用户名: 密码: 验证码:
荻草微观力学性能及界面胶合性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
荻草(Miscanthus sacchariflorus,禾本科)是一种高大直立的多年生高生物量草类。为了将这种生物质资源应用于人造板的生产,实现荻草资源的有效开发利用。本研究从荻草的微观力学性能入手,研究了荻草的细胞尺寸,细胞微观结构和细胞壁力学性能,并建立微观性能和宏观性能的联系;进而研究了荻草的润湿性能,原料特性,茎秆的硅含量,分析了荻草茎秆中二氧化硅作为荻草刨花板防水剂的可行性,并在此基础上,研究了荻草刨花板的吸收厚度变化模型,荻草刨花板的工艺及性能。最后研究了荻草茎秆与胶粘剂胶合界面应力应变和荻草茎秆的胶接机理。论文的研究内容和结论如下:
     1.研究荻草宏观形貌,并利用扫描电镜分析荻草茎秆横切面和外表面的微观形貌、组织结构和细胞组成。
     研究结果表明,荻草下部茎秆为空心,上部为实心;荻草茎秆由表皮组织、基本组织薄壁细胞、维管束组织以及纤维组织带组成;荻草上部茎秆中间具有髓组织,髓是由薄壁细胞构成。荻草茎秆表皮组织由长细胞、栓质细胞、硅细胞和气孔构成。表皮形成蜡质层,阻碍胶粘剂润湿和渗透。
     2.利用软件分析荻草细胞形态参数,例如纤维细胞和薄壁细胞直径,细胞腔直径和壁腔比。
     研究结果显示,荻草茎秆主要由纤维细胞和薄壁细胞组成。纤维细胞的直径约为8.62-23.60μm,薄壁细胞直径约为33.05-66.65μm。纤维细胞的壁腔比约为2.94-3.44,强度、刚性较高。薄壁细胞的壁腔比约为0.29-0.34,小于1。
     3.利用纳米压痕技术测试荻草的微观结构和细胞壁的微观力学性能,并建立微观性能与宏观性能的联系。
     研究结果如下:荻草茎秆的纤维细胞为不规则多边形结构,直径约为5-20μm,细胞壁呈多层结构,具有韧性,薄壁细胞壁厚度约为5μm。荻草下部茎秆和上部茎秆的纤维细胞和弹性模量分别为20.11GPa和22.50GPa,硬度分别为0.53GPa和0.58GPa。上部茎秆薄壁细胞的弹性模量和硬度分别为20.6GPa和0.53GPa。荻草下、上部茎秆的平均微纤丝角分别为18.6°和16.5°。根据纳米压痕技术测出的荻草细胞硬度值,预测出荻草茎秆宏观硬度约为0.330GPa。基于纳米压痕试验的结果,荻草是一种优质的纤维材料,有作为人造板原料的潜质。
     4.分别测定脲醛树脂(UF)、三聚氰胺改性脲醛树脂(MUF)和酚醛树脂(PF)在荻草上、下部茎秆内、外表面的动态接触角,拟合出动态润湿模型。比较三种胶粘剂在荻草茎秆内、外表面上的润湿性能;并测试荻草内外表面的自由能。
     结果表明,三种胶粘剂在荻草内、外表面的润湿模型能很好地模拟接触角随时间的变化关系;三种胶粘剂在荻草茎秆表面的润湿性能顺序为:MUF     5.测试荻草的pH,缓冲容量,比较其和杨木、麦秸的表面润湿性;用X射线光电子能谱(XPS)和X射线能谱(EDAX)测试荻草茎秆表面和横切面的平均硅元素含量,分析荻草茎秆中的二氧化硅作为荻草刨花板自身防水剂的可能性。
     研究结果显示,荻草茎秆呈弱酸性,对UF胶的固化有促进作用。荻草茎秆的酸缓冲容量低于杨木,而碱缓冲容量与杨木相近。荻草茎秆内表面的润湿性能高于杨木,但外表面的润湿性能较差。荻草茎秆内表面主要组成成分为纤维素和半纤维素,而外表面以脂肪酸、脂肪和蜡等碳氢化合物为主。内表面硅含量几乎一致,外表面呈现出硅含量由下部茎杆到上部茎秆递减的特点。荻草茎秆中二氧化硅含量为3.49%,结果表明二氧化硅可以用作荻草刨花板生产的防水剂。
     6.研究荻草刨花板在水中浸渍100h的厚度变化,建立荻草刨花板随时间变化的吸水厚度模型,确定荻草刨花板吸水厚度随时间变化规律。
     研究结果为,荻草刨花板吸水后的膨胀可以分为弹性形变和粘性形变,荻草刨花板的吸水厚度膨胀率变化的模型可用TS(t) a be t来表示。在0-100h试验范围内,随荻草刨花板密度的增加,吸水平衡时的吸水厚度膨胀率降低。
     7.研究密度和施胶量这两个关键的工艺参数,对荻草刨花板物理力学性能的影响;并且比较不加石蜡和加石蜡荻草刨花板在不同因素水平下的物理力学性能,进一步分析二氧化硅的防水功能。
     研究结果表明,利用荻草茎秆中的二氧化硅作为刨花板自身防水剂的理论,在荻草刨花板生产中是可行的。在施胶量为14%的条件下,密度大于等于0.70g/cm3时,可以不用添加石蜡生产荻草刨花板。
     8.用数字散斑相关法测试在外力加载作用下荻草茎秆胶合界面的应变分布变化,比较试验用的三种胶粘剂在胶合荻草茎秆性能差别。
     研究结果显示,三种胶粘剂胶接的荻草茎秆试件在加载时,胶合界面最大剪切应变出现在胶合界面的两端;同时,两端是最先产生破坏的地方。胶合界面临近破坏时,最大剪切应变贯穿整个胶合界面,剪切应变由胶合界面向基材两边呈梯度减少。最大应变随载荷变化规律为:界面破坏之前,最大应变随载荷基本呈线性关系增加,临近界面破坏时,应变产生突变,直至破坏。三种试验用胶粘剂的弹性模量PF最大,MUF次之,UF最小。MUF胶接荻草茎秆试件破坏时所需的载荷最大,同时也表现出最大的应变量。
     9.运用傅里叶变换反射红外光谱法分析荻草茎秆中化学成分的官能团变化揭示荻草茎秆内、外表面与胶粘剂的胶接机理。
     荻草茎秆与脲醛树脂、酚醛树脂热压胶合后,荻草茎秆内表面的纤维素和半纤维素与脲醛树脂、酚醛树脂发生化学反应,形成胶合作用,木质素基本不变。外表面有着一层非极性的蜡质层,不与脲醛树脂、酚醛树脂反应,只是高温下成分有所降解。三聚氰胺脲醛树脂与荻草茎秆热压胶合后,不仅和茎秆内表面的纤维素和半纤维素发生化学反应,形成胶合作用;并一定程度和茎秆外表面的物质发生了化学反应。
Silvergrass (Miscanthus sacchariflorus, Family: Poaceae) is a tall, upright perennial grasswith high biomass. The purpose of this study is using silvergrass on wood-based panel industry,and realizing the effective development and utilization of silvergrass resource. The researchstudies micro mechanical properties of silvergrass firstly, including cell size, microstructure, andmechanical properties of cell wall, and building the relationship between micro and macroproperties. And then discussing the silvergrass stalk wettablity, material character and stalksilicon content, evaluating the feasibility of silica used as a waterproof agent in silvergrassparticleboard manufacture. On this basis, the model of thickness after absorbing water andtechnology and performance of silvergrass particleboard were studied. Finally, the stress andstain of bonding interface of silvergrass stalk and adhesive, and the bonding mechanism werediscussed. Research contents and the results were as following:
     1. Analysing the macroscopic morphology of silvegrass, and the microscopic morphology, tissuestructure and the cell types of cross section and out surface of stalk were discussed.
     The results show the lower silvergrass stalk was hollow, and the upper part was solid.Silvergrass stalk constituted epidermal tissue, parenchyma cells, vascular bundle and fiber texture.Upper stalk contained pith tissue, and it was made up of parenchyma cells. Epidermal tissueincluded long cells, suberin cells, silicon cells and pores. The waxy layer covered on epidermaltissue prevented adhesive from wetting and permeating.
     2. Silvergrass cell morphology parameter was determined, including diameter of fiber cells andparenchyma cells, cavity diameter of fiber cells and parenchyma cells, and the ratio of wall andcavity.
     The result displays silvergrass stalk mainly included fiber cells and parenchyma cells.Diameter of fiber cells was about8.62-23.60μm, diameter of parenchyma cells was33.05-66.65μm. The ratio of wall and cavity of fiber cells was2.94-3.44, the strength andstiffness of fiber cell was high; the ratio of wall and cavity of parenchyma cells was0.29-0.34,less than1.
     3. Microstructure and mechanical properties of silvergrass stalk were determined byNanoindentation, and the relationship between micro and macro properties was built.
     The fiber cell is an irregular polygonal with a diameter of5-20μm, the cell wall wasmultilayer feature. Nanoindentation hardness values of the fiber cell wall in lower and upperstalks were20.1and22.5GPa, and elastic modulus values were0.53and0.58GPa, respectively.The microfibril angle of lower and upper stalks were18.6°and16.5°. Macrohardness value of silvergrass stalk was0.330GPa evaluated from nanoindentation tests.Based on the properties determined, silvergrass is a good potential raw material for particleboardmanufacturing.
     4. Contact angle of adhesives on silvegrass stalk was measured to fit the model of dynamicwettablity, and the wettablity of the adhesives on silvergrass stalk was compared The surface freeenergy of silvergrass stalk was also measured.
     The result displays the model of dynamic wettablity could simulate the effect of contactangle on time exactly, the order of wettablity of adhesives on silvergrass stalk was MUF     5. The pH and buffering capacity of silvergrass were determined, surface wettability wascompared with poplar and wheat straw. The surface and average silicon contents of silvergrassstalk were measured by XPS and EDAX respectively. Evaluating the feasibility of silica used as awaterproof agent in silvergrass particleboard manufacture.
     Results show silvergrass was weak acidic, and was favorable for UF curing. Acid bufferingcapacity of silvergrass was lower than poplar; alkali buffering capacity was close to that of poplar.The internal surface of the silvergrass stalk had better wettability than poplar. The main chemicalcompositions of silvergrass stalk internal surface were cellulose and hemi cellulose, andcompositions of external surface were hydrocarbon. Silicon content of internal surface wasalmost the same and that of external surface decreased from lower to upper stalk. Silicon occursin silvergrass stalk as compound silica, and silica content was3.49%. Silica could be used as awaterproof agent for silvergrass particleboard.
     6. Study the variation of silvergrass particleboard thickness after soaking in water for100h. Themodel of thickness variation was established, and the law of thickness varied as time wasconfirmed.
     The result shows the swell of silvergrass particleboard can be divided into elasticdeformation and viscosity deformation. Model of thickness swelling of silvergrass particleboardcan be expressed asTS(t) a be t. The max thickness swelling of silvergrass particleboardincreased as the density increasing in time0-100h.
     7. Density and adhesive content were key technological parameters, the effect of density andadhesive content on mechanical properties of silvergrass particleboard was studied. The physicaland mechanical properties of boards with wax and without it were also compared to analyzewaterproof function of silica.
     The result of the study indicates that the theory of silica used as waterproof agent ofsilvergrass particleboard was feasible. The silvergrass particleboard could be manufacturedwithout wax, at the14%of adhesive content, and density was higher than0.70g/cm3.
     8. The strain distribution of silvergrass stalk glue interface was measured by digital specklecorrelation method (DSCM) at loading, comparing the performances of stalk glued by different adhesives (UF, MUF and PF).
     The result shows the max shear strain occurs at the two ends of glue interface when loading,and two ends of glue interface were fractured firstly. When glue interface approach damage, themax shear strain throughout the glue interface. Shear strain appears a gradient decreasing fromglue interface to stalks at both sides. The law of max shear strain changes as loading was maxshear strain increased linearly, before damage, and increased suddenly approaching damage. Theorder of modulus of elasticity of three adhesives was UF     9. The reaction mechanism of adhesive and the surfaces of silvergrass stalk were studied byATR-FTIR.
     The result displays that after silvergrass stalk was glued by UF and PF, cellulose andhemicellulose of internal surface of stalk had chemical reaction with UF and PF, but the ligninnot. The external surface had wax coat and didn’t react with UF and PF, only had a littledegradation at high temperature. After silvergrass stalk was glued by MUF, not only celluloseand hemicellulose of internal surface of stalk had chemical reaction with MUF, but also externalsurface of stalk reacted with MUF to a certain extent.
引文
[1]于海鹏,刘一星,刘迎涛.国内外木质环境学的研究概述[J].世界林业研究,2003,16(6):20-26.
    [2]国家林业局森林资源管理司.第七次全国森林资源清查及森林资源状况.林业资源管理,2010,1:1-8.
    [3]陈志林,傅峰,叶克林.我国木材资源利用现状和木材回收利用措施[J].中国人造板,2007,5:1-3.
    [4]朱光前.2010年我国木材及木制品市场概况及对2011年市场形势预测[J].中国人造板,2011,(5):28-32.
    [5]中国老科协木材安全调研组.关于保障中国木材安全的研究.林业资源管理,2010,(1):9-13.
    [6]马建波,张临春,栾书庭.我国木材战略安全问题初探[J].河北林业科技,2010,8(4):37-40.
    [7]王玉芳,张艳清,王梓铭.我国森林资源储备的现状及开源和节流对策[J].农业现代化研究,2011,32(2):161-164.
    [8]周定国,梅长彤.面向21世纪的秸秆工业材料[J].南京林业大学学报,2000,25(5):1-4.
    [9]王戈,余雁.国内外麦秸板的研究、生产及发展[J].世界林业研究,2002,13(2):36-42.
    [10]易平,唐召群.国外农作物秸秆人造板工业化生产发展近况[J].人造板通讯,2001,8(11):9-11.
    [11] Chung Y H, Todd F S. Utilization Of Agricultural Waste For Composite Panels. The6th Pacific RimBio-based Composites Symposium[C]. Portland,2002:164-168.
    [12] Han Guangping, Kawai S. Improvement mechanism of bond ability in UF-bonded reed and wheat strawboards by silane coupling agent and extraction treatment[J]. J Wood Sci.1999,(45):299-305.
    [13]郭星恺.我国农作物秸秆人造板发展前景展望[J].人造板通讯,2001,8(1):6-8.
    [14]郑凤山,李月芬,丁占来.玉米秸秆制造刨花板的实验研究[J].人造板通讯,2002,9(12):9-10.
    [15] Pease, David A. Wood Process adaptd to straw particleboard[J]. Wood Technology,1998,124(7):20-24.
    [16] Donnell, Rich. Isoboard’s straw panel palnt in Manitoba completes first year of production[J]. PanelWorld,1999,40(11):8-11.
    [17]蔡静蕊,张双保,李光沛.麦秸木材中密度纤维板工艺浅析[J].人造板通讯,2001,8(6):13-14.
    [18]张洋,华毓坤.木纤维与麦秸刨花制造纤维刨花板的工艺研究[J].木材工业,2001,15(5):6-9.
    [19] Wasylciw W, Wang S G. Effect of Machining Methods on Straw-Based Panel Properties. The6th PacificRim Bio-Based Composites Symposium[C]. Portland,2002:390-398.
    [20] Rowell R M, O’Dell J L, Rials T G. Chemical Modification of Agro-fiber for Thermo Plasticization. The2nd Pacific Rim Bio-Based Composites Symposium[C]. Canada,1991:144-152.
    [21] Mohammad Dahmardeh Ghalehno,Mehrab Madhoushi,Taghi Tabarsa etal. The manufacture ofparticleboards using mixture of reed(surface layer) and commercial species(middle layer)[J]. Eur.J.Wood Prod,2009(7):7-10.
    [22] Han G,Zhang C,Zhang D,Umemura K,Kawai S. Upgrading of UF-bonded reed and wheat strawparticleboards using silane coupling agents[J]. J Wood Sci,1998(44):282-286.
    [23] Han G,Umemura K,Wong ED,Zhang M,Kawai S. Effects of silane coupling agent level and extractiontreatment on the properties of UF-bonded reed and wheat straw particleboards[J]. J Wood Sci,2001(47):18-23.
    [24] Han G,Umemura K,Kawai S,Kajita H. Improvement mechanism of bondability in UF-bonded reed andwheat straw boards by silane coupling agent and extraction treatments [J]. J Wood Sci,1999(45):299-305.
    [25] A shori A,Nourbakhsh A.Effect of press cycle time and resin content on physical and mechanicalproperties of particleboard panels made from the underutilized low-quality raw materials[J]. Ind CropsProd,2008(28):225-230.
    [26] Amir Hosseini.A Investigation on particle board properties made of mixture reed and wooden chips[D].Iran:Tehran University,2001.
    [27] Loxton, Ceri, Hague, Jamie. Utilization of agricultural crop materials in panel product. In: Proceedings ofthe use of recycled wood and paper in building application[R]. Proceeding NO.7286. Forest ProductSociety. Madison, WI, USA,1996:190-192.
    [28] Y. Zhang, X. Lu, A. Pizzi. Wheat straw particleboard bonding improvements by enzyme pretreatment[J].Holz als Roh-und Werkstoff,2003,1(61):49-54.
    [29]陆仁书等.异氰酸酯胶稻草刨花板制造工艺[J].东北林业大学学报,1997,25(3):14-17.
    [30]郝丙业等.稻草刨花板制造下艺的初步研究[J].木材工业. l993.7(3):2-7.
    [31]花军.麦秆刨花板加工工艺理论及其应用的研究[D].哈尔滨:东北林业大学博士学位论文.1999.
    [32]艾军.麦秆纤维特性及脲醛树脂麦秆纤维板工艺的研究[D].哈尔滨:东北林业大学博士学位论文.2001
    [33]刘志明.麦秸表面特性及刨花板胶合机理的研究[D].哈尔滨:东北林业大学博士学位论文.2002.
    [34]顾继友等.异氰酸酯胶稻草刨花板制造工艺的研究[J].林产工业,2000,27(3):14-18.
    [35]张洋,华毓坤.麦秸表面的浸润性研究[J].木材工业,2001,15(2):6-9.
    [36] Zhang Yang and Hua Yukun. A Study on the Wettability and Surface Free Energy of Wheat Straw. SUAFprocessings2001:60-64.
    [37] Xinwu Xu, Dingguo Zhou, JieYao. Basic Characteristics of Hot-water Treated Wheat Straw[J]. SUAFprocessings2001:68-71.
    [38]周定国,张晓伟,徐咏兰等.杨木/狼尾草复合中密度纤维板工艺研究[J].林业科技开发,2007,21(5):58-60.
    [39]陈桂华.农作物秸秆表面性能及胶合重组技术研究[D].长沙:中南林业科技大学博士论文.2006.
    [40]王新洲,邓玉和,王伟等.芦苇中(高)密度纤维板的研究[J].林产工业,2010,37(2):19-25.
    [41]王新洲,邓玉和,廖承斌等.芦苇茎秆表皮特性及防水剂用量对刨花板性能的影响[J].浙江农林大学学报,2013,30(2):245-250.
    [42]陈少风.荻属系统学研究[D].长沙:湖南农业大学博士学位论文.2007.
    [43]刘亮.禾本科植物资源Ⅱ.北京:中国科学院植物研究所,1989.
    [44]刘亮,朱太平,朱明.中国植物资源[M].北京:科学出版社,2007:90-93.
    [45]高捍东,蔡伟健,朱典想等.荻草的栽培与利用[J].中国野生植物资源,2009,28(3):65-67.
    [46]刘亮.芒荻类植物的开发和利用[J].植物杂志,2001,(3):12-13.
    [47]刘亮,朱明,朱太平.芒荻类植物资源的开发和利用[J].自然资源学报,2001,16(6):562-563.
    [48]王玉珍.荻的繁殖技术[J].特种经济动植物,2007,(6):33.
    [49]王连敏,王立志.野生植物荻的利用途径浅析[J].黑龙江生态工程职业学院学报,2008,21(5):27-28.
    [50]柳建良,于新.南荻资源的人工开发利用[J].仲恺农业技术学院学报,2004,17(2):63-67.
    [51]韩广,张桂芳.洞庭湖区芦苇和荻的饲用潜力及开发利用[J].长江流域资源与环境,1998,7(3):232-236.
    [52]王伟.荻草基本性质及荻草刨花板制造工艺研究[D].南京:南京林业大学硕士论文.2009.
    [53]邓玉和,王伟等.荻草刨花板的生产方法[P].中国发明专利, ZL200810020770.7,2008.08.20.
    [54]邓玉和,朱典想等.一种高密度荻草纤维板的制备方法[P].中国发明专利, ZL200810019072,2009.01.07.
    [55]邓玉和,王伟等.荻草中密度纤维板的制造方法[P].中国发明专利, ZL200810019073,2009.01.07.
    [56]邓玉和,廖承斌等.利用荻草、芦苇表面的矿化物作为人造板生产的防水剂.[P].中国专利: ZL201110299741,2012.03.28.
    [57]李卯琼.荻草重组材制造工艺研究[D].南京:南京林业大学硕士论文.2011.
    [58]王宁生.荻草/杨木复合刨花板胶合机理及制造工艺研究[D].南京:南京林业大学硕士论文.2012.
    [59] Reed D T, Dauly J W. A new method for measuring thestrength and ductility of thin films[J]. J Mater Res,1993,8(7):1542-1550.
    [60] Wimmer R, Lucas B N, Tsui T Y et al. Longitudinal hardness and Young's modulus of spruce tracheidsecondary walls using nanoindentation technique[J]. Wood Science and Technology.1997,31(2):131-141.
    [61]江泽慧,余雁,费本华等.纳米压痕技术测量管胞细胞壁S2层的纵向弹性模量和硬度[J].林业科学.2004,40(2):113-118.
    [62]余雁,费本华,张波等.针叶材管胞细胞壁不同壁层的纵向弹性模量和硬[J].北京林业大学学报.2006,28(5):114-118.
    [63]吴燕,周定国,王思群等.纳米压痕技术在木材科学中的应用[J].世界林业研究.2007,20(3):51-55.
    [64] GindleW, Konnerth J, Schoberl T. Nanoindentation of regenerated cellulose fibers[J]. Cellulose.2006,13(1):1-7.
    [65] Cave ID. The anisotrop ic elasticity of the p lant cell wall [J]. Wood Science and Technology,1968,2(4):268-278.
    [66] Cave I D. The Longitudinal young’s modulus of Pinus radiate[J]. Wood Science and Technology,1969,3(1):40-48.
    [67]田根林,王汉坤,余雁等.微纤丝取向对木材细胞壁力学性能的影响研究[J].纳米科技,2010,7(2):63-66.
    [68] Konnerth J, Gindl W. Mechanical characterisation of wood-adhesiveinterphase cell walls bynanoindentation[J]. Holzforschung,2006,60(4):429-433.
    [69] Konnerth J, Valla A, Gindl W. Nanoindentation mapping of a wood-adhesive bond[J]. Aplied Physics A,2007,88:271-375.
    [70] Yu Y, Fei B, Zhang B, Yu X. Cell-wall mechanical properties of bamnoo investigated by in-situ imagingnanoindentation. Wood and Fiber Science,2007,39(4):527-525.
    [71] Zou LH, Jin H, Lu WY, Li XD. Nanoscale structural and mechanical characterization of the cell wall ofbamboo fibers. Materials Science and Engineering C,2009.29:1375-1379.
    [72] Wu Y, Wang SQ, Zhou DG, Xing C, Zhang Y, Cai ZY. Evaluation of elastic modulus and hardness of cropstalks cell walls by nano-indentation. Bioresource Technology.2010,101:2867-2871.
    [73] Wu Y, Wang SQ, Zhou DG., Xing C, Zhang Y. Use of nanoindentation and silviscan to determine themechanical properties of10haredwood species. Wood and Fiber Science.2009,41(1):64-73.
    [74] Stanzl S, Beikircher W, Loidl D. Comparison of mechanical properties of thermally modified wood atgrowth ring and cell wall level by means of instrumented indentation tests. Holzforschung.2009,63:443-448.
    [75] Bodig.J.,For.Prod.J.1962.12.6.:265-270.
    [76] Gray.V.R.J.,For.Prod.J.,1962.12.9.:452-461.
    [77] Herczeg A., Wettability of wood.Forest Prod.J.,1965,15(11):499-505.
    [78] Hse C.Y.,Wettability of southern pine veneer by phenol formaldegyde wood adhesives. Forest Prod. J.1972,22(1):51-56.
    [79] Nguyen T et al., The effects of aging and extraction on the surface free energy of Douglas Fir andRedwood,Wood Science and Technology,1979,13:29-40.
    [80] Sheldon.Q.Shi, Dougalas.J.Gardner. Dynamic adhesive wettability of wood. Wood and Fiber Science.2001.33(1):58-68.
    [81] Tang et al., Dynamic adhesive wettability of poplar veener with cold oxygen plasma treatment.Bioresoures.7(3):3327-3339.
    [82]欧年华.木材表面化学特性的ESR与ESCA分析[J],北京林学院学报,1982,31(3):168-176.
    [83]李坚.木质材料的界面特性与无胶胶合技术[M].东北林业大学出版社,1989.
    [84]陈广琪,华毓坤.竹材表面润湿性的研究[J].南京林业大学学报,1992,16(3):77-81.
    [85]张洋,华毓坤.麦秸表面的润湿性研究[J].木材工业,2001,15(2):6-8.
    [86]杨小军,向仕龙,陈桂华.几种难粘秸秆材料胶合性能的研究[J].林业科技,2004,29(2):35-37.
    [87]刘碧华,陈桂华,向仕龙等.两种秸秆表面润湿性的研究[J].木材加工机械,2008,5:37-39.
    [88]韩书广,周兆兵,江华等.酶处理对响叶杨材表面动态润湿性能的影响[J].浙江林学院学报,2009,26(6):774-777.
    [89]周兆兵,崔举庆,张洋等.微波处理对杨木表面动态润湿性能的影响[J].林业科技开发,2010,24(1):48-50.
    [90]阮重坚,李文定,张洋等.不同生物质材料的表面自由能[J].福建农林大学学报(自然科学版),2012,41(2):213-218.
    [91]吴国江,张舵.国内人造板石蜡防水剂发展状况[J].林产工业,1999,26(4):6-8.
    [92]吴宗华,陈少平,孙秀武等.纤维板防水剂用石蜡-松香乳液的组成及其性能研究[J].林产化学与工业,2005,25(2):95-98.
    [93]王曙耀.人造板防水技术(3)—新型防水剂的应用[J].林产工业,2004,31(6):51-52.
    [94]郝丙业,曹洲青.改性石蜡提高纤维板防水效果的研究[J].木材工业,2008,22(2):44-45.
    [95] Drzal,L.T., M.J.Rich, P.F.Lloyd. Adhesion of Graphite Fibers to Epoxy Matrices:I. The Role ofFiber Surface Treatment.The Journal of Adhesion,1983,16(1):1-30.
    [96]戴棣,乔新.复合材料层合板的非同步固化翘曲变形分析[J].南京航空航天大学学报,2000,42(1):63-68.
    [97] Gindl,W.and U.Müller. Shear strain distribution in PRF and PUR bonded3–ply wood sheets by meansof electronic laser speckle interferometry. Wood Science and Technology,2006,40(5):351-357.
    [98] Serrano,E.and B.Enquist. Contact-free measurement and non-linear finite element analyses of straindistribution along wood adhesive bonds. Holzforschung,2005,59(6):641-646.
    [99] Brewis,D.M.,J.Comyn,and C.Phanopoulos,Effect of water on some wood adhesives.InternationalJournal of Adhesion and Adhesives,1987,7(1):43-48.
    [100]马红霞.毛竹/杨木复合材料界面胶合性能及影响因素研究[D].北京:中国林业科学研究院博士论文.2009.
    [101]姚利宏.毛竹/杉木复合材料胶合界面理化性质研究[D].呼和浩特:内蒙古农业大学博士论文.2010.
    [1]中国科学院中国植物志编辑委员会.中国植物志(第十卷,第2分册)[M],北京:科学出版社,1997.
    [2]高捍东,蔡伟建等.荻草的栽培与利用[J].中国野生植物资源,2009,28(3):65-67.
    [3]刘亮.芒荻类植物的开发和利用[J].植物杂志,2001,(3):12-13.
    [4]刘亮,朱明,朱太平.芒荻类植物资源的开发和利用[J].自然资源学报,2001,16(6):562-563.
    [5]胡惠仁,石淑兰,冯文英.芦苇与荻木素结构及对制浆性能的影响[J].纤维素科学与技术,2000,8(2):23-29.
    [6]胡久清,马辉华,陈鹏飞.五个荻品种的茎秆形态结构及其纤维的比较观察[J].湖南农学院学报,1989,15(1):23-29.
    [7]王新洲.芦苇特性及制板工艺的研究[D].南京:南京林业大学硕士论文,2012.
    [1]李桂英.计算机在木材细胞数字化理论中的应用[J].林业机械与木工设备,2005,33(1):22-24.
    [2]黄慧.基于木材组织构造的数字图像处理[D].南京:南京林业大学硕士学位论文,2006.
    [3]向仕龙,蒋远舟等编著.非木材植物人造板[M].中国林业出版社,2008.
    [4]黄瑞华.草本细胞图像特征提取的数学形态学方法和参数测量的研究[D].南京:南京林业大学本科毕业论文.2011.
    [5] Wang et al., Nanosacale characterization of reed stalk fiber cell walls. Bioresoures,8(2):1986-1996.
    [6]周定国编著.人造板工艺学[M].中国林业出版社,2011.6.
    [7] Liao CB, Deng YH, Wang W, Wang XZ, Pham TL. Characteristic of silvergrass and feasibility of silica usedas waterproof agent of silvergrass particleboard [J]. Wood Fiber Sci,2013,45(2):178-186.
    [1] Wu Y, Wang SQ, Zhou DG., Xing C, Zhang Y. Use of nanoindentation and silviscan to determine themechanical properties of10haredwood species[J]. Wood and Fiber Science,2009,41(1):64-73.
    [2] Setunge S, Wong KK, Jollands M. Economic and environmental benefits of using hardwood sawmill wasteas a raw material for particleboard production[J]. Water Air Soil Pollut: Focus,2009,9:485-494.
    [3] Zhang Y, Lu X, Pizzi A, Delmotte L.Wheat straw particleboard bonding improvements by enzymepretreatment[J]. Holz als Roh-und Werkstoff,2003,61:49-51.
    [4] Liu L, Zhu M, Zhu TP. Exploitation and utilization of Miscanthus&Triarrhena. Journal of naturalresources[J],2001,6:562-563. In Chinese with summary in English.
    [5] Rowell, R.M., Young, R.A., Rowell, J.K., Paper and composites from agro-based resources. CRC LewisPublishers, Boea Raton, FL, USA,1997. P446.
    [6] Wu Y, Wang SQ, Zhou DG, Xing C, Zhang Y, Cai ZY. Evaluation of elastic modulus and hardness of cropstalks cell walls by nano-indentation[J]. Bioresource Technology,2010.101:2867-2871.
    [7] Liu L. Flora of China (Volume10, Part2). Science press, Beijing, China.1997. pp21-26. In Chinese.
    [8] Hata S, Sawabe K, Natuhara Y A. A suitable embankment mowing strategy for habitat conservation of theharvest mouse[J]. Landscape Ecol Eng,2010,6:133-142.
    [9] Gao HD, Cai WJ, Zhu DX, Deng YH, Sun J, Zou L. Planting and utilization of silvergrass[J]. Chinese WildPlant Resources,2009,28(3):65-67. In Chinese with summary in English.
    [10] Guo GL, Chen WH, Chen WH, Men LC, Hwang WSCharacterization of dilute acid pretreatment ofsilvergrass for ethanol production[J]. Bioresource Technology,2008,99:6046-6053.
    [11] Guo GL, Hsu DC, Chen WH, Chen WH, Hwang WS (2009) Characterization of enzymaticsaccharification for acid-pretreated lignocellulosic materials with different lignin composition [J]. Enzymeand Microbial Technology,45:80-87.
    [12]程献宝,王小青,余雁等.纳米压痕技术在木质材料细胞壁力学研究中的应用[J].世界林业研究,2011,24(5):40-46.
    [13]谢存毅.纳米压痕技术在材料科学中的应用[J].实验技术,2001,30(7):432-435.
    [14] Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using loadand displacement sensing indentation experiments. J. Mater. Res.1992,7:1564-1583.
    [15] Zou LH, Jin H, Lu WY, Li XD. Nanoscale structural and mechanical characterization of the cell wall ofbamboo fibers. Materials Science and Engineering C,2009,29:1375-1379.
    [14]黄艳辉,赵荣军,费本华等.木材微纤丝角的测定方法及其进展[J].西北林学院学报,2006,21(4):184-188.
    [15]罗真付,张雪峰,潘彪等.人工湿地松微纤丝角和结晶度的变异规律[J].安徽农业大学学报,2012,39(5):774-776.
    [16] China National Standard. GB1938-1991. Method of testing in tensile strength parallel to grain of wood.Standard Press of China, Beijing, China.1991.
    [17] China National Standard. GB/T17657-1999. Test methods of evaluating the propertiea of wood-basedpanels and surface decorated wood-based panels. Standard Press of China, Beijing, China.1999.
    [18]王宁生.荻草/杨木复合刨花板胶合机理及制造工艺研究[D].南京:南京林业大学硕士论文.2012.
    [19] Gindl, W., Gupta, H.S., and Grunwald, C. Lignification of spruce tracheids secondary cell wall related tolongitudinal hardness and modulus of elasticity using nano-indentation. Can J Botany,2002,80,1029-1033.
    [20] Wang XZ, Deng YH, Wang SQ, Liao CB, Meng YJ, Pham T. Nanosacale characterization of reed stalkfiber cell walls. Bioresoures,8(2):1986-1996.
    [21] Schmidt, R.E., Zhang, X. and Chalmers, D.R. Response of photosynthesis and superoxide, dismutase tosilica app lies to creeping dentgrass grown under two fertility levels[J]. J.Plant Nutr,1999,22(11):1763-1773.
    [22]费本华. X射线衍射法测定铜钱树木材微纤丝角及其变异的研究[J].安徽农业大学学报,1995,22(3):262-265.
    [23] China National Standard. GB/T4897.3-2003. Particleboard-Part3: Requirements for boards for interiorfitments(including furniture)for use in dry conditions. Standard Press of China, Beijing, China.2003.
    [1] Ma DJ, Ong CW, Wong SF. Evaluation of macro-hardness from nanoindentation tests. Journal of materialsscience,2005,40:2685-2687.
    [2] Zou LH, Jin H, Lu WY, Li XD. Nanoscale structural and mechanical characterization of the cell wall ofbamboo fibers. Materials Science and Engineering C,2009,29:1375-1379.
    [1]陈广琪,华毓坤.竹材表面润湿性的研究[J].南京林业大学学报:自然科学版,1992,16(3):77-81.
    [2]陈桂华.农作物秸秆表面性能及胶合重组技术研究[D].长沙:中南林业科技大学博士论文.2006.
    [3]Chen,C.M. Measuring the wetting of wood surfaces by adhesives.Mokuzai Gakkaishi,1972,18(9):451-456.
    [4] Liptáková,E.,Kúdela J.,Analysis of the wood-wetting process. Holzforschung,1994,48:139-144.
    [5]Liu,F.P.,Gardner J.D.,Wolcott M.P.,A model for the description of polymer surface dynamicbehavior:Contact angle vs.polymer surface properties,Langmuir,1995,11:2674-2681.
    [6] Halliday D.R., Rensick R.,Walker J.,Fundamental of physics. John Wiley&Sons,Inc., New York, NY.1997.
    [7] Maldas D.C.,Kamdem D.P.,Surface tension and wettability of CCA-treated red maple, Wood FiberSci.,1998,30(4):368-373.
    [8] Scheikl M.,and Dunky M.,Measurement of dynamic and static contact angles on woodfor determination ofits surface tension and the penetration of liquids into the wood surface, Holzforschung,1998,52(1):89-94.
    [9]张联盟,黄学辉,宋晓岚编.材料科学基础[M].武汉理工大学出版社(武汉),2004.
    [10]吴人洁.高聚物的表面与界面[M].科学出版社(北京),1998.
    [11]颜肖慈,罗明道.界面化学[M].化学工业出版(北京),2005.
    [12]刘志明.麦秸表面特性及刨花板胶合机理的研究[D].哈尔滨:东北林业大学博士学位论文.2002.
    [13]周兆兵,张洋,贾翀.木质材料动态润湿性能的表征[J],南京林业大学学报(自然科学版),2007,31(5):71-74.
    [14] Sheldon.Q.Shi. Dougalas.J.Gardner. Dynamic adhesive wettability of wood. Wood and Fiber Science,2001,33(1):58-68.
    [15]张洋.麦秸人造板的研究[D].南京:南京林业大学博士学位论文.2006.
    [1] Nemli G, Ayd n A. Evaluation of the physical and mechanical properties of particleboard made from theneedle litter of Pinus pinaster Ait. Industrial Crops and Products,2007,26(3):252–258.
    [2] FAO.(2010) http://faostat.fao.org/site/626/DesktopDefault. aspx?PageID=626#ancer(4Dec2012).
    [3] Wu Y, Wang SQ, Zhou DG., Xing C, Zhang Y. Use of nanoindentation and silviscan to determine themechanical properties of10haredwood species. Wood Fiber Sci,2009.41(1):64-73.
    [4] Liao CB, Deng YH, Wang SQ, Meng YJ, Wang XZ, Wang NS. Microstructure and mechanical properties ofsilvergrass fiber cell walls evaluated by nanoindentation[J]. Wood Fiber Sci,2012,44(1):63-70.
    [5] Guo GL, Chen WH, Chen WH, Men LC, Hwang WSCharacterization of dilute acid pretreatment ofsilvergrass for ethanol production[J]. Bioresource Technology,2008,99:6046-6053.
    [6] Guo GL, Hsu DC, Chen WH, Chen WH, Hwang WS (2009) Characterization of enzymatic saccharificationfor acid-pretreated lignocellulosic materials with different lignin composition [J]. Enzyme and MicrobialTechnology,45:80-87.
    [7] Gao HD, Cai WJ, Zhu DX, Deng YH, Sun J, Zou L. Planting and utilization of silvergrass. Chinese WildPlant Resources,2009,28(3):65-67.[In Chinese with summary in English].
    [8] China National Standard. GB/T6043-1999. Method for determination of pH of wood. Standard Press ofChina, Beijing, China.1999.
    [9] China National Standard. GB/T17660-1999. Method for determination of the buffering capacity of wood.Standard Press of China, Beijing, China.1999.
    [10] Li XP, Zhou DG, Xu ZX, Han SG, Xu XW. Study on acid-alkali buffering capacity of the castor stalks.Journal of Nanjing Forestry University (Nat Sci Edit),2009,33(5):77-80.[In Chinese with summary inEnglish].
    [11] Nemli G., Gezer ED, Yildiz S, Temiz A, Ayd n A. Evaluation of the mechanical, physical properties anddecay resistance of particleboard made from particles impregnated with Pinus brutia bark extractives.Biores Technol,2006,97(16):2059–2064.
    [12]刘志明.麦秸表面特性及刨花板胶合机理的研究[D].哈尔滨:东北林业大学博士学位论文.2002.
    [13] Ayrilmias, N, Kwon JH, Han TH. Effect of resin type and content on properties of composite particleboardmade of a mixture of wood and rice husk. Int J Adhes Adhes,2012,38:79-83.
    [14]张欣艳,苏润州,赵达等. X射线电子能谱(XPS)在木质材料研究领域中的应用[J].黑龙江八一农垦大学学报,2007,19(2):79-84.
    [15]王宁生.荻草/杨木复合刨花板胶合机理及制造工艺研究[D].南京:南京林业大学硕士论文.2012.
    [16] Dorris G M,Gray D G. The surface analysis of paper and wood fiber by ESCA application to celluloseand Lignin[J].Cellulose Chem.Technol,1978,12:9-23.
    [17]潘瑞炽.植物生理学[M].北京:高等教育出版社,2004,44-45.
    [18]陈琛.密实化杨木单板工艺及机理研究[D].南京:南京林业大学硕士论文.2012.
    [19] Pan R. Plant Physiology. Higher Education Press, Beijing, China,2004, pp44-45.
    [20] Liao CB, Deng YH, Wang W, Wang XZ, Pham TL. Characteristic of silvergrass and feasibility of silicaused as waterproof agent of silvergrass particleboard [J]. Wood Fiber Sci,2013,45(2):178-186.
    [21] China National StandardGB/T17657-1999. Test methods of evaluating the propertiea of wood-basedpanels and surface decorated wood-based panels. Standard Press of China, Beijing, China.1999.
    [22] Su RZ, Liu ZM, Li J, Ai J.Study on silica distribution of wheat straw surface. SCIENTIA SILVA SINICAE,2002,38(6):99-102.
    [23] Mo XQ, Hu J, Sun S, Ratto JA. Physical properties of medium-density wheat straw particleboard usingdifferent adhesives. Industrial Crops and Products,2003,18(1):47-53.
    [24] Pan Z, Canthcart A, Wang D. Properties of particleboard bond with rice bran and polymeric methylenediphenyl diisocyanate adhesives. Industrial Crops and Products,2006,23:40-45.
    [25] Tabarsa T, Ashori A, Gholamzadeh M. Evaluation of surface roughness and mechanical properties ofparticleboard panels made from bagasse. Compdsites: Part B,2011,42:1330-1335.
    [26] Nemli G, Ayd n A. Evaluation of the physical and mechanical properties of particleboard made from theneedle litter of Pinus pinaster Ait. Industrial Crops and Products,2007,26(3):252–258.
    [27] China National Standard. GB/T4897.3-2003. Particleboard-Part3: Requirements for boards for interiorfitments (including furniture) for use in dry conditions. Standard Press of China, Beijing, China.2003.
    [28] Zheng Y, Pan Z, Zhang R, Jenkins BM, Blunk S. Properties of medium-density particleboard from salineAthel wood. Industrial Crops and Products,2006,23(3):318-326.
    [1]顾继友,高振华,王逢瑚等.刨花板厚度方向变形研究Ⅱ刨花板厚度方向变形模型的建立及释因[J].林业科学,2002,38(3):160-166.
    [2]顾继友,高振华,王逢瑚等.刨花板厚度方向变形研究Ⅲ刨花板厚度方向变形模型的建立及规律的确定[J].林业科学,2002,38(4):134-140.
    [3]温海泉,海凌超,廖桂福,周少英.浅谈人造板产品的吸水厚度膨胀率[J].木材加工机械,2009,4:22-24.
    [4]张洋.麦秸人造板的研究[D].南京:南京林业大学博士学位论文.2001.
    [5]张洋,华毓坤.麦秸刨花板的吸水厚度变化模型[J].南京林业大学学报(自然科学版).2001,25(6):64-68.
    [6]李坚.木材科学,东北林业大学出版社[M],1994.
    [1]王伟.荻草基本性质及荻草刨花板制造工艺研究[D].南京:南京林业大学硕士论文.2009.
    [2]王宁生.荻草/杨木复合刨花板胶合机理及制造工艺研究[D].南京:南京林业大学硕士论文.2012.
    [3] China National Standard. GB/T17657-1999. Test methods of evaluating the propertiea of wood-basedpanels and surface decorated wood-based panels. Standard Press of China, Beijing, China.1999.
    [4] Nemli G, Ayd n A. Evaluation of the physical and mechanical properties of particleboard made from theneedle litter of Pinus pinaster Ait. Industrial Crops and Products,2007,26(3):252–258.
    [5] China National Standard. GB/T4897.3-2003. Particleboard-Part3: Requirements for boards for interiorfitments(including furniture)for use in dry conditions. Standard Press of China, Beijing, China.2003.
    [6] Pan Z, Canthcart A, Wang D. Properties of particleboard bond with rice bran and polymeric methylenediphenyl diisocyanate adhesives. Industrial Crops and Products,2006,23:40-45.
    [1]马红霞.毛竹/杨木复合材料界面胶合性能及影响因素研究[D].北京:中国林业科学研究院博士论文.2009.
    [2]王逢瑚,刘志明.木质基材料界面研究进展[J].东北林业大学学报,2001,29(5):84-87.
    [3] Broutman,L.J. Interfaces in Composites. ASTM STP,1969.452:p.27.
    [4]李凯夫,陆仁书.刨花与胶粘剂界面结合强度的研究[J].林业科学,2002,38(5):135-139.
    [5] Konnerth,J.,et al. Measurement of strain distribution in timber finger joints.Wood Science and Technology,2006.40(8):631-636.
    [6] Müller,U.,Sretenovic,A.,Vincenti,A.et al.Direct measurement of strain distribution along a wood bondline.Part1:Shear strain concentration in a lap joint specimen by means of electronic speckle patterninterferometry. Holzforschung,2005,59(3):300-306.
    [7]Serrano,E.and B.Enquist. Contact-free measurement and non-linear finite element analyses of straindistribution along wood adhesive bonds. Holzforschung,2005,59(6):641-646.
    [8]姚利宏.毛竹/杉木复合材料胶合界面理化性质研究[D].呼和浩特:内蒙古农业大学博士论文.2010.
    [1] Donaldson, Lomax. Adhesive fibre interaction in medium density fibre board[J]. wood Sci and Technol,1989,23:371-380.
    [2] Zaporoshskaya Y A et al. The absorption of methylol derivative of phenol on a metal surface[J]. PolymerSci,1980,22(6):1339-1345.
    [3] Paul R et al. Interaction of polyisocyanate adhesive with wood[J]. For. Prod. J.,1980,30(7):21-27.
    [4]朱明华.仪器分析(第三版)[M].高等教育出版社(北京),2000.
    [5]黄红英,尹齐和.傅里叶变换衰减全反射红外光谱法(ATR-FTIR)的原理与应用进展[J].中山大学研究生学刊(自然科学、医学版),2011,32(1):20-31.
    [6]李坚等.木材波谱学[M].科学出版社,2003,3:66-90.
    [7]王宁生.荻草/杨木复合刨花板胶合机理及制造工艺研究[D].南京:南京林业大学硕士论文.2012.
    [8]李润卿,范国粱,渠荣遴.有机结构波谱分析[M].天津大学出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700