用户名: 密码: 验证码:
新型咔唑类吡啶盐的合成及其非线性光学性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着信息技术的发展,非线性光学在光电通信、光处理、光计算等信息传输领域越来越受到各国科研人员的重视与研究。自非线性光学诞生以来,越来越多的非线性材料被发现,其中包括有机材料、无机材料、有机-无机复合材料。这些材料中,有机材料具备更快的反应时间,更低的介电常数,更好的加工特性,使得有机非线性光学材料成为了材料研究人员的研究热点。人们根据非线性光学材料的设计原理,希望能够通过分子设计和修饰,得到无对称中心、非线性系数高、透明性好和热稳定高的有机非线性光学材料。
     一般非线性分子都是具有电子给体、电子供体和π共轭桥的简单一维D-π-A结构,这些生色团分子非线性极化率提高的同时总是伴随着透明性的降低,为此本论文设计合成了具备二维结构的分子来解决这一问题。生物学领域中,具备二维A-π-D-π-A结构的有机吡啶盐3,6-双[2-(1-甲基吡啶)乙烯基]-9-甲基-咔唑碘盐由于其对细胞核的选择性标记能力而备受关注,但是对其二阶非线性光学性能的研究仍是空白。本文从咔唑出发,经傅克烷基化反应、甲酰化反应、Knvenagel缩合反应合成了有机吡啶盐3,6-双[2-(1-甲基吡啶)乙烯基]-9-甲基-咔唑碘盐(化合物9)和同样具备这种二维结构的新化合物1,8-双[2-(1-甲基吡啶)乙烯基]-3,6-二叔丁基-9-甲基-咔唑碘盐(化合物11),并用红外、核磁氢谱、核磁碳谱、元素分析等进行了结构表征。利用紫外分光光度计和荧光光谱仪测定了两种化合物的最大吸收和荧光发射,采用溶致变色法测定了两个化合物的非线性光学系数。
     溶致变色法的测定结果表明,两个化合物都体现出很好的非线性性能,在五种不同溶剂中化合物9的βCT达到了407×10~(-30)~469×10~(-30)esu,化合物11的βCT达到了493×10~(-30)~548×10~(-30)esu,特别是在甲醇中两者都具有较高的二阶非线性系数,分别为469×10~(-30)esu和548×10~(-30) esu。两个化合物透明性良好,紫外最大吸收λ_(max)在446~458nm处,在五种不同溶剂中化合物11与化合物9相比均发生了蓝移。化合物9的荧光发射峰位置在570nm处,化合物11则发生了红移至580~590nm。对比两个化合物,新合成的化合物11紫外最大吸收发生蓝移透明性提高的同时二阶非线性极化率提高了约25%,熔点提高20℃,达到了非线性-透明性-热稳定性的统一。
Nonlinear optics has attracted considerable attention due to the applications in telecommunications, optical information processing, optical computing and so on. In the past decades, a variety of nonlinear materials have been recognized including organic molecules, inorganic materials and organic-inorganic composites. There is more interest in the reasearch on organic nonlinear optical materials, because lots of organic molecules exhibit cheaper, extremely faster response, lower dielectric constant, easier to fabricate. According to molecules designing principles, the complicated performance of organic materials must be employed to achieve nonlinearity-transparency-thermal stability trade-off.
     Mostly, chromophores are designed to be one-dimensional charge transfer molecules containing donor (D) and acceptor (A) groups linked by aπ-conjugated bridge. For this kind of molecules, the increase in molecular hyperpolarizability always is accompanied by decrease in the thermal stability and optical transparency. So this paper investigates two-dimensional moleculesto solve this problem. Biologically, molecule of 3,6-Bis[2-(1-methylpyridinium)vinyl]-9-meth -yl-carbazole iodide was synthesized for stabilizing the quadruplex structure of human telomeric DNA sequence and inhibiting telomerase activity, which attracted increasing attention. In this manuscript, 3,6-Bis[2-(1-methylpyridiun)vi -nyl]-9-methyl-carbazole iodide and novel pyridimiun salt 1,8-Bis[2-(1-methyl -pyridini-um)vinyl]-3,6-Di-tert-butyl-9-methyl-carbazole iodideT were synthesiz -ed and characterized by IR, 1HNMR, 13CNMR, MS, UV and fluorescence spectroscopy. The first-order nonlinearity was obtained through solvatochromic method.
     The experiment results show that two chromophores synthesized display large first hyperpolarizabilities. TheβCT value of compound 9 reaches 407×10~(-30)~469×10~(-30)esu and that of compound 11 reaches 493×10~(-30)~548×10~(-30) esu in five different solvents. Especially in methanol, TheβCT value of compound 9 reaches 469×10~(-30)esu and that of compound 11 reaches 548×10~(-30)esu. Simultaneously, two compounds have good transparency with maximum absorption wavelength for 446~458nm. Compared compound 9 with compound 11, the latter appears obviously blue shift in all five solvents. The fluorescence spectra exihits red shift from compound 9(570nm) to compound 11(580~590nm). TheβCT value of compound 11 is increased by 25% with increase in optical transparency and melting point by 20℃, which exhibits nonlinear-transparency- thermal stability trade-off.
引文
[1] DAVID R.KANIS,MARK A.RATNER,TOBIN J.MARKS.Design and Construction of Molecular Assemblies with Large Second-Order Optical Nonlinearities.Quantum Chemical Aspects[J].Chemical Reviews,1994,94:195-197.
    [2]张干冰,王世敏,赵雷,等.溶质变色法确定咪唑类分子的二阶级化率[J].应用化学,2000,17(5):510.
    [3]叶成,习斯.分子非线性光学的理论和实践[M].北京:化学工业出版社,1996:25.
    [4] Y.R.Shen.The principles of nonlinear optics[M].New York:John Wiley &Sons,1984:153-155.
    [5] PRASAD P.N.,WILLIAMS D.J..Introduction to nonlinear optical effects in molecules and polymers[M].New York:John Wiley & Sons,1991:130.
    [6]祈楠,陈兴,程侣柏.有机非线性光学材料的进展[J].精细化工,1994,11:22-24.
    [7] TETSUYA TSUNEKAWA,TETSUYA GOTOH,MASAO IWAMOTO.New organic non-linear optical crystals of benzylidene-aniline derivative [J].Chemical Physical Letters,1990,166:353.
    [8]蔡志彬,周茂,高建荣.新的偶氮类有机共轭化合物的合成及三阶非线性光学性能[J].中国激光,2009,36(1):972-976.
    [9]钱鹰,孙岳明,丁建平,等.有机共轭分子的结构和二姐非线性光学活性[J].东南大学学报,2000,30(6):152.
    [10] J.L.OUDAR,D.S.CHEMLA.Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment[J].J.Chem.Phys.,1977,66:2665-2668.
    [11] DAVID J.WILLIAMS.Organic Polymeric and Non-Polymeric Materials with Large Optical Nonlinearities[J].Angew.Chem.Int.Ed.Engl.,1984,23:695-701.
    [12] M.BARZOUKAS,M.BLANCHARD DESCE,D.JOSSE,et al.Very large quadratic nonlinearities in solution of two push-pull polyene series:Effect of the conjugation length and of the end groups[J].Chem.Phys.,1989,133:324-326.
    [13] LAP TAK CHENG,WILSON TAM,SETH R.MARDER,et al.Experimental investigations of organic molecular nonlinear optical polarizabilities.2.A study of conjugation dependences[J].J.Phys.Chem.,1991,95,10645-10646.
    [14] SETH R.MARDER,CHRISTOPHER B.GORMAN,BRUCE G.TIEMANN,et al.Stronger acceptors can diminish nonlinear optical response in simple donor-acceptor polyene[J].J.Am.Chem.Soc.,1993,115:3007.
    [15] THIERRY VERBIEST,STEPHAN HOUBRECHTS,MARTTI KAURANEN,et al.Second-order nonlinear optical materials:recent advances in chromophore design[J].J.Mater.Chem.,1997,7(11):2177.
    [16] P.C.RAY,P.K.DAS.First-order hyperpolarizabilities of octupolar aromatic molecules:symmetrically substituted triazines[J].Chem.Phys.Lett.,1995,244:154-155.
    [17]张新伟,李存.二阶非线性光学材料的偶极体系和八极体系[J].科技信息,2009,22:66.
    [18] ZHOU DEJIAN,J.ASHWELL,CHUNHUI HUANG.Improved Second Harmonic Generation from Langmuir-Blodgett Monolayers of an Ionically Combined Bis-chromophore Zinc Complex[J].Chemistry Letters,1997,26:7.
    [19] S.R.MARDER,J.W.PERRY,C.P.YAKYMYSHYN.Organic Salts with Large Second-Order Optical Nonlinearitie[J].Chem.Mater.,1994,6:1139.
    [20] QIN CHUANZIANG,ZHANG WEIZHOU,WANG ZHIMING,et al.Optical properties of stilbene-type dyes containing various terminal donor and acceptor groups[J].Optical Materials,2008,30:1607-1615.
    [21] I.R.WHITTAL,A.M.MCDONAGH,M.G.HUMPHREY,et al.Adv.Organomet.Chem.,1997,41.
    [22]吴杰颖,张居舟,施鹏飞,等.新型席夫碱配合物的合成和双光子性质研究[J].安徽大学学报,2005,29(2):69-73.
    [23] H.S.KUMAR,B.R.BHAT,B.J.RUDRESHA,et al.Synthesis,characterization of N,N’-bis(2-hydroxynaphthalidene)Phenylene-1,2-diamine with M(II)(M=Ni,Zn and Fe)Schiff-base complexes and their non-linear optical studies by z-scan technique[J].Chemical Physics Letters Journal,2010,494:95-99.
    [24] B.F.LEVINE,C.G.BETHEA.Second and third order hyperpolarizabilities of organic molecules[J].J.Chem.Phys.,1975,63:2666.
    [25] C.BOSSHARD,G.KNOPFIE,P.PRETRE.Second-order polarizabilities of nitropyridine derivatives determined with electric-field-induced second-harm -onic generation and a solvatochromic method : A comparative study[J].J.Appl.Phys.,1992,71(4):1594.
    [26] K . CLAYS , A . PERSOONS . Hyper-Rayleigh scattering in solution [J].Phys.Rev.Lett.,1991,66:2980-2983.
    [27] T.VERBIEST,M.KAURANEN,A.PERSOONS.Parametric light scattering[J].J.Chem.Phys.,1994,101:1745.
    [28] M.S.PALEY,J.M.HARRIS.A Solvatochromic Method for Determining Second-Order Polarizabilities of Organic Molecules[J].J.Org.Chem.,1989,54:3174-3178.
    [29] GU JIE,WANG YULAN,CHEN WEIQIANG,et al.Carbazole-based 1D and 2D hemicyanines:synthesis,two-photon absorption properties and application for two-photon photopolymerization 3D lithography[J].New J.Chem.,2007,31:63-68.
    [30] DAH-YEN YANG,TA-CHAU CHANG,SHEH-YI SHEU.Interaction between Human Telomere and a Carbazole Derivative : A Molecular Dynamics Simulation of a Quadruplex Stabilizer and Telomerase Inhibitor[J].J.Phys.Che -m.A,2007,111:9224-9232.
    [31]刘鑫,刘恒,贾鹏飞,等.一种用于细胞核成像的新型双光子荧光探针[J].高等学校化学学报,2009,30:465-467.
    [32] PERRIN D.D.,ARMAREGO W.F..Purification of Laboratory Chemicals 4thed[M].UK:Butterworth Heinemann Press,1988:3455-3461.
    [33]王伯英.乌锡康有机人名反应集[M].化学工业出版社:1984,256-257.
    [34] I.P.SEDISHEV,A.A.KUTIN,V.M.ZHULIN.Halogenated arenes in the Duff reaction at high pressures 1.The effect of reaction conditions on the reactivity of fluorobenzene[J].Russian Chemical Bullletin,1995,44:310-314.
    [35] N.E.AGAFONOV,I.P.SEDISHEV,A.A.KUTIN.Halobenzenes in the Duff reaction[J].Russian Chemical Bullletin,1993,42(1):209.
    [36] NICOLAS MASURIER , EMMANUEL MOREAU , CLAIRE LARTIGUE.New Opportunities with the Duff Reaction[J].J.Org.Chem.,2008,73:5989-5992.
    [37]王伯英.乌锡康有机人名反应集[M].化学工业出版社:1984,299-300.
    [38]王伯英.乌锡康有机人名反应集[M].化学工业出版社:1984,352.
    [39] BIRGIT PRUGER,THORSTEN BACH.Synthesis of Model Chromophores Related to the Gold Fluorescent Protein[J].Synthesis,2007,7:1103.
    [40]王伯英.乌锡康有机人名反应集[M].化学工业出版社:1984,428-431.
    [41] VERNON C . GIBSON , STEFAN K . SPITZMESSER , ANDREW J.P.WHITE,et al.Synthesis and reactivity of 1,8-bis(imino)carbazolide complexes of iron,cobalt and manganese[J].Dalton Trans,2003,2723.
    [42]徐建民,徐建成.测量粉末密度的两种比重瓶法误差的分析和对比[J].钻井液与完井液,2000,17(6):21-24.
    [43]金逢锡,李龙哲.比重瓶测固体密度影响实验结果的因素[J].大学物理实验,2000,13(2):59-61.
    [44] BILOT V.L.,KAWSKI A..Z.Naturforsch A.,1962,17:621.
    [45] DUAN XUAN MING,SHUJI OKADA,HIDETOSHI OIKAWA.Second-Order Hyperolarizabilities of Organic Ionic Species[J].Mul.Cryst.Liq.Cryst.,1995,267:89-94.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700