity of composites varied from 4.5 to 50; Imaginary part increased from 2.7 to 50 with mass ratio; Both real part and imaginary part increased rapidly when mass ratio was larger than 5:20. Real part of permeability for composites lied between 0.95 and 1.1; Imaginary part increased with mass ratio and the values ranged from 0.02 to 0.32. Reflection loss values of Co3 sample (mass ratio of cobalt powder to foam glass was 3:20) less than -11dB were obtained in all X-band and a minimum reflectivity of -15.1dB was observed at 9.6GHz with a thickness of 3.5mm.
     Nickel-containing foam glass (nickel filler to foam glass ratio was 1:20) had a reflection loss below-10 dB in the range of 9.5—11GHz with a thickness of 4mm. Copper-containing foam glass (mass ratio of copper powder to foam glass was 4:20) achieved a reflectivity less than -10dB in the range of 8.3—10.8GHz with a thickness of 4mm.
     Microwave absorption of foam glass matrix composite was mainly from dielectric loss. Adding metal filler into foam glass could enhance dielectric loss of glass matrix and benefit impendence match between glass matrix and air, therefore microwave absorbing properties of composite was improved.
引文
[1]刘顺华,刘军民,董星龙,电磁波屏蔽及吸波材料,北京:化学工业出版社,2007
    [2]李滚,庞小峰,电磁场曝露对生物组织电磁特性的影响,生物化学与生物物理进展,2011,38 (7) :604 ~ 610
    [3]刘纯一,刘志敏,刘义冰,等,体外高频热疗机电磁辐射对健康人的影响及对策,护理实践与研究,2011, 8 (16 ):78 ~80
    [4]王秀芹,梁晓阳,肖明慧,等,高频电磁辐射对作业者脑电波的影响,职业卫生与应急救援,2011,29( 1) : 29 ~ 36
    [5] Ding G R,Qiu L B,Wang X W,et al, EMP-induced alterations of tight junction protein expression and disruption of the blood-brain barrier,Toxicology Letters,2010,196(3):154~ 160
    [6]吴惠,王德文,王水明,等,不同波段电磁辐射对大鼠Sertoli细胞雄激素受体和卵泡刺激素受体表达的影响,生物物理学报,2011,27(8):687~ 695
    [7]孙继平,程强,田子建,煤矿井下变频器电磁辐射骚扰的研究,太原理工大学学报,2011,42(5):528~530
    [8]邢丽英,隐身材料,北京:化学工业出版社,2004
    [9]杨文麟,董胜奎,刘本东,电磁波吸收材料,电磁兼容,2011,07:78~80
    [10]陈雪刚,叶瑛,程继鹏,电磁波吸收材料的研究进展,无机材料学报,26(5):449~457
    [11] Wen B,Zhao J,Duan Y,et al,Electromagnetic wave absorption properties of carbon powder from catalysed carbon black in X and Ku bands,Journal of Physics D: Applied Physics,2006,39(9): 1960~1962
    [12]邱华,唐继海,杨骐,等,纤维吸波剂研究进展,表面技术,2010,39 (6):66~ 70
    [13] Kagawa Y,Matsumura K, Iba H,et al, Potential of short Si-Ti-C-O fiber-reinforced epoxy matrix composite as electromagnetic wave absorbing material,Journal of Materials Science, 2007,42(4) :1116~1121
    [14]郭洪范,朱红,林海燕,等,导电高分子在雷达吸波材料中的应用研究进展,化学工程师,2007,10:26~29
    [15] Shams M H,Salehi S M A,Ghasemi A,Electromagnetic wave absorption characteristics of Mg-Ti substituted Ba-hexaferrite. Materials letters,2008,62(10/11): 1731~1733
    [16] Begard M,Bobzin K,Bolelli G,et al,Thermal spraying of Co,Ti-substituted Ba-hexaferrite coatings for electromagnetic wave absorption applications,Surface and Coatings Technology,2009, 203(20/21):3312~3319
    [17]Liu J,Yun GH,Su ML,Crystal microstructure, infrared absorption, and microwave electromagnetic properties of (La1-xDyx)2/3Sr1/3MnO3,Rare Metals , 2009,28(5): 494~499
    [18] Costa A C F M,Diniz A P,Silva V J,et al,Influence of calcination temperature on the morphology and magnetic properties of Ni-Zn ferrite applied as an electromagnetic energy absorber,Journal of Alloys and Compounds,2009,483(1/2): 563~565
    [19] Song J M,Yoon H J,Kim D I,et al,Dependence of electromagnetic wave absorption on ferrite particle size in sheet-type absorbers,Journal of the Korean Chemical Society,2003,42(5): 671~675
    [20] Cheng Y L,Dai J M,Wu D J,et al,Electromagnetic and microwave absorption properties of carbonyl iron/La0.6Sr0.4MnO3 composites,Journal of Magnetism and Magnetic Materials,2010,322(1): 97~101
    [21] Kim SS,Kim ST,Yoon, YC,et al,Magnetic, dielectric, and microwave absorbing properties of iron particles dispersed in rubber matrix in gigahertz frequencies,Journal of Applied Physics, 2005,97 (10):10F905~10F905-3
    [22] Sugimoto S,Maeda T,Book D,et al,GHz microwave absorption of a fine [alpha]-Fe structure produced by the disproportionation of Sm2Fe17 in hydrogen. Journal of Alloys and Compounds,2002,(330-332):301~306
    [23] Brosseau C,Talbot P,Effective magnetic permeability of Ni and Co micro- and nanoparticles embedded in a ZnO matrix,Journal of Applied Physics,2005,97 (10):104325-1~104325-11
    [24] Yang Y,Zhang B,Xu W,et al,Preparation and properties of a novel iron-coatedcarbon fiber. Journal of Magnetism and Magnetic Materials,2003,256 (1-3):129~132
    [25] Iakubov IT,Lagarkov AN,Maklakov SA,et al,Microwave permeability of composites filled with thin Fe films,Journal of Magnetism and Magnetic Materials,2006,300 (1):e74~e77
    [26] Zhang H, Zeng G, Ge Y,Electromagnetic characteristic and microwave absorption properties of carbon nanotubes/epoxy composites in the frequency range from 2 to 6 GHz, Journal of Applied Physics, 2009,105 (5):054314~054314-4
    [27] Kim JB,Lee S K,Kim CG,Comparison study on the effect of carbon nano materials for single-layer microwave absorbers in X-band,Composites Science and Technology,2008, 68 (14):2909~2916
    [28] Liu JR,Itoh M,Horikawa T,et al,Complex permittivity, permeability and electromagnetic wave absorption ofα-Fe/C(amorphous) and Fe2B/C(amorphous) nanocomposites,Journal of Physics D: Applied Physics,2004,37:2737~2741
    [29] Wang Z,Zhang Z,Qin S,et al,Theoretical study onwave-absorption properties of a structure with left- and right-handed materials,Materials and Design , 2008,29(9): 1777~1779
    [30]李娇娇,朱冬梅,卿玉长,等,螺旋结构手性材料的微波介电和反射/透射性能研究,材料导报B:研究篇,2011,25 (5):40~43
    [31]杨涓,龙春伟,陈茂林,外加磁场微波等离子体喷流对平面电磁波衰减的实验研究,物理学报,2009,58(7):4793~4798
    [32] Park KY,Lee SE,Kim CG,et al,Fabrication and electromagnetic characteristics of electromagnetic wave absorbing sandwich structures,Composites Science and Technology,2006,66 :576~584
    [33] Fan HL,Yang W,Chao ZM,Microwave absorbing composite lattice grids,Composites Science and Technology,2007,67:3472~3479
    [34] Yu M,Li X,Gong R,Magnetic properties of carbonyl iron fibers and their microwave absorbing characterization as the filer in polymer foams,Journal of Alloys and Compounds,2008,456(1-2):452~455
    [35] He YF,Gong RZ,Preparation and microwave absorption properties of foam-based honeycomb sandwich structures,A letters Journal Exploring the Frontiers of Physics,2009,85(5):58003
    [36] Zhang HT,Zhang JS,Zhang HY,Computation of radar absorbing silicon carbide foams and their silica matrix composites,Computational Materials Science,2007, 38 :857 ~864
    [37] Kim SS,Kim ST, Ahn JM,Magnetic and microwave absorbing properties of Co–Fe thin films plated on hollow ceramic microspheres of low density,Journal of Magnetism and Magnetic Materials ,2004,271:39~45
    [38] Yan D,Cheng S,Zhuo RF,et al,Nanoparticles and 3D sponge-like porous networks of manganese oxides and their microwave absorption properties ,Nanotechnology,2009, 20:105706
    [39] Xiao HM,Liu XM, Fu SY,Synthesis, magnetic and microwave absorbing properties of core-shell structured MnFe2O4/TiO2 nanocomposites,Composites Science and Technology,2006,66:2003 ~2008
    [40] Yang J,Shen ZM,Hao ZB,Microwave characteristics of sandwich composites with mesophase pitch carbon foams as core,Carbon,2004,(42):1882~1885
    [41] Liu QL,Zhang D,Fan TX,Electromagnetic wave absorption properties of porous carbon/Co nanocomposites,Applied Physics Letters,2008,(93):013110
    [42] Fang Z,Li C,Sun J,et al,The electromagnetic characteristics of carbon foams,Carbon,2007, (45) :2873~2879
    [43]王磊,硼硅酸盐泡沫玻璃低温烧成研究:[硕士学位论文],天津:天津大学,2009.5
    [44] Méar F,Yot P,Viennois R,et al,Mechanical behaviour and thermal and electrical properties of foam glass,Ceramics International,2007,33:543~550
    [45] Apkar’yan AS,Khristyukov VG,Smirnov GV,Granulated foam glass ceramic—A promising heat-insulating material,Glass and Ceramics,2008,65:74~76
    [46] Yue DT,Tan ZC,Di YY,et al,Specific Heat Capacity and Thermal Conductivity of Foam Glass (Type 150P) at Temperatures from 80 to 400K,International Journal of Thermophysics,2006,27:270~281
    [47]张婕,温度制度对硼硅酸盐泡沫玻璃结构及性能的影响:[硕士学位论文],天津:天津大学,2006.5
    [48]万军鹏,程金树,汤李缨,浅谈硼硅酸盐玻璃的应用现状和发展趋势,玻璃,2004,(5):21~25
    [49]郭宏伟,高淑雅,高档妮,泡沫玻璃在建筑领域中的应用及施工,陕西科技大学学报,2006,24(6):57~60
    [50]郭兵,黄家骏,蔡韩英,泡沫玻璃在建筑节能领域中的应用探讨,平原大学学报,2004,21(3):27~28
    [51]王晴,姜晓波,刘磊等,添加剂对矿渣泡沫玻璃性能的影响,房材与应用,2005,4:41~42
    [52] Méar F,Yot P,Cambon M,Ribes M,The characterization of waste cathode-ray tube glass,Waste Manage,2006,26:1468~1476
    [53] Lu J,Onitsuka K,Construction utilization of foamed waste glass,Journal of Environmental Sciences,2004,2:302~307
    [54] Bernardo E,Cedro R,Florean M,et al,Reutilization and stabilization of wastes by the production of glass foams,Ceramics International,2006,33:963~968
    [55] Vereshagin VI,Sokolova SN,Granulated foam glass-ceramic material from zeolitic rocks,Construction and Building Materials,2008,22:999~1003
    [56]吕东升,泡沫玻璃基吸波体设计及吸波性能研究:[硕士学位论文],天津:天津大学,2010.5
    [57]贾治勇,王群,田英良等,石墨发泡泡沫玻璃微波吸收特性研究,功能材料,2004,35:829~832
    [58] Chen K,Li XH,Lv DS,et al,Study on microwave absorption properties of metal-containing foam glass,Materials Science and Engineering: B,2011, 176 (15):1239~1242
    [59]李黎,曾庆福,阮新潮,微波再生技术在废水处理中的应用,应用化工,2004,33(5):1~3
    [60]王祖鹏,于名讯,潘士兵,复合材料电磁参数计算的理论研究进展,材料导报:纳米与新材料专辑,2 0 0 9,2 3(14):246~249
    [61] Levy O,Stroud D,Maxwell Garnett theory for mixtures of anisotropic inclusions:Application to conducting polymers,Physical Review B, 1997,56 (13):8035~8046
    [62] Bruggeman D.A.G,Dielektrizitatskonstanten und Leitfahigkeiten der Mishkorper aus isotropen Substanzen,Annalen der Physik 1935,416 (7): 636~664
    [63] Zhang X,Wang Y, Lu J,et al,Wettability and reactivity in diamond–borosilicate glass system,International Journal of Refractory Metals and Hard Materials,2010,28:260~264
    [64] Bowler N , Designing dielectric loss at microwave frequencies using multi-layered filler particles in a composite,IEEE Transactions on Dielectrics and Electrical Insulation,2006,(13) :703~711

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700