用户名: 密码: 验证码:
煤中有机硫脱除机理的密度泛函研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤中硫在煤的利用过程中起着不容忽视的作用。量子化学计算方法在煤化学中的应用,已逐步深入到探索煤的结构与反应性之间的关系,逐渐形成了一个新的研究方向。
     以山西新峪精煤为研究用煤,利用全组分分离实验测定有机硫赋存规律与分布:(1)新峪精煤以有机硫为主,其含量占总硫的83%以上,其中90%左右的有机硫分布于大分子结构的萃余煤中,而轻质组分则几乎不含有机硫。(2)有机硫在各族组分中的相对含量按沥青质组分>精煤组分>萃余煤组分>轻质组分的规律降低。对煤样XPS峰进行了归属及得到了煤中有机硫相对含量,得到了如下结论:煤中有机硫的三种主要赋存形态的相对含量从高到低依次是硫醇(醚)、噻吩、(亚)砜。通过煤全组分分离实验可得到新峪精煤及各族组分中GC/MS可检测含硫小分子化合物共有八种,其中噻吩类硫五种,硫醇醚类硫三种。
     运用Materials Studio6.0计算软件对新峪精煤中二苯并噻吩、三-甲基-二苯并噻吩等八种含硫模型化合物及新峪精煤局部的模型进行了构建及优化计算。讨论了最高占据轨道和最低未占据轨道的组成与化合物活性的关系,对于二苯并噻吩,最高已占分子轨道主要分布在S7,C3,C5,C9,C11,C12,C2,C13上,对于新峪精煤中八种含硫模型化合物,最高已占分子轨道或最低未占分子轨道主要分布在S上,说明硫原子是亲核活性点或是亲电活性点,这些是影响化合物活性的主要基团。从电荷分析可知,含硫模型化合物的负电荷主要分布在分子中的硫原子上,说明含硫模型化合物中的S原子可能是受亲电试剂进攻的可能性作用点,这就可以预测,在形成配合物时,此原子优先配位。新峪精煤局部的模型结构中在交联程度较高区域的C-S单键是键的强度比较弱的地方,这些键在煤的降解过程中比较容易发生断裂,活性比较高。
     通过理论计算研究了外电场作用下含硫模型化合物分子的基态性质变化,如分子几何构型、能量、偶极矩、电子转移及热力学性质变化等。当加入外加电场时,分子的活性增强,分子越来越不稳定。另外,随着外电场的加入,分子中各基团的谐振频率向低频移动。温度在300K-800K之间变化时,二苯并噻吩分子总能、结合能、分子体系最高占据轨道(HOMO)能级EH,最低未占据轨道(LUMO)能级EL、能隙EG、总势能、自旋极化能随着温度的变化而变化的很小。分子的极性大小和微波脱硫的难易程度相对应。对比了噻吩类、硫醇醚类和相应类似分子在外加能量场作用下的分子的变化情况。含有S、O、N原子的极性分子对外电场的加入是有响应的,而只有C、H原子构成的1,2-二苯乙烷分子对外加电场没有反应。并且从分子的电偶极矩随外加电场变化的理论计算和微波脱硫的实验结果对比也可得到这个结论;外加电场可以改变含硫模型化合物中硫原子的振动能及分子的零点振动能,并且对分子中各基团的振动光谱强度和振动频率都有影响。
     开展外电场作用下煤中含硫模型化合物特性和硫降解过程的研究,可以为煤在外加能量场(微波)作用下的结构与反应性研究提供可靠的理论基础。比较噻吩在有无外电场作用下降解生成H2S的路径的分析可得:在有无电场作用下有相同的降解路径,但降解过程中各中间体及过渡态的结构及性能都发生了变化,从噻吩降解的势能剖面图可知,各路径发生的难易程度是不同的。当外加电场为0.001au时,只有第一条路径,在某处过程优化结构找不到说明第二条路径便不可能存在了。因而从理论上说明微波对噻吩的降解生成H2S途径及途径中各中间体和过渡态的性能都会有作用。随着外加电场的加入,二甲基二硫醚和二苯并噻吩的裂解活化能降低,从理论上说明,微波除了具有热效应外,还存在一种不是由温度引起的非热效应。微波作用下的有机反应,改变了反应动力学,降低了反应活化能。从能量机制上说明为什么在新峪精煤微波脱硫实验中,硫醇硫醚类脱除效果比较好,而对于噻吩硫却效果不佳。
The sulfur in coal have great influence on coal utilization. The quantum chemistry calculation method has been gradually used to study the correlation between coal structure and reactivity in coal chemistry, and has been gradually formed a new research direction.
     Taking XingYu clean coal from Shanxi as the research object, we determine the occurrence and distribution of organic sulfur using the whole group separation experiment.(1)The main sulfur in XingYu clean coal is organic sulfur, the organic sulfur content accounts for more than83%, about90%of organic sulfur distribute in residue coal of the macromolecular structure, and lightweight components contain almost no organic sulfur.(2)The relative contents of organic sulfur in all groups decrease according to asphaltene component>refined coal groups>residue coal component>light components.The coal XPS peaks were assigned and we get the relative content of organic sulfur in coal, the conclusions are as follow: the relative content of three kinds of main forms of organic sulfur in coal from high to low is athiol(ether),thiophene,(sub)sulfone. It can get eight small molecular compounds in XingYu clean coal and the total coal components detected by GC/MS through the total groups separation experiments. It contains five kinds thiophene sulfur and three kinds mercaptan sulfur ether.
     We build the new partial model and carry out the optimization calculation of the eight sulfur model compounds (Dibenxothiophene,3-methyl-dibenzothiophene et al)and XingYu coal. The relationship between the highest occupied orbital and the lowest unoccupied orbital of the activity of compounds are discussed. For dibenzothiophene, the highest occupied molecular orbitals are mainly distributed on S7,C3,C5,C9,C11,C12,C2,C13; For the eight model sulfur compounds in Xingyu clean coal, the highest occupied molecular orbitals and the lowest unoccupied molecular orbitals are mainly distributed on S, it illustrates that the sulfur atom is electrophilic activity or nucleophilic activity, these are the main groups which influence the compounds activity. It shows that the negative charge of the model sulfur compounds mainly distributed on the sulfur atoms through the charge population analysis, and illustrate that the sulfur atom in sulfur model compounds may be the possibility offensive point affected by the electrophilic reagents. It can predict that the atom prefer to coordinate in the formation of complexes. The bond strength of C-S single bond in the region of the crosslinking degree in XingYu coal is little weak, these bond are more easy to break during the coal fracturing, and the activity is higher.
     The ground state properties of the sulfur model compounds under the external electric fields are studied through the theoretical calculation, such as molecular equilibrium geometries, energy, dipole moment, electron transferring and the change of thermodynamic properties. When the external electric field is applied, the molecular activity is enhanced and the molecules are more and more unstable. In addition, with the external electric field, the resonant frequency of groups in molecule changed and moved to the low frequency. When temperature change in the range of300K-800K, the total energy, binding energy, the energy of the highest occupied molecular orbital(HOMO), the energy of the lowest unoccupied molecular orbital(LUMO), the energy gap, the total potential energy, spin polarization energy change with the temperature slightly. The degree of difficulty and easy of microwave desulfurization have certain relation with the large and small of the molecular polarity. The change of thiophene, thiol ether and similar molecular under the external energy field are compared. The polar molecules containing S,O,N are sensitive to the external electric field, and1,2dibenzene ethane molecules only constituting with C,H atom has no reaction to the external electric field. And it can get the conclusion from the theoretical calculation of the molecular electric dipole moment changing with the external electric field and comparison of experimental results of microwave desulfurization.
     Studying on the character of the sulfur model compounds in coal and the process of the sulfur degradation, it can provide reliable theoretical basis for researching on the structure and reactivity of coal under the function of the external electric field. Comparing with the path analysis of degrading to being H2S under the external electric field0.0005au and without the external electric field, it can get that there have the same degradation path with or without the external electric field, but the structure and performance of all the intermediates and transition states in degradation process have changed. The degree of difficulty of each path are different from the potential energy profile of the thiophene degradation. When the external electric field is0.001au, there only have the first path, the second path might not exist when the optimization structure was not found in somewhere progress. It illustrate indirectly from the theory that the microwave have effect on the path of generating H2S, the intermediates and transition states through pyrolysis. The activation energy of Dimethyl disulfide and Dibenzothiophene through pyrolysis is reduced with the increase of the external electric field. It illustrate that the microwave not only have the heating effect but also have non-thermal effect which is not caused by temperature in theory. The organic reactions under the action of microwave changed the reaction kinetics and reduced the reaction activation energy.It can explain from energy mechanism why the removal effect is better for the mercaptan sulfur and is poor effect for the thiophenic sulfur in the microwave desulfurization experiment of XingYu clean coal.
引文
[1]Baysal A,Akman S.A practical method for the determination of sulphur in coal samples by high-resolution continuum source flame atomic absorption spectrometry[J] Talanta,2011,86:586~593.
    [2]Wang H,Shao L Y,Newton R J,et al.Records of terrestrial sulfur deposition from the latest Permian coals in SW China[J].Chemical Geology,2012, (292-293):18~24.
    [3]Gonsalvesh L,Marinov S P,Stefanova M,et al.Evaluation of elemental sulphur in biodesulphurized low rank coals [J].Fuel,2011,90:2923~2930.
    [4]Jima G,Katskova D and Tittarelli P.Sulfur determination in coal using molecular absorption in graphite filter vaporizer[J].Talanta,2011,83:1687~1694.
    [5]Soleimani M,Bassi A and Argyrios M.Biodesulfurization of refractory organic sulfur compounds in fossil fuels[J].Biotechnology Advances,2007,25:570~596.
    [6]Zhang H X,Ma X Y,Dong X S,et al.Enhanced desulfurizing flotation of high sulfur coal by sonoelectrochemical method [J].Fuel Processing Techno logy,2012,93:13~17.
    [7]Zhao W,Xu W J,Zhong S T,et al.Desulfurization of coal by an electrochemical-reduction flotation technique [J] Journal of China University Mining and Technology, 2008,18:0571~0574.
    [8]Zhao Y P,Hu H Q,Jin L J,et al.Pyrolysis behavior of vitrinite and inertinite from chinese Pingshuo coal by TG-MS and in a fixed bed reactor[J].Fuel Processing Technology,2011,92:780~786.
    [9]凌丽霞.杂原子类煤结构模型化合物的热解及含硫化合物脱除的量子化学研究[D].太原理工大学博士学位论文.2010.
    [10]黄充.煤中有机硫热解机理的量子化学和热解脱硫实验研究[D].华中科技大学硕士学位论文.2005.
    [11]周强.煤的热解行为及硫的脱除[D].大连理工大学博士学位论文.2004.
    [12]Zhu F,Li C H,Fan H L.Effect of binder on the properties of iron oxide sorbent for hot gas desulfurization[J]. Journal of Natural Gas Chemistry,2010,19:169~172.
    [13]卫月琴,王宝俊.煤中含硫模型物荼基苄基硫醚的热解热力学[J].煤炭转化,2010,33(2):10-13.
    [14]Waanders F B,Mohamed W and Wagner N J.Changes of pyrite and pyrrhotite in coal upon microwave Treatment. International Conference on the Applications of the Mossbauer Effect Journal of Physics: Conference Series,2010,217:12051~12056.
    [15]Ma S J,Luo W J,Mo W,et al.Removal of arsenic and sulfur from a refractory gold concentrate by microwave heating[J].Minerals Engineering,2010,23:61~63.
    [16]Li J,Qing C,Li J P,et al.Sulfur removal in coal tar pitch by oxidation with hydrogen peroxide catalyzed by trichloroacetic acid and ultrasonic waves[J].Fuel,2011,90: 3456~3460.
    [17]Chelgani S C,Jorjani E.Microwave irradiation pretreatment and peroxyacetic acid desulfurization of coal and application of GRNN simultaneous predictor[J]. Fuel,2011, 90:3156~3163.
    [18]丁乃东,傅家伟,李兆鑫等.微波驱动的煤炭脱硫研究[J].洁净煤技术,2010,16(4):49-52.
    [19]魏蕊娣,米杰.微波氧化脱除煤中有机硫[J].山西化工,2011,31(2):1-4.
    [20]杨永清,崔林燕,米杰.超声波和微波辐射下萃取煤的有机硫形态分析[J].煤炭转化,2006,29(2):8-11.
    [21]李志峰,林七女,孙业新等.高硫炼焦煤脱硫技术的研究[J].燃料与化工,2011,42(3):4-6.
    [22]He Z J,Jin Y L,Zhang J H,et al.Disposal of low concentration fume with solid waste modified by microwave[J].Journalof Environmental Sciences,2011,23(Supplement) S149~S152.
    [23]Sedo G,Leopold K R.Microwave spectrum of (CH3)3CCN-SO3[J].Journal of Molecular Spectroscopy,2010,262:135~138.
    [24]郝振佳,曹新鑫,焦红光.微波技术在煤脱硫领域中的应用及发展[J].上海化工,
    2009,34(11):28-31.[25] Waanders F B,Mohamed W,Wagner N J. Changes of pyrite and pyrrhotite in coal upon microwave Treatment[J] Journal of Physics:Conference Series,2010,217:12051~ 12055.
    [26]兰新哲,裴建军,宋永辉等.一种低变质煤微波热解过程分析[J].煤炭转化,2010,33(3):15-18.
    [27]张军,解强,李兰亭等.微波技术用于煤炭燃前脱硫的综述[J].煤炭加工与综合利用,2007,2:43-46.
    [28]Maffei T,Sommariva S,Ranzi E,et al.A predictive kinetic model of sulfur release from coal[J].Fuel,2012,91:213~223.
    [29]伊长虹.生物大分子的量子和经典的理论计算研究[D].山东师范大学博士学位论文.2011,5.
    [30]Zheng X Z,Zhang Y H,Huang S P,et al.Adsorption of thiophene on transition metal atoms (Co,Ni and Mo) modified Al2O3 clusters:DFT approaches[J].Computational and Theoretical Chemistry,2012,979:64~72.
    [31]Chen J H, Wang L, Chen Y,et al.A DFT study of the effect of natural impurities on the electronic structure of galena[J].International Journal of Mineral Processing, 2011,98:132~136.
    [32]Opalkaa S,Lovvik O M,Emersona S C,et al.Electronic origins for sulfur interactions with palladium alloys for hydrogen-selective membranes [J]. Journal of Membrane Science,2011,375:96~103.
    [33]郭宁SbSn金属间化合物的结构和对石油改性研究[D].南京工业大学博士学位论文.2006.
    [34]Sun X,Wang J Y,Xie S Q.Density functional study of elemental mercury adsorption on surfactants[J].Fuel,2011,90:1061~1068.
    [35]Guo Y H,Cao J X,Xu B,et al.Electric field modulated dispersion and aggregation of Ti atoms on grapheme for hydrogen storage[J].Computational Materials Science, 2013,68:61~65
    [36]Torrisi A,Bell R G,Mellot D C.Predicting the impact of functionalized ligands on CO2 adsorption in MOFs:a combined DFT and grand canonical monte carlo study[J]. Microporous and Mesoporous Materials,2013,168:225~238
    [37]Shah M R,Yadav G D.Prediction of sorption in polymers using quantum chemical calculations:application to polymer membranes [J]. Journal of Membrane Science,2013, 427:108-117
    [38]Li M,Cui J C,Wang J,et al.Radiation damage of tungsten surfaces by low energy helium atom bombardment-a molecular dynamics study [J]. Journal of Nuclear Materials,2013,433:17~22
    [39]Hazra D K,Mukherjee M,Sen R,et al.18-crown-6 ether templated transition-metal dicyanamido complexes:synthesis,structural characterization and DFT studies[J]. Journal of Molecular Structure,2013,1033:137~144
    [40]Liu Y,Liu J,Chang M,et al.Theoretical studies of CO2 adsorption mechanism on linkers of metal-organic frameworks[J].Fuel,2012,95:521~527
    [41]Ling L X,Zhang R G,Wang B J,et al.Density functional theory study on the pyrolysis mechanism of thiophene in coal[J].Journal of Molecular Structure: Theochem,2009,905:8~12.
    [42]Chen J H,Wang,Chen Y,et al.A DFT study of the effect of natural impurities on the electronicstructure of galena[J].International Journal of Mineral Processing,2011,98 :132-136.
    [43]Ling L X,Zhang R G,Wang B J,et al.DFT study on the sulfur migration during benzenethiol pyrolysis in coal [J].Journal of Molecular Structure:Theochem,2010, 952:31~35.
    [44]Ling L X,Wu J B,Song J J,et al.The adsorption and dissociation of H2S on the oxygen-deficient ZnO(1010)surface:A density functional theory study[J].Computational and Theoretical Chemistry,2012,1000:26~32.
    [45]Martinez-Magadan J M,Oviedo-Roa R,Garcia P,et al.DFT study of the interaction between ethanethiol and Fe-containing ionic liquids for desulfuration of natural gasoline[J].Fuel ProcessingTechnology,2012,97:24~29.
    [46]Lua RQ,Qu ZQ,Yu H,et al.The electronic and topological properties of interactionsbetweenl-butyl-3-methylimidazoliumhexafluorophosphate/tetrafluoroborate and thiophene[J]. Journal of Molecular Graphics and Modelling,2012,36:36~41.
    [47]Freitas V L S,Gomes J R B,Ribeiro S C,et al.Molecular energetics of 4-methyldibenzothiophene:Anexperimentalstudy[J].JournalChemistryThermodynamics, 2010,42:251~255.
    [48]Niekerk D V,Mathews J P.Molecular dynamic simulation of coal-solvent interactions in permian-aged south african coal[J].Fuel Processing Technology,2011, 92:729~734.
    [49]刘振宇.煤炭能源中的化学问题[J].化学进展,2000,12(4):458-462.
    [50]Miura K, Mae K, Shimada M,et al.Analysis of formation rates of sulfur-containing gases during the pyrolysis of various coals [J].Energy Fuel,2001,15(3):629~636.
    [51]Gryglewicz G,Jasienko S.Sulfur groups in the cokes obtained from coals of different ranks [J].Fuel Processing Technology,1988,19(1):51~59.
    [52]Gorbaty M L,George G N and Keleman S R.Direct determination and quantificaiton of sulphur forms in heavy petroleum and coals (2):the sulphur K edge X-ray absorption spectrocopy approach [J].Fuel,1990,69:945~949.
    [53]Brown J R, Kasrai M, Bancroft G M,et al.Direct identificaiton of organic sulphur species in Rasa coal from sulphur L-edge X-ray absorption near-edge spectra [J].Fuel,1992,71:649-653.
    [54]朱子彬,朱宏斌,吴勇强等.烟煤快速加氢热解的研究(Ⅴ)煤和半焦中有机硫化学形态剖析[J].燃料化学学报,2001,29:44-47.
    [55]孙成功,李保庆:,Snape C E.煤中有机硫形态结构和热解过程硫变迁特性的研究[J].燃料化学学报,1997,25(4):358-362.
    [56]朱之培,高晋生.煤化学[M].上海:上海科技出版社,1984:62,125.
    [57]谢建军,杨学民,吕雪松等.煤热解过程中硫氮分配及迁移规律研究进展[J].化工进展,2004,23(11):1214-1218.
    [58]孙林兵,倪中海,张丽芳等.煤热解过程中氮、硫析出形态的研究进展[J].洁净煤技术,2002,8(3):47-50.
    [59]Kelemen S R,Vaughn S N,Gorbaty M L,et al.Transformation kinetics of organic sulphur forms in Argonne premium coals during pyrolysis[J].Fuel,1993,72(5):645~ 653.
    [60]王宝俊,张玉贵,谢克昌.量子化学计算在煤的结构与反应性研究中的应用[J].化工学报,2003,54:177-179.
    [61]孙庆雷,李文,陈皓凯等.煤显微组分分子结构模型的量子化学研究[J].燃料化学学报,2004,32(3):282-286.
    [62]候新娟,杨建丽,李永旺.煤大分子结构的量子化学研究[J].燃料化学学报,1999,27(增刊),142-148.
    [63]Doughty A,Mackie J C.Kinetic of pyrolysis of a coal model compound,2-picoline, the nitrogen heteroaromatic analogue of toluene,the 2-picolyl radical and kinetic modeling[J]. Journal of Physical Chemistry,1992,96:10339~10348.
    [64]Sugawara K,Enda Y,Sugawara T,et al.Analysis of sulfur form change during pyrolysis of coals[J]. Journal of synchrotron radiation,2001,8:955~957.
    [65]Cullis C F,Norris A C.The pyrolysis of organic compounds under conditions of carbon formation[J].Carbon,1972,10:525~537.
    [66]Memon H U R,Williams A and Williams P T.Shock tube pyrolysis of thiophene[J]. International Journal of Energy Research,2003,27:225~239.
    [67]Hohenherg P,Kohn W.Inhomogeneous electron gas[J].Physical Review,1964,136 :B864-B871.
    [68]Kohn W.Nobel lecture:electronic structure of matter-wave functions and density functionals[J]. Reviews of Modern Physics,1999,71:1253~1266.
    [69]Sherrill C D.The born-oppenheimer approximation[J].School of Chemistry and Biochemistry Georgia Institute of Technology,2005:1~7.
    [70]Hartree D R.Mathematical proceedings of the cambridge philosophical society[J].Cambridge University Press Proceedings,1928,24:89~110.
    [71]Parr R G,Yang W.Density-functional theory of atoms and molecules.Oxford University Press,Oxford,1989.
    [72]Thomas H.The calculation of atomic fields [J].Proceedings of the Cambridge Philosophical Society,1927,23:542~548.
    [73]Fermi E.The thomas-fermi model and dirac exchange energy[J].Accad Naz Lincei,1927,6:602~607.
    [74]Kohn W,Sham L J.Self-consistent equations including exchange and correlation effects[J].Physical Review,1965,140: A1133~A113.
    [75]Perdew J P,Zunger A.Self-interaction correction to density-functional approxima-tions for many-electron sy stems [J]. Physical Review B,1981,23:5048~5079.
    [76]Perdew J P,Wang Y.Accurate and simple density functional for the electronic exchange energy: generalized gradient approximation[J].Physical Review B,1986, 33:8800~8802.
    [77]Perdew J P,Chevary J A,Vosko S H,et al.Atoms,molecules,solids and surfaces: applications of the generalized gradient approximation for exchange and correlation[J]. Physical Review B,1992,46:6671~6687.
    [78]Perdew J P, Burke K and Ernzerhof M.Generalized gradient approximation made simple[J].Physical Review Letter,1996,77:3865~13868.
    [79]Anisimov V I,Zaanen J and Andersen O K.Band theory and mott insulators: hubbard instead of stoner[J].Physical Review B,1991,44:943~954.
    [80]Belpassi L,Infante I,Tarantelli F,et al.The chemical bond between Au(Ⅰ) and the noble gases comparative study of NgAuF and NgAu+(Ng) Ar,Kr,Xe)by density functional and coupled cluster methods [J] Journal of the American Chemical Society,2008,130:1048~1060.
    [81]Vignale G and Rasolt M.Density functional theory in strong magnetic fields[J].Physical Review Letter,1987,59:2360~2363.
    [82]Rajagopal A K,Callaway J.Inhomogeneous electron gas[J].Physical Review B, 1973,7:1912~1919.
    [83]Rajagopa A K.Inhomogeneous relativistic electron gas[J].Journal of Physics C, 1978,11:L943~L948.
    [84]Yanai T,Nakajima T,Ishikawa Y,et al.Efficient algorithm for electron repulsion integralsolver relativistic four-component gaussian-typespinors[J].Journal Chemical Physics,2002,116:10122~10128.
    [85]Lenthe E V,Baerends E J and Snijders J G.Relativistic regular two component Hamiltonians[J]. Journal Chemical Physics,1993,99:4597-4610.
    [86]Baroni S.Phonons and related crystal properties from density functional perturbation theory [J].Reviews of Modern Physics,2001,73:515~562.
    [87]Mantz Y A and Musselman R L.Calculations of the ground state and electronic transitions in the tetracyanonickelate ion Ni(CN)42-[J].Inorganic Chemistry,2002,41: 5770~5777.
    [88]Han Y K,Jung J.Does the"superatom" exist in halogenated aluminum clusters? [J] Journal of the American Chemical Society,2008,130:2~3.
    [89]Ugrinov A,Sen A,Reber A C,et al.[Te2As2]2-:a planar motifwith"conflicting" aromatic [J].Journal of the American Chemical Society,2008,130:782~787.
    [90]Reber A C,Khanna S N,Roach P J,et al.Spin accommodation and reactivity of aluminum based clusters [J]. Journal of the Americal Chemical Society,2007,129: 16098-16101.
    [91]Cao B P,Nikawa H,Nakahodo T,et al.Addition of adamantylidene to La2@C78: isolation and single-crystal X-ray structural determination of the monoadducts[J]. Journal of the American Chemical Society,2008,130:983~989.
    [92]Vanderbilt D.Soft self consistent pseudopotentials in a generalized eigenvalue formalism[J].Physical Review B,1990,41(11):7892~7895.
    [93]Andersen H C,Rattle:a "velocity" version of the shake algorithm for molecular dynamic calculations [J]. Journal of Computational Physics,1983,52(1):24~34.
    [94]Berendsen H J C,Postma J P M,Gunsteren W F,et al.Molecular dynamics with coupling to an external bath[J].Journal of Chemical Physics,1984,81(8):3684~3690.
    [95]Nose S.A molecular dynamics method for simulations in the canonical ensemble[J].Molecular Physics,1984,52:255~268.
    [96]Nose S.A unified formulation of the constant temperature molecular dynamics methods[J]. Journal of Chemical Physics,1984,81:511~519.
    [97]Nose S.Constant temperature molecular dynamics methods[J].Progress of Theore-tical Physics Supplement,1991,103:1~46.
    [98]Hoover W.Canonical dynamics: equilibrium phase-space distributions[J].Physical Review A,1985,31:1695~1697.
    [99]Car R and Parrinello M.Unified approach for molecular dynamics and density-functional theory[J].Physical Review Letter,1985,55:2471~2474.
    [100]Helden P,Steen E.Coadsorption of CO and H on Fe(100)[J] Journal of Physical Chemistry C,2008,112:16505~16513.
    [101]Hoogenboom R,Meier M A R and Schubert U S.Combinatorial methods, automated synthesis and high-throughput screening in polymer research:past and present [J].Macromol Rapid Commun,2003,24:15~32.
    [102]Schmatloch S,Meier M A R,Schubert U S.Instrumentation for combinatorial and high-throughput polymer research:a short overview[J].Macromol. Rapid Commun,2003, 24:33~46.
    [103]Xiao J J,Fang G Y,Ji G F,et al.Simulation investigations in the binding energy and mechanical properties of HMX-based polymer-bonded explosives[J].Chinese Science Bulletin,2005,50(1):21~26.
    [104]Legoas S B,Coluci V R,Coura P Z,et al.Molecular-dynamics sumulations of carbon nanotubes as gigahertz oscillators[J].Physical Review Letter,2003,90:1~4.
    [105]Gao Y H,Bando Y,Liu Z W,et al.Temperature measurement using a gallium-filled carbon nanotube nanothermometer[J].Applied Physics Letters,2003,83(14):2913~ 2916.
    [106]Andzelm J,Govind N,Fitzgerald G,et al.DFT study of methanol conversion to hydrocarbons in a zeolite catalyst[J].International Journal Quantum Chemistry,2003,91 (3):467~473.
    [107]Govind N,Andzelm J,Reindel K,et al.Zeolite-catalyzed hydrocarbon formation frommethanol:density functional simulations [J]. International Journal of Molecular Sciences,2002,3:423~434.
    [108]Jordaan M,Helden P,Sittert C G C E,et al.Experimental and DFT investigation of the octenemetathesis reaction mechanism with the grubbsprecatalyst[J].Journal of Molecular Catalysis A:Chemical,2006,254:145~154.
    [109]孟华平,赵炜,章日光等.半焦对富含甲烷气体转化制备合成气的作用(Ⅳ)理论分析半焦表面含氧官能团的催化机理[J].煤炭转化,2008,31(3):31-35.
    [110]章日光,黄伟,王宝俊.CH4和CO2合成乙酸中CO2与H·和CH3·相互作用的理论计算[J].催化学报,2007,28(7):641-645.
    [111]徐光宪,黎乐明,王德民.量子化学基本原理和从头计算法(中册)[M].北京:北京科学出版社,1985.
    [112]Levine I N,Quantum Chemistry[M].Fifth Ed.Beijing: Prentice Hall, Inc,2004,5-7.
    [113]范康年.物理化学(第二版)[M].北京:高等教育出版社,1995,22-23.
    [114]Eyring H.The activated complex and the absolute rate of chemical reactions[J]. Chemical Review,1935,17(1):65~77.
    [115]张永发.神府煤的结构及其在甲醇碱催化剂(BCII)体系中的解聚反应性[D].太原理工大学硕士学位论文,1999.
    [116]谢克昌.煤的结构与反应性[M].北京:科学出版社,2002:115.
    [117]Frost D C,Leeder W R and Tappling R L.X-ray photoelectron spectroscopic investigation of coal[J].Fuel,1974,53(3):206~211.
    [118]常海洲,王传格,曾凡桂等.不同还原程度煤显微组分组表面结构XPS对比分析[J].燃料化学学报,2006,34(4):389-394.
    [119]陈鹏.用XPS研究兖州煤各显微组分中有机硫存在形态[J].燃料化学学报,1997,25(3):238-241.
    [120]姚明宇,刘艳华,车得福.宜宾煤中氮的形态及其变迁规律研究[J].西安交通大学学报,2003,37(7):759-763.
    [121]代世锋,任德贻,宋建芳等.应用XPS研究镜煤中有机硫的存在形态[J].中国矿业大学学报,2002,31(3):225-118.
    [122]Miura K,Mae K,Shimada M,et al.Analysis of formation rates of sulfur-containing gases during the pyrolysis of various coals[J].Energ Fuel,2001,15(3):629~636.
    [123]Calkins W H.The chemical forms of sulfur in coal:a review[J].Fuel,1994,73:457-484.
    [124]周强.中国煤中硫氮的赋存状态研究[J].洁净煤技术,2008,14(1):73-77.
    [125]冯玉斌.煤的热解及硫析出特性试验研究[D].山东大学硕士学位论文,2005,9.
    [126]Milton L L, Daniel L V and Douglas W L.Capillary column gas chromatography of environmental polycyclic aromatic compounds[J].International Journal of Environmental Analytical Chemistry,1982(11):251-262.
    [127]Bvolton J L,Thateher G R J,Liu H.Chemical modification modulates estrogenic activity,oxidative reactivity,and metabolic stability in a new benzothiophene selective estrogen receptor modulator [J].Chemical Research in Toxicology,2006,19(6):779-787.
    [128]Jordan V C.Tamoxifen: a most unlikely pioneering medicine [J].Nature Reviews Drug Discovery,2003,2 (3):205~213.
    [129]Rossouw J E,Anderson G L,Prentice R L,et al.Risks and benefit s of estrogen plus progestin in healthy postmenopausal women and principal results from the women's health initiative randomized controlled trial [J]. Journal of the American Medical Association,2002,288 (3):321~333.
    [130]Katritzky A R,Bobrov S,Khashab N,et al.Benzot riazolyl mediated shifts of elect ron rich heterocycles[J].Journal of Organic Chemistry,2004,69(12):4269~4271.
    [131]吴群英,达志坚,朱玉霞.FCC过程中噻吩类硫化物转化规律的研究进展[J].石油化工,2012,41(4):477-483.
    [132]尹浩,刘桂建,刘静静.煤热解过程中含硫气体的释放特征[J].环境化学,2012,31(3):330-334.
    [133]李建源,周新锐,赵德丰.苯并噻吩及其衍生物[J].化学通报,2005,68:1-7.
    [134]Roberto R C, Ian H and Krishnaswamy R.Elucidation of the functional sulphur chemical structure in asphaltenes using first principles and deconvolution of mid-infrared vibrational spectra[J].Fuel Processing Technology,2012,97:85~92.
    [135]尚静,张建国,舒远杰等.高氯酸·四氨·双(5-硝基四唑)合钴(Ⅲ)分子和晶体结构与性能的理论研究[J].含能材料,2011,19(5):491-496.
    [136]Chen H L,Weng M H,Ju S P,et al.Structural and electronic properties of CenO2n(n=1-5) nanoparticles:a computational study [J].Journal of Molecular Structure,2010,963:2-8.
    [137]刘炯天.关于我国煤炭能源低碳发展的思考[J].中国矿业大学学报:社会科学版,2011,12(1):5-12.
    [138]Thorns T.Developments for the precombustion removal of inorganic sulfur from coal[J].Fuel Processing Technology,1995,43:123~128.
    [139]雷佳莉,周敏,严东等.煤炭微波脱硫技术研究进展[J].化工生产与技术,2012,19(1):43-46.
    [140]严东,周敏.煤炭微波脱硫技术研究现状与发展[J].煤炭科学技术.2012,40(7):125-128.
    [141]盛宇航,陶秀祥,许宁.煤炭微波脱硫影响因素的试验研究[J].中国煤炭,2012,38(4):80-82.
    [142]魏蕊娣.微波联合超声波强化氧化脱除煤中硫[D].太原理工大学硕士学位论文,2011.
    [143]Silva A S V,Weinschutz R,Yamamoto C I,et al.Catalytic cracking of light gas oil using microwaves as energy source[J].Fuel,2013,106:632~638.
    [144]Madriz L,Carrero H,Dominguez J R,et al.Catalytic hydrotreatment in reverse microemulsions under microwave irradiation[J].Fuel,2013,112:338~346.
    [145]Shang H,Zhang H C,Du W,et al.Development of microwave assisted oxidative desulfurization of petroleum oils:a review[J]. Journal of Industrial and Engineering Chemistry,2013,19:1426~1432.
    [146]Shang H,Du W,Liu Z C,et al.Development of microwave induced hydrodesulfuri-zation of petroleum streams:a review[J].Journal of Industrial and Engineering Chemistry,2013,19:1061~1068.
    [147]Xia W C,Yang J G and Liang C. Effect of microwave pretreatment on oxidized coal flotation[J].Powder Technology,2013,233:186~189.
    [148]Ge L C,Zhang Y W,Wang Z H,et al.Effects of microwave irradiation treatment on physicochemical characteristics of chinese low-rank coals[J].Energy Conversion and
    Management,2013,71:84~91. [149]Bardajee G R.Microwave-assisted solvent-free synthesis of fluorescent naphthali-mide dyes[J].Dyes and Pigments,2013,99:52~58.
    [150]Hennico QDelhalle J,Raynaud M,et al.An ab initio study of the electric field influence on the electron distribution of H CN, CH3 CN, CH2 CH CN, and CH2 C (CN) [J].Chemical Physics Letters,1988,152(2-3):207~214.
    [151]Ramos M,Alkorta I,Elguero J,et al.Theoretical study of the influence of electric fields on hydrogen-bonded acid-base complexes [J].Journal of Physical Chemistry A, 1997,101(50):9791~9800.
    [152]Aschi M, Spezia R, Nola A D,et al.A first-principles method to model perturbed electronic wavefunctions:the effect of an external homogeneous electric field[J]. Chemical Physics Letters,2001,344(3-4):374~380.
    [153]Kawabata H, Nishimura Y, Yamazaki I,et al.Electric field effects on fluorescence of methylene-linked compounds of phenanthrene and N,N-Dimethylaniline in a poly(methyl methacrylate) polymer film[J]. Journal of Physical Chemistry A,2001,105 (45):10261~10270.
    [154]Ana-Maria C C and Anna I K.Electronic structure of the π-bonded AI-C2H4 complex: characterization of the ground and low-lying excited states[J] Journal of Chemical Physics,2003,118(24):10912-10918.
    [155]James B F, Martin H G, John A P,et al.Toward a systematic molecular orbital theory for excited states[J] Journal of Physical Chemistry,1992,96 (1):135~149.
    [156]David J T and Nicholas C.Improving virtual Kohn-Sham orbitals and eigenvalues: application to excitation energies and static polarizabilities[J] Journal of Chemical Physics,1998,109(23):10180~10189.
    [157]Bauernschmitt R, Ahlrichs R.Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory[J].Chemical Physics Letters,1996,256(4-5):454~464.
    [158]Adamo C,Barone V.Accurate excitation energies from time-dependent density functional theory:assessing the PBEO model for organic free radicals[J].Chemical Physics Letters,1999,314(1-2):152~157.
    [159]Chaudhuri R K,Mudholkar A,Freed K F,et al. Application of the effective valence shell Hamiltonian method to accurate estimation of valence and Rydberg states oscillator strengths and excitation energies for π electron systems [J]. Journal of Chemical Physics,1997,106(22):9252~9264.
    [160]Cooper G,Olney T N and Brion C E.Absolute UV and soft X-ray photoabsorption of ethylene by high resolution dipole spectroscopy[J].Chemical Physics,1995,194(1): 75~184.
    [161]Grimme S.Density functional calculations with configuration interaction for the excited states of molecules[J].Chemical Physics Letters,1996,259(1-2):128~137.
    [162]Ding J N,Kan B,Yuan N Y,et al.The effect of external electric fields on the electronic structure of (5,5)/(10,0) metal-semiconductor single wall carbon nanotube intramolecule junction[J]. Physica E,2010,42:1590~1596.
    [163]Zhang S L,Zhang Y H,Huang S P,et al.Theoretical investigation of electronic structure and fieldemission properties of carbon nanotube-ZnO nanocontacts[J]. Carbon,2011,49:3835~3841.
    [164]Surya V J,Iyakutti K,Mizuseki H,et al.First principles study on desorption of chemisorbed hydrogen atoms from single-walled carbon nanotubes under external electric field[J].International Journal of Hydrogen Energy,2011,36:13645~13656.
    [165]Zhang Z, Wang J Y, Ning M,et al.Field ionization effect on hydrogen adsorption over TiO2-coated activated carbon[J].International Journal of Hydrogen Energy, 2012,37:16018~16024.
    [166]Liu W,Zhao Y H,Li Y,et al.A reversible switch for hydrogen adsorption and desorption:electric fields[J].Physical Chemistry Chemical Physics,2009,11:9233~ 9240.
    [167]Kim C,Kim B,Lee S M,et al.Effect of electric field on the electronic structures of carbon nanotubes[J].Applied Physics Letters,2001,79:1187~1189.
    [168]Shtogun Y V,Woods L M.Electronic structure modulations of radially deformed single wall carbon nanotubes under transverse external electric fields[J].Journal of Physical Chemistry C,2009,113:4792~4796.
    [169]Kan B,Ding J,Yuan N,et al.Transverse electric field-induced deformaton of armchair single-walled carbon nanotube[J].Nanoscale ResearchLetters,2010,5:1144~ 1149.
    [170]Ehinon D,Baraille I and Rerat M.Polariabilities of carbon nanotubes:importance of the crystalline orbitals relaxation in presence of an electric field[J].International Journal of Quantum Chemistry,2011,111(4):797~806.
    [171]Liu W,Zhao Y H,Nguyen J,et al.Electric field induced reversible switch in hydrogen storage based on single-layer and bilayer graphemes[J].Carbon,2009,47(15): 3452~3460.
    [172]Shi SH,Wang J Y,Li X,et al.Enhanced hydrogen sorption on carbonaceous sorbents under electric field[J].International Journal of hydrogen energy,2010,35(2):629-631.
    [173]Zhou J,Wang Q,Sun Q,et al.Electric field enhanced hydrogen storage on polarizable materials substrates [J]. Proceedings of the National Academy of Sciences,2010,107(7):2801~2806.
    [174]宋晓书,郭秋娥,宇燕.A1F分子外场效应的量子化学研究[J].贵州师范大学学报(自然科学版).2009,27(3):105-108.
    [175]令狐荣锋,徐梅,宋晓书等.GaAs在外电场作用下的分子特性研究[J].四川师范大学学报(自然科学版).2010,33(3):343-347.
    [176]宇燕,宋晓书,龙锋.MgO在外电场作用下的分子特性研究[J].四川大学学报(自然科学版),2009,46(3):749-755.
    [177]周平,姜明.TiC分子在外电场中的能量研究[J].四川大学学报(自然科学版),2012,35(4):530-533.
    [178]宋晓书,吕兵,令狐荣.多原子炸药分子硝基甲烷在外电场作用下的结构特性研究[J].四川大学学报(自然科学版),2012,49(1):175-180.
    [179]李暖祥.外场作用下内掺型纳米管的电子密度泛函理论研究[D].中国科学技术大学硕士学位论文,2008.
    [180]董琪,田维全,李伟奇等.外电场对N@C6o,P@C6o,As@C6o分子结构和性质的影响[J].高等学校化学学报,2010,31(11):2254-2259.
    [181]柳福提,张淑华,邵菊香.外电场作用下FO分子的特性研究[J].原子与分子物理学报,2010,27(3):429-434.
    [182]徐国亮,刘玉芳,孙金锋等.外电场作用下SiO电子结构特性研究[J].物理学报,2007,56(10):5704-5708.
    [183]宋振玲,杨奎奇,赵跃民.煤炭燃前脱硫技术研究进展[J].江苏煤炭,2003,4:43-44.
    [184]Klein J.Technological and economic aspects of coal biodesulfurisation[J]. Biodegradation,1998,9:293~300.
    [185]周强.煤的热解行为及硫的脱除[D].大连理工大学博士论文,2004,2.
    [186]冯玉斌.煤的热解及硫析出特性试验研究[D].山东大学硕士学位论文,2005,9.
    [187]Vierheilig A,Chen T,Waltner P,et al.Femtosecond dynamics of ground-state vibrational motion and enegry flow: polymers of giacetylene[J].Chemical Physics Letters,1999,312(5-6):349~356.
    [188]魏运洋,李建.化学反应机理导论[M].北京:科学出版社.
    [189]Cullis C F, Norris A C. The pyrolysis of organic compounds under conditions of carbon formation [J].Carbon,1972,10:525~537.
    [190]Winkler J K,Karow W,Rademcher P.Gas-phase pyrolysis of heterocyclic compounds,part 1 and part 2:flow pyrolysis and annulation reactions of some sulfur heterocycles:thiophene,benzothiophene, and dibenzothiophene, aproduct-oriented study [J] Journal of Analytical and Applied Pyrolysis,2002,62:123~141.
    [191]Memon H U R,Williams A and Williams P T. Shock tube pyrolysis of thiophene [J]. International Journal of Energy Research,2003,27:225-239.
    [192]孙林兵,倪中海,张丽芳等.煤热解过程中氮/硫析出形态的研究进展[J].洁净煤技术,2002,8(3):47-50.
    [193]Ling L X,Zhao L J and Wang B J.The Thermodynamic study on the sulfur-containing compound in coal using quantum chemistry.The 9th China-Japan symposium on coal and C1 chemistry proceedings,Chengdu city,China,Oct,2006,57-58.
    [194]Bajus M,Vesely V,Baxa J.Stream cracking of hydrocarbons effect of thiophene on reaction kinetics and coking[J].Industrial & Engineering Chemistry Product Research and Development,1981,20(4):741~745.
    [195]Martoprawiro M,Bacskay G B,Mackie J C.Ab initio quantum chemical and kinetic modeling study of the pyrolysis kinetics of pyrrole[J].Journal of Physical Chemistry A,1999,103:3923~3934.
    [196]Hore N R,Russell D K.The thermal decomposition of 5-membered rings: a laser pyrolysis study [J].New Journal Chemistry,2004,28:606~613.
    [197]Hurd C D,Levetan R V,Macon A R.Pyrolysis formation of arenas.Benzene and other arenas from thiophene,2-methylthiophene and 2-(methyl-14C)-thiophene[J]. Journal of the American Chemical Society,1962,84:4515~4519.
    [198]Bruinsma O S L,Tromp P J J,De Sauvage Nolting H J J,et al.Gas phase pyrolysis of coal-related aromatic compounds in a coiled tube flow reactor 2. heterocyclic compounds,their benzo and dibenzo derivatives [J].Fuel,1988,67:334~340.
    [199]Barckholtz C,Barckholtz T A,Hadad C M.C-H and N-H bond dissociation energies of small aromatic hydrocarbons [J] Journal of the American Chemical Society,1999,121 (3):491~500.
    [200]Mackie J C,Colket M B,Nelson P F,et al.Shock tube pyrolysis of pyrrole and kinetic modeling [J].International Journal of Chemical Kinetics,1991,23(8):733~760.
    [201]南京大学化学系有机化学教研室.有机化学[M].北京:高等教育出版社,1986,78.
    [202]Bacskay G B,Martoprawiro M,Mackie J C.The thermal decomposition of pyrrole: an ab initio quantum chemical study of the potential energy surface associated with the hydrogen cyanide plus propyne channel [J].Chemical Physics Letters,1999,300:321~ 330.
    [203]魏运洋,李建.化学反应机理导论[M].北京:科学出版社,2004,23-27.
    [204]傅献彩,沈文霞,姚天扬.物理化学[M],第四版.北京:高等教育出版社,1990,798-812.
    [205]马美仲,乙烯和二甲基硅酮的外场效应和电子激发态[D].四川大学博士学位论文,2005.
    [206]Nimmanpipug P,Yana J,Lee V S,et al.Density functional molecular dynamics simulations investigation of proton transfer and inter-molecular reorientation under external electrostatic field perturbation: case studies for water and imidazole systems[J]. Journal of Power Sources,2013,229:141~148.
    [207]Farmanzadeh D,Tabari L. Electric field effects on the adsorption of formaldehyde molecule on the ZnO nanotube surface:A theoretical investigation[J].Computational and Theoretical Chemistry,2013,1016:1~7.
    [208]Jalbout A. Endohedral metallo fullerene interactions with small polar molecules [J].Computational Materials Science,2009,44:1065~1070.
    [209]Zhou G,Duan W H.Spin-polarized electron current from carbon-doped open armchair boron nitride nanotubes:Implication for nano-spintronic devices[J].Chemical Physics Letters,2007,437:83~86.
    [210]Grozema F C,Telesca R,Jonkman H T,et al.Excited state polarizabilities of conjugated molecules calculated using time dependent density functional theory[J]. Journal Chemical Physics,2001,115(21):10014~10021.
    [211]Par K,Zhi H and Tonu P.Bacteriochlorophyll in electric field[J].Journal of Physical Chemistry B,2003,107 (49):13737~13742.
    [212]朱正和,傅依备,高涛等.H2的外场效应[J].原子与分子物理学报,2003,20(2):169-172.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700