用户名: 密码: 验证码:
小麦族猬草属和赖草属植物的系统发育研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦族(Triticeae)是禾本科(Poaceae)中一个十分重要的类群,约有28属380余种。小麦族内大多数物种为草原和草甸的主要组成成分,许多种类是优良的牧草,具有较高的饲用价值,也是现代麦类作物改良和牧草遗传育种的重要基因资源。因此,对小麦族植物进行正确分类,研究各类群间的亲缘关系和系统进化历史,在理论和实践上有重要意义。
     猬草属(Hystrix Moench)由Moench(1794)根据其颖强烈退化甚至缺失的特点而建立,模式种为Hy. patula Moench。自建属以来,猬草属的分类地位和界限、物种的染色体组组成等一直处于争论之中。Dewey(1982,1984)基于染色体组分析,认为模式种Hy. patula含有StH染色体组,因此将猬草属物种合并到含StH染色体组的披碱草属(Elymus)中。Jessen&Wang(1997)通过染色体组分析以及基因组特异RAPD标记认为Hy. coreana和Hy. californica具有赖草属(Leymus Hochst.)的NsXm染色体组,将Hy.coreana组合到赖草属中。Zhang et al.(2006)基于染色体组分析和基因组原位杂交分析认为Hy. patula含有StH染色体组,Hy. duthiei和Hy. duthiei ssp. longearistata含Ns染色体组,与赖草属物种亲缘关系密切。Ellneskog-Staam et al.(2007)根据基因组原位杂交和Southen杂交的结果显示:分布于中国东北的Hy. komarovii具有与Hy. patula相似的StH染色体组,而猬草属其余物种(Hy. duthiei、Hy. duthiei ssp. longearistata和Hy. coreana)的两个染色体组为Ns1Ns2。因此目前关于猬草属的系统学问题主要是猬草属是否是一有效的属,该属物种的染色体组组成以及与近缘属物种的关系如何,一直是争议的焦点。
     本研究从微形态结构(表皮微形态特征和解剖结构)、细胞学(染色体组分析、基因组原位杂交)和分子系统学(叶绿体atpB-rbcL基因间隔区、低拷贝核RPB2基因、多拷贝核ITS序列)三个方面对猬草属和赖草属物种进行系统学研究,重点探讨猬草属的系统地位、猬草属和赖草属植物的染色体组组成、可能的二倍体属供体、以及属(种)间的系统关系。主要结果如下:
     1、基于叶绿体基因间隔区atpB-rbcL序列对猬草属、赖草属和近缘属物种的系统发育分析显示:(1)猬草属模式种Hy. patula与拟鹅观草属和披碱草属物种聚为一支,表明Hy. patula与披碱草属植物亲缘关系近,其母本来源为含St染色体组的拟鹅观草属物种;(2) Hy. duthiei、Hy. duthiei ssp. longearistata、4个新麦草属物种及L. mollis和所有欧亚分布的赖草属物种聚在一支,说明Hy. duthiei、Hy. duthiei ssp. longearistata与欧亚赖草亲缘关系较近,其母本供体来自含Ns染色体组的新麦草属物种;(3)Hy. coreana和Hy.komarovii与北美赖草及冰草属、旱麦草属、大麦属物种处于同一分支,表明Hy. coreana和Hy. komarovii与北美赖草具有较近亲缘关系,其母本供体为未知来源的Xm染色体组。
     2、对猬草属、赖草属及近缘属物种的低拷贝核基因RPB2的分子序列和系统发育进行分析,结果表明:(1)异源多倍体物种中Ns拷贝的RPB2序列的核苷酸多态性明显高于其二倍体供体物种的序列多态性,中性检测Tajima's D值和Fu and Li'F值均呈显著负值,暗示NsXm染色体组物种多倍化后发生了明显的种群扩张和遗传分化;(2)RPB2基因在Hy. coreana、Hy. duthiei、Hy. duthiei ssp. longearistata、L. karelinii、L. innovatus、 L. paboauns、L. salinus、L. shanxiens和L. mollis中表现为多个拷贝序列,并且有7个来自Hy. coreana、Hy. duthiei、L. salinus、L. karelinii的RPB2序列为重组(嵌合)序列,推测重组序列来源于种间杂交和基因重组;(3)猬草属模式种Hy. patula含有StH染色体组,与披碱草属、拟鹅观草属和大麦属具有较近的亲缘关系;猬草属的其它物种Hy.duthiei、Hy. duthiei ssp. longearistata、Hy. coreana和Hy. komarovii含有NsXm染色体组,与新麦草属和赖草属植物亲缘关系密切;(4)H染色体组可能以基因渗入的方式参与Xm染色体组的组成;(5)L. molli与中亚赖草L. multicaulis关系密切,北美分布的L. mollis可能是由中亚分布的物种迁徙而至,并且与StH染色体组物种发生过遗传交流。
     3、对含NsXm染色体组组成的猬草属、赖草属及近缘二倍体属物种的ITS序列进行序列特征分析,构建ITS系统发育树。结果表明:(1)猬草属物种的ITS序列与赖草属和新麦草属聚类,表明Hy. coreana、Hy. duthiei、Hy. duthiei ssp. longearistata和Hy. komarovii与赖草属植物亲缘关系较近;(2)猬草属和赖草属物种中Ns-染色体组类型的ITS序列来源于新麦草属,P/F和St染色体组类型的ITS序列分别来源于AgropyronlEremopyrum和Pseudoroegneria物种;(3)ITS序列呈现出单亲类型(Ns染色体组类型)占优势,推测与赖草属的部分异源多倍体起源有关;(4)猬草属和赖草属物种的Ns类型的ITS序列聚类呈明显的地理分布特征,显示猬草属和赖草属物种的ITS谱系结构与物种的地理分布存在关联,推测不同生态和地理环境下的自然选择导致物种的适应分化和物种形成,并且也引起rDNA基因的进化分歧。
     4、对猬草属和赖草属物种进行了属(种)间人工杂交及细胞遗传学观察。杂交结果如下:(1)共计进行了23组种间及属间杂交组合,获得13个组合的杂种植株;(2)以Hy.duthiei和Hy. duthiei ssp. longearistata为母本与Hy. coreana及赖草属物种的授粉率较高,杂交后种子发育初期结实率可达38%,但是种子发育后期衰退,导致形成干瘪种子,可能与某些影响胚乳发育的基因有关;(3)赖草属种间杂交结实率较高,容易获得杂种植株。对杂种F1减数分裂中期Ⅰ花粉母细胞的染色体配对情况进行了观察和统计,结果显示:L.multicaulis x L. crassiusculus平均每细胞形成12.87个二价体,L. qinghaicus x L. multicaulis和L. multicaulis x L. qinghaicus平均每细胞分别形成12.07和11.92个二价体,表明L.crassiusculus和L. qinghaicus具有与L. multicaulis相同的染色体组组成,即NsXm染色体组,作为赖草属中的新分类群是恰当的。
     5、对3个猬草属物种(Hy. komarovii、Hy. core ana和Hy. duthiei ssp. longearistata)和4个赖草属物种(L.flexus、L. mundus、L. racemosus和L. secalinus)进行单色基因组原位杂交(GISH)分析。结果表明:(1) Hy. komarovii的染色体组中不含St染色体组和H染色体组;(2) Hy. komarovii、Hy. coreana和Hy. duthiei ssp. longearistata与供试的4个赖草属物种的染色体组成相似,很可能为两个来源于新麦草属的Ns染色体组,或Xm染色体组与Ns染色体组高度同源;(3)Ee染色体组与NsXm染色体组有一定的同源性,导致一些高度重复的小片段杂交;(4)Xm染色体组并非来自P染色体组。
     6、对猬草属和赖草属以及近缘属披碱草属植物的叶表皮微形态和叶片横切面解剖结构进行了观察。结果显示:(1)叶表皮形态与解剖结构都具有种内稳定性和种间差异性,具有物种鉴分的参考价值,但在属间或属内分组水平上的分类意义不大;(2)在叶表皮微形态上长细胞的壁形态、短细胞的有无、气孔的密度等性状差异明显;(3)解剖结构上,中肋的存在与否及形态、中央维管束的分布位置等性状具有较高的区分价值;(4)叶表皮形态与解剖结构特征表现出与植物所生长的生态环境的适应性。
The tribe Triticeae, which includs about28genus and380species, is an enormous important group in Poaceae. Many of species in Triticeae are important cereal and forage grasses, which are precious germplasm resources in crop improvement and forage breeding. So, it is important to study the genetic and phylogenetic relationships among Triticeae species before we use the Triticeae germplasms.
     Hystrix Moench is a small perennial genus of the tribe Triticeae. According to the distinct morphological character of highly reduced glumes or long setaceous awn-shaped ones, if present, it was established by Moench (1794). The type species is Hystrix patula Moench. Dewey (1982,1984) reported that Hy. patula contains the StH genome, and combined the species of Hystrix into Elymus. Several studies have suggested that the genomes of the other species of Hystrix are different from the StH genome of Hy. patula (Jensen&Wang1997; Svitashev et al.1998; Muramatsu2001; Zhang et al.2002; Zhang and Zhou2006; Zhang et al.2006). Jensen&Wang (1997) proposed that Hy. coreana and Hy. californica had the same genome constitution NsXm as Leymus Hochst., and combined these two species into Leymus. The chromosome pairing and genomeinsitu hybridization (GISH) analyses indicated that Hy. coreana, Hy. duthiei and Hy. duthiei ssp. longearistata shared the NsXm genomes of Leymus, and should be treated as species of Leymus (Zhang et al.2006; Zhang&Zhou2006). Based on the Southen and GISH analysis, Ellneskog-Staam et al.(2007) advocated that Hy. komarovii most likely had a variant of the StH genome of Hy. patula, and should be transferred to the genus Elymus. It was also considered that Hy. coreana, Hy duthiei and Hy. duthiei ssp. longearistata had the Ns'Ns2genome constitutions (Ellneskog-Staam et al.2007). Therefore, the definition of Hystrix and its precise taxonomic status are still under discussion today. Some authors included the species in either Hystrix (Sakamoto1973; Kuo1987; Osada1993; Baden et al1997; Zhou et al.2000) or Asperella (Keng1959; Baum1983; Ohwi1984; Koyama1987), while others regarded it as a part of Elymus (Dewey1982; Love1984) or Leymus (Jensen&Wang1997; Zhang et al.2006). Now the disputes about Hystrix are:whether it is a valid genus? What are the genome constitutions of Hystix species? How about the phylogenotic relationships between Hystrix and its related species?
     In order to inspect the genomic constitution of Hystrix species and their precise taxonomic status, and relationship between Hystrix and Leymus, the leaf epidermal micromorphology, lamina anatomy, interspecific hybridization, chromosome pairing behavior at MI, genomic in situ hybridization (GISH), molecular phylogenetic analysis from chloroplast atpB-rbcL, nuclear RPB2and ITS sequences for Hystrix species and their related species were carried out in this study. The main results showed as follows:
     1. To reveal the phylogenetic relationships and maternal donor of species in Hystrix and Leymus, the chloroplast atpB-rbcL sequences were analyzed for Hystrix and its related species. The results indicated that:(1) Hy. patula was closely related to Elymus, and the maternal donor of Hy. patula was the St genome;(2) Hy. duthiei and Hy. duthiei ssp. longearistata were closely related to the Eurasia Leymus, and the maternal donor of them were the Ns genome from Psathyrostachys;(3) Hy. coreana and Hy. komarovii were closely related to the Leymus species in North America, and their maternal donors might be the Xm genome.
     2. Low copy nuclear gene RPB2was analyzed for Hystrix and its related species. The results showed:(1) Ns copy sequences of RPB2of Hystrix and Leymus have more diversity than that in Psathyrostachys, and Tajima's and Fu and Li's D values were all negative significant for RPB2gene on the Ns and Xm genome, indicated that population expansion and rapid genetic differentiation might have occurred among the species with NsXm genome in Leymus and Hystrix;(2) More than2copies of RPB2in Hy. coreana, Hy. duthiei, Hy. duthiei ssp. longearistata, L. karelinii, L. innovatus, L. paboauns, L. salinus, L. shanxiens and L. mollis were obtained, and7sequences from Hy. coreana, Hy. duthiei, L. salinus and L. karelinii were detected as recombination sequenses;(3) Hy. patula was closely related to Pseudoroegneria, Hordeum and Elymus;(4) Hy. duthiei, Hy. duthiei ssp. longearistata, Hy. coreana and Hy. komarovii contain NsXm genome, and were closely related to Psathyrostachys and Leymus;(5) H genome of Hordeum may involve in the composition of Xm genome by introgression;(6) L. mollis distributed in North America might have migrated from Central Asia, and have close relationship with L. multicaulis; L. mollis might have gene exchange with the species contained StH genome by some way.
     3. Sequence and phylogenitical analysis were carried out for ITS sequence from species of Hystrix and Leymus combined with30diploid species in Triticeae. The results were:(1) abundent ITS polymorphism were detected among Hystrix and Leymus, and the pattern of rDNA variation is associated with geographic distribution pattern;(2) Ns-genomic types of Hystrix and Leymus were originated from Psathyrostachys, P/F and St genomic types of Leymus were originated from AgropyronlEremopyrum, and Pseudoroegneria species, respectively;(3) the occurrence of a higher proportion of Hystrix and Leymus species with dominant uniparental rDNA type may associated with the segmental allopolyploid origin, and adaptive radiation in Hystrix and Leymus.
     4. A total of23interspecific or intergeneric cross combinations involving Hystrix and Leymus species were performed, and13hybrid F1plants were obtained. Meiosis analysis of3hybrids from species of Leymus were carried out. Meiosis analysis showed that:(1) in the tetraploid hybrids of L. multicaulis x L. crassiusculus, L. qinghaicus x L. multicaulis, and L. multicaulis x L. qinghaicus, an average of12.87,12.07and11.97bivalents per cell was observed at MI, respectively, suggesting that L. crassiusculus and L. qinghaicus share the same basic NsXm genome of L. multicaulis. Thus, it is reasonable that L. crassiusculus and L. qinghaicus were treated in Leymus.
     5. Genomic in situ hybridization (GISH) analysis was carried out in three Hystrix species (Hy. komarovii, Hy. coreana and Hy. duthiei ssp. longearistatd) and4Leymus species (L. flexus, L. mundus, L. racemosus and L. secalinus). GISH analysis indicated that:(1) Hy. komarovii has the NsXm genome instead of the StH genome;(2) Hy. komarovii, Hy. coreana and Hy. duthiei ssp. longearistata have the NsXm genomeof Leymus;(3) in species of Leymus, the Xm genome is closely related to Ns genome, and the Xm genome may be another Ns genome;(4) Ee genome is homology with the NsXm genome in a lower degree;(5) Xm genome did not origin from P genome.
     6. The leaf epidermal micromorphology and anatomical structure of Hystrix, Leymus and Elymus was examined under light microscope. The results showed that:(1) a number of variations of epidermal micromorphology and anatomical structure exist at the species level, and may be used for distinguishing different speicies, but not for different genera;(2) variations of epidermal features includes variation in morphology and wall thickness of long cells, morphology and distribution patterns of short cells and distribution of prickles;(3) the leaf anatomical features such as the presence or absence of keel, the outline of keel if it is present, arrangement of vascular bundles, have more distinguishing value between different species;(4) the variation of epidermal micromorphology and anatomical structure is related closely to environment.
引文
[1]蔡联炳,王世金.1994.禾本科植物叶片表皮结构细胞的演变趋势及其机理的研究.高原生物学集刊,12-13
    [2]蔡联炳.1995.国产赖草属新分类群.植物分类学报,33(5):491-496
    [3]蔡联炳,郭延平.1995.禾本科植物叶片表皮结构细胞主要类型的演化与系统分类和发育途径的探讨.西北植物学报,15(4):323-335
    [4]蔡联炳,郭延平.1996.禾本科植物叶片表皮结构细胞主要类型的演化与系统分类和发育途径的探讨(续).西北植物学报,16(1):65-72
    [5]蔡联炳.1997.青海鹅观草属的叶片表皮微形态特征及其分类意义的探讨.西北植物学报,17(5):48-53
    [6]蔡联炳.1999.禾本科叶片表皮结构细胞的组合式样及其分类学意义.植物研究,19(4):415-426
    [7]蔡联炳.2000.鹅观草属部分种的表皮微形态特征及其分类学意义.木本植物研究,20(4):372-378
    [8]蔡联炳.2001.青海赖草属一新种和一新变种.植物分类学报,39(1):75-77
    [9]蔡联炳,张梅妞.2005.国产赖草属的叶表皮特征与组群划分.植物研究,25(4):400-405
    [10]柴守诚,刘大钧,陈佩度,等.1999.大赖草和新麦草物种专化DNA重复序研究Ⅱ在小麦族中分布的多态性.西北农业大学学报,27(4):1-4
    [11]陈守良,金岳杏.1980.叶表皮细胞结构在国产狼尾草属(Pennisetum Rich)分种水平上的应用.南京中山植物园研究论文集:33-40
    [12]陈守良,金岳杏,吴竹君,等.1985.叶表皮细胞结构在国产狗尾草属(Setaria Beauv)分组水平上的应用.植物研究.5(2):105-112
    [13]陈守良,金岳杏,吴竹君.1987.小麦族(Triticeae)叶片表皮微形态观察及其分类意义的探讨.南京中山植物园研究论文集:3-13
    [14]陈守良,金岳杏,吴竹君.1993.禾本科叶片表皮微形态图谱.南京:江苏科学技术出版社
    [15]凡星.2009.小麦族植物单拷贝核ACC1和Pgkl基因序列的分子系统发育研究.四川农业大学博士论文
    [16]高新远和王秀玲.1998.植物远缘杂交的障碍及其克服.生物学通报,33(12):12-14
    [17]耿以礼.1959.中国主要植物图说—禾本科.北京:科学出版社
    [18]郭本兆.1987.中国植物志(第9卷3分册).北京:科学出版社
    [19]郭延平,郭本兆.1991.小麦族植物的属间亲缘和系统发育的探讨.西北植物学报,11(2):159-169
    [20]胡适宜.2005.被子植物生殖生物学.北京:科学出版社
    [21]黄燕,张海琴,刘静等.2009.利用RAPD特异标记分析东北猬草染色体组成.西北植物学报,29:1538-1543.
    [22]解新明,马万里,扈瑞平.1998.燕麦族部分属种的叶表皮特征在分类及系统演化中的应用研究.内蒙古师大学报(自然科学汉文版),27(1):62-65
    [23]李艳,秦海,李法曾.2006.山东小麦族植物叶表皮微形态的研究.武汉植物学研究,24(2):163-166
    [24]李正理.1996.植物组织制片学.北京大学出版社
    [25]林小虎,李星锋,王黎明,等.2005.麦类作物体细胞基因组原位杂交(GISH)效果影响因素的分析.实验生物学报,38(2):162-130
    [26]刘磊.2011.2N与4N水稻杂种幼胚后代印记研究及胚乳发育相关基因表达分析.四川农业大学硕士论文
    [27]卢宝荣,颜济,杨俊良.1990.分布于日本和中国的鹅观草及其杂种的形态学和细胞学研究.云南植物研究.12(3):237-246.
    [28]卢宝荣,刘继红.1992.染色体组分析及小麦族的系统学.植物学通报,9(1):26-31.
    [29]卢宝荣1994. Elymus sibiricus、E. nutans、E. burchanbuddae的形态学鉴定及其染色体组亲缘关系的研究.植物分类学报,32(6):504-513.
    [30]马海英.2005.广义拂子茅属(禾本科)的系统学研究.中科院昆明植物研究所博士论文
    [31]伍碧华,孙根楼.1995.赖草的种间和属间杂种胚胎培养研究.云南植物研究,4:445-452
    [32]吴令辉.2006.黄槿的GapC基因家族与分子亲缘地理学研究.中山大学硕士论文.
    [33]颜济,杨俊良.1990.耿氏草属Kengkilia,中国禾本科小麦族一新属.四川农业大学学报,8(1):75-76
    [34]颜济,杨俊良.2008.小麦族系统学(第4卷).北京:中国农业出版社
    [35]杨瑞武.2004.11个四倍体赖草属物种的核型研究.植物分类学报,42(2):154-161
    [36]张海琴.2002.猬草属三个物种的细胞学和DNA分子标记研究.四川农业大学硕士论文
    [37]张志耘,卢宝荣,温洁.1998.稻属叶表皮结构特征及其系统学意义.植物分类学报,36(1):8-18
    [38]智丽,滕中华.2005.中国赖草属植物的分类、分布的初步研究.植物研究,25(1):22-25
    [39]周永红,杨俊良,颜济,等.1999.小麦族下Hystrix longearistata和Hystrix duthiei的生物学研究.植物分类学报,37(4):386-393
    [40]周永红.2001.染色体组分析在小麦族系统分类学研究中的应用.植物科学进展,4:93-100
    [41]Aguilar JF, Rossello JA, Feliner GN.1999. Nuclear ribosomal DNA (nrDNA) concerted evolution in natural and artificial hybrids of Armeria (Plumbaginaceae). Molecular Ecology,8:1341-1346
    [42]Ahn S, Anderson J A, Sorrells M E, et al.1993. Homoeologous relationships of rice, wheat and maize chromosom. Molecular Genet Gen tic.241:483-490
    [43]Aiken SG, Lefkovitvch LP.1984. The taxonomic value of using epidermal characteristics in the Canadian rough fescue complex(Festuca altaica, F. campestris, F. hallii, "F. scabrella"). Canadian Journal of Botany,62:1864-1870
    [44]Aiken SG, Darbyshire S J, Lefkovitch L P.1985. Restricted taxonomic value of leaf sections in Canadian narrow-leaved Festuca(Poaceae). Canadian Journal of Botany,63(6),995-1007
    [45]Alonso LG, Kimber G.1981. The analysis of meiosis in hybrids. Ⅱ. Triploid hybrids. Canadian Journal of Genetics and Cytology,23:221-234
    [46]Alvarez I, Wendel JF.2003. Ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetics and Evolution,29:417-434
    [47]Amheim N, Krystal M, Schmickel R, et al.1980. Molecular evidence for genetic exchange among ribosomal genes on nonhomologous chromosomes in man and apes. Proceedings of the National Academy of Science USA,77:7323-7327
    [48]Anamthawat-Jonsson K, Heslop-Harrison J S.1993. Isolation and characterization of genome-specific DNA sequences in Triticeae species. Molecular Genet Genome,240:151-158
    [49]Anamthawat-Jonsson K, Bodvarsdottir S K.2001. Genomic and genetic relationships among species of Leymus (Poaceae:Triticeae) inferred from 18S-26S ribosomal genes. American Journal of Botany,88:553-559
    [50]Baden C, Frederiksen S, Seberg O.1997. A taxonomic revision of the genus Hystrix (Triticeae, Poaceae). Nordic Journal of Botany,17:449-468.
    [51]Bao Y, Wendel JF, Ge S.2010. Multiple patterns of rDNA evolution following polyploidy in Oryza. Molecular Phylogenet Evolution,55:136-142
    [52]Barkworth ME, Atkins RJ.1984. Leymus Hochst. (Gramineae:Triticeae) in North America: Taxonomy and distribution. American Journal of Botany,71 (5):609-625
    [53]Barrier M, Robichaux RH, Purugganan MD.2001. Accelerated regulatory gene evolution in an adaptive radiation. Proceedings of the National Academy of Science USA,98:10208-10213
    [54]Bradley RD and Hillis DM.1997. Recombinant DNA Sequences Generated by PCR Amplication. Molecular Biology and Evolution,14(5):592-593
    [55]Baum DA, Small RL, Wendel JF.1998. Biogeography and floral evolution of Baobabs (Adansonia, Bombacaceae) as inferred from multiple data sets. Systematic Biology,87:181-207
    [56]Bodvarsd6ttir SK, Anamthawat-J6nsson K.2003. Isolation, characterization, and analysis of Leymus-specific DNA sequences. Genome,46:673-682
    [57]Bothmer R von, Salmon B.1994. Triticeae:a tribe for food, feed and fun. In:Wang R R-C, K B Jensen, C Jaussi (eds), Proc 2nd Intern Triticeae Symp Logan, USA, Logan:Utah State University,1-12
    [58]Brown DD, Wensink P C, Jorden E.1972. A comparison of the ribosomal DNA's evolution of tandem genes. Journal of Molecular Biology,63:57-73
    [59]Brown W V.1958. Leaf anatomy in grass systematics. Bot. Gaz.119,170-178
    [60]Bryant D, Moulton V.2004. Neighbor-Net:An agglomerative method for the construction of phylogenetic networks. Molecula Biology and Evolution,21:255-265
    [61]Church G L.1967. Taxonomic and genetic relationships of eastern North American species of Elymus with setaceous glums. Rhodora 69:330-351
    [62]Clayton W D & Renvoize S A.1986. Grasses of the World.'Kew Bull. Add. Series XII. (H. M. Stationery Office:London). Genera Graminum
    [63]Clifford H T & Waston L.1977. Identifying grasses:data, methods and illustrations. University of Queensland Press, P1-141
    [64]Connor HE.1960. Variations in leaf anatomy in Festuca novae-zelandia (Hack.) Cockayne and F. matthewsii (Hack.) Cheeseman. New Zealand Journal of Agricultural Research,3:468-509
    [65]D 6 vila P & Clark L G.1990. Scanning electron microscopy survey of leaf epidermis of Sorghastrum (Poaceae:Andropogoneae). American Journal of Botany,77 (4):499-511
    [66]Denton A L.1997. Evolution of RNA polymerase Ⅱ introns:ancient polymorphism and paraphyly in the genusRhodo-dendron. Ph. D. dissertation, University of Washington, Seattle
    [67]Denton A L, McConaughy B L, Hall B D.1998. Usefulness of RNA Polymerase Ⅱ Coding Sequences for Estimation of Green Plant Phylogeny. Molecular Biology and Evolution,15(8): 1082-1085.1998
    [68]Dewey D R.1972. Genome analysis of hybrids between diploid Elymus juncea and five tetraploid Elymus species. Bot. Gaz.133:415-420
    [69]Dewey D R.1982. Genomic and phylogenetic relationships among North American perennial Triticeae. In:Estes J R, et al. (eds). Grasses and Grasslands. Norman:University of Oklahoma Press,51-88
    [70]Dewey DR.1984. The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. In:Gustafson JP (ed), Gene Manipulation in plant improvement.16th Stadler Genetics Symposium. Plenum, New York:Plenum,209-280
    [71]Dick C W, Etchelecu G, Austerlitz F.2003. Pollen dispersal of tropical trees (Dinizia excelsa: Fabaceae) by native insects and African honeybees in pristine and fragmented Amazonian rainforest. Molecular Ecology,22:753-764
    [72]Dubcovsky J, Schlatter A R, Echaide M.1997. Genome analysis of South American Elymus (Triticeae) and Leymus (Triticeae) species based on variation in repeated nucleotide sequences. Genome,40(4):505-520
    [73]Ellneskog-Staam P, Bothmer R V, Anamthawat-J6nsson K, et al.2007. Salomom B:Genome analysis of species in the genus Hystrix (Triticeae; Poaceae). [J]. Plant Systematics and Evolution, 265:241-249
    [74]Ellis R P.1986. A review of comparative leaf blade anatomy in the systematics of the Poaceae:The past twenty-five years. in T. R. Soderstorm et al (eds.) Grass systematics and evolution. Smithonian Instn. Press, Washington,3-10
    [75]Escalona F D.1991. Leaf anatomy of fourteen species of Calamagrostis section Deyeuxia, subsection Stylagrostis (Poaceae:Pooideae) from the Andes of South America. Phytologia,71(3): 187-204
    [76]Fan X, Zhang H Q, Sha L N, et al.2007. Phylogenetic analysis among Hystrix, Leymus and its affinitive genera (Poaceae:Triticeae) based on the sequences of a gene encoding plastid acetyl-CoA carboxylase. [J]. Plant Science,172:701-707
    [77]Fan X, Sha LN, Yang RW, et al.2009. Phylogeny and evolutionary history of Leymus (Triticeae; Poaceae) based on a single-copy nuclear gene encoding plastid acetyl-CoA carboxylase. BMC Evolutionary Biology,9:247 doi:10.1186/1471-2148-9-247
    [78]Feliner GN, Larena BG, Aguilar JF.2004. Fine scale geographic structure, intra-individual polymorphism and recombination in nuclear ribosomal internal transcribed spacers in Armeria (Plumbaginaceae). Annals of Botany,93:189-200
    [79]Fisher B S.1939. A contribution to the leaf anatomy of Natal grasses. Series I. Chloris Sw. and Eustachys Desv. [J]. Annals of the Natal Museum,9:245-267
    [80]Fu YX, Li WH.1993. Statistical tests of neutrality of mutations. Genetics,133:693-709
    [81]Gale MD& Devos KM.1998. Plant comparative genetics after 10 years. Science.282:656
    [82]Gutierrez-Marcos JF, Pennington PD, Costa LM, et al.2003. Imprinting in the endosperm:a possible role in preventing wide hybridization[J]. Philosophical Transactions of the Royal Society B: 358:1105-1111
    [83]Hochstetter CF.1848. Nachtraglicher Commentar zu meiner Abhandlung:" Aufbau der Graspflanze etc.".Flora,7:105-118
    [84]Hsiao C, Chatterton NL, Asay KH.1994. Phylogenetic relationship of 10 grass species:an assessment of phylogenetic utility of the internal transcribed spacer region in nuclear ribosomal DNA in monocots. Genome,37:112-120
    [85]Hsiao C, Chatterton NJ, Asay KH, et al.1995. Phylogenetic relationships of the monogenomic species of the wheat tribe, Triticeae (Poaceae), inferred from nuclear rDNA (internal transcribed spacer) sequences. Genome,38:221-223
    [86]Hsu Chunchang.1965. The classification of Panicum(Gramineae) and its allies, with special reference to the characters of Lodicule, Stylebase and Lemma. Journal of the Faculty of Science: University of Tokyo,9(3):43-150
    [87]Huelsenbeck JP, Ronquist R.2001. MrBayes:Bayesian inference of phylogenetic trees. [J]. Bioinformatics,17:754-755
    [88]Hulten E, Fries M.1986. Atlas of North European vascular plants[M]. Konigstein:Koeltz Scientific Books, Germany,140
    [89]Huson D H, Bryant D.2006. Application of Phylogenetic Networks in Evolutionary Studies. Molecular Biology and Evolution,23:254-267
    [90]Jensen K B, Wang R R-C.1997. Cytological and molecular evidence for transferring Elymus coreanus and Elymus californicus from the genus Elymus to Leymus (Poaceae:Triticeae). International Journal of Plant Production,158:872-877
    [91]Jiang J M & Gill B S.1994. Nonisotopic in situ hybridization and plant genome mapping:the first 10 years. Genome,37:717-725
    [92]Kihara H, Nishiyama I.1930. Genomeanalyse bei Triticum und Aegilops. I. Genomaffinitaten in tri-, tetra-und pentaploiden Weizenbastarden. Cytologia,1:270-284.
    [93]Kimber G.1983. Genome analysis in the genus Triticum. In:Sakamoto S (ed.), Proceedings of the 6th International Wheat Genetic Symposium, Kyoto, Japan, Kyoto:Kyoto University Press,23-28
    [94]Krause E H L.1898. Floristische Notizen Ⅱ. Graser Bot Centralbl,73:332-343
    [95]Larkin R & Guilfoyle T.1993. The second largest subunit of RNA polymerase Ⅱ from Arabidopsis thaliana. Nucleic Acids Resarch,21:1038
    [96]Librado P & Rozas J.2009. DnaSP v5:A software for comprehensive analysis of DNA polymorphism data. Bioinformatics,25:1451-1452
    [97]Liu Q L, Ge S, Tang H B, et al. (2006) Phylogenetic relationships in Elymus (Poaceae:Triticeae) based on the nuclear ribosomal internal transcribed spacer and chloroplast trnL-F sequences. New Phytol,170:411-420
    [98]Liu Z P, Chen Z Y, Pan J, et al.2008. Phylogenetic relationships in Leymus (Poaceae:Triticeae) revealed by the nuclear ribosomal internal transcribed spacer and chloroplast trnL-F sequences. Molecular Phylogenetics and Evolution,46(1):278-289
    [99]Love A.1984. Conspectus of the Triticeae. Feddes Repert,95:425-521
    [100]Lu BR, Bothmer Rvon.1990. Genome constitution of Elymus parviglumis and E. pseudonutans (Triticeae:Poaceae). Hereditas,113:109-119
    [101]Ma HY, Peng H, Wang Y-H.2006. Morphology of leaf epidermis of Calamagrostis s.1. (Poaceae: Pooideae) in China. Acta Phytotaxonomica Sinica.44 (4):371-392
    [102]Macfarlane T D & Watson L.1982. The classification of Poaceae subfamily Pooideae. Taxon 31 (2): 178-203
    [103]Martin D P, Lemey P, Lott M, et al.2010. RDP3:a flexible and fast computer program for analyzing recombination. Bioinformatics.26,2462-2463
    [104]Mason-Gamer R J, Kellogg E A.1996. Chloroplast DNAanalysis of the monogenomic Triticeae: phylogenetic implications and genome-specific markers. In:Jauhar P P (ed), Methods of Genome Analysis in Plants. Boca Raton:CRC Press, FLA,310-325
    [105]Mason-Gamer R J, Orme N L, Anderson C M.2002. Phylogenetic analysis of North American Elymus and the monogenomic Triticeae (Poaceae) using three chloroplast DNA data sets. [J]. Genome,45:991-1002
    [106]Mason-Gamer R J.2004. Reticulate evolution, introgression, and intertribal gene capture in an allhexapolid grass [J]. Systematic Biology,53:25-37
    [107]Metcalfe C R.1960. Anatomy of the monocotyledons Vol.1 Gramineae. Oxford at the Series 13. HMSO, London,389
    [108]Mitchell-Olds T & Schmitt J.2006. Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis. Nature,441:947-952
    [109]Nei M.1987. Molecular evolution genetics. New York, NY, USA:Columbia University Press.
    [110]Nevski S A.1933. Uber das system der tribe Hordeae Benth. Floraet Systematica
    [111]Nishikawa T, Salomon B, Komatsuda T, et al.2002. Molecular phylogeny of the genus Hordeum using three chloroplast DNA sequences. [J]. Genome,45:1157-1166
    [112](?)rgaard M & Heslop-Harrison J S.1994. Relationships between species of Leymus, Psathyrostachys and Hordeum (Poaceae, Triticeae) inferred from Southern hybridization of genome and cloned DNA probes. Plant Systematic Evollution,189:217-231
    [113]O'Kane S L, Schaal B A, Al-Shehbaz I A.1996. The origin of Arabidopsis suecica (Brassicaceae) as indicated by nuclear rDNA sequences. Systematic Botany,21:559-566
    [114]Paabo S, Irwin D M, Wilson A C.1990. DNA damage promotes jumping between templates during enzymatic amplification. The Journal of Biological Chemistry 265:4718-4721
    [115]Pfeil B E, Brubaker C L, Craven L A, et al. Paralogy and orthology in the Malvaceae rpb2 gene family:inves-tigation of gene duplication in Hibiscus. Molecular Biology and Evolution,2004, 21(7):1428-1437
    [116]Piganeau G, Gardner M, Eyer-Walker A.2004. A broad survey of recompination in animal mitochondoria. Molecular Biology and Evolution,21:2319-2325
    [117]Pilger R.1949. Addimenta Agrostologica. I. Triticeae (Hordeae). Botanische Jahrbuecher fuer Systematik,74:1-27
    [118]Posada D, Crandall KA.1998. Modeltest:testing the model of DNA substitution. Bioinformatics, 14:817-818
    [119]Posada D.2001. Unveiling the Molecular Clock in the Presence of Recombination. Molecular Biology and Evolution,18:1976-1978
    [120]Pramual P, Kuvangkadilok C, Jitklang S, et al.2012. Geographical versus ecological isolation of closely related black flies (Diptera:Simuliidae) inferred from phylogeny, geography, and ecology. Organisms Diversity & Evolution,12:183-195
    [121]Prat H.1936. La Systematioue des Graminees. Annales des Sciences Naturelles; Botanique, ser.5, 18:165-258
    [122]Rozas J, Sanchez-DelBarrio J C, Messeguer X, et al.2005. DNA sequence polymorphism, version 4. 10.4. DNAsp4 computer software. Barcelona Univ. Barcelona, Spain
    [123]Sakamoto S.1973. Pattens of phylogenetic differentiation in the tribe Triticeae. Seiken Ziho,24: 11-31
    [124]Sang T, Crawford DJ, Stuessy TF.1995. Documentation of reticulate evolution in peonies (Paeonia) using sequences of internal transcribed spacer of nuclear ribosomal DNA:implications for biogeography and concerted evolution. Proceedings of the National Academy of Sciences USA, 92:6813-6817
    [125]Sang T.2002. Utility of low-copy nuclear gene sequences in plant phylogenetics. Critical Reviews Biochemistry Molecular Biology,37,121-147
    [126]Schierup M H, Hein J.2000. Recombination and the Molecular Clock. Molecular Biology and Evolution,17:1578-1579
    [127]Sears E R, Sakamoto M.1956. Genetic and structural relationships of nonhomologous chromosmes in wheat. Proc Int Genet Symp, Tokyo. Cytologia (Suppl):332-335
    [128]Sears E R.1976. Genetic control of chromosome pairing in wheat. Ann Rev Genet,10:31-51
    [129]Sha LN, Yang RW, Fan X, et al.2008. Phylogenetic analysis of Leymus (Poaceae:Triticeae) inferred from nuclear rDNA ITS sequences. Biochem Genet,46:605-619
    [130]Sha L N, Fan X, Yang R W, et al.2009. Phylogenetic relationships between Hystrix and its closely related genera (Triticeae; Poaceae) based on nuclear Accl, DMC1 and chloroplast trnL-V sequences. [J]. Molecular Phylogenetics and Evolution,54:327-335
    [131]Sharma HC.1995. How wide can a wide cross be[J]. Euphytica,82:43-64
    [132]Shiotani I.1968. Species differentiation in Agropyron, Elymus, Hystrix, and Sitanion. Proceedings of the 12th International Congress of Genetics. The Science Council of Japan, Tokyo.184. (Abstract)
    [133]Small R L, Ryburn J A, Cronn R C, et al.1998. The tortoise and the hare. Choosing between noncoding plastome and unclear Adh sequences for phylogeny reconstruction in a recently diverged plant group. American Journal of Botany,85:1301-1315
    [134]Small R L, Ryburn J A, Wendel J F.1999. Low levels of nucleotide diversity at homoeologous Adh loci in allotetraploid cotton (Gossypium L.). Molecular Biology and Evolution,16:491-501
    [135]Small R L, Wendel J F.2002. Differential evolutionary dynamics of duplicated paralogous Adh loci in allotetraploid cotton (Gossypium). Molecular Biology and Evolution,19:597-607
    [136]Stace C A.1965. Cuticular characters as an aid to plant taxonomy. [J]. Bulletin of the British Museum of Natural History,4:3-78
    [137]Sun G L, Wu B H, Liu F.1995a. Cytogenetic and genomic relationships of Thinopyrum elongatum with two Psathyrostachys species and with Leymus secalinus (Poaceae). Plant Systematic Evollution,197:225-231
    [138]Sun G L, Yen C, Yang J L.1995b. Morphology and cytology of interspecific hybrids involving Leymus multicaulis (Poaceae). Plant Systematic Evollution,194:83-91
    [139]Sun G L, Daley T, Ni Y.2007. Molecular evolution and genome divergence at RPB2 gene of the St and H genomes in Elymus species. Plant Molecular Biology,64:645-655
    [140]Sun G L, Ni Y, Daley T.2008. Molecular phylogeny of RPB2 gene reveals multiple origin, geographic differentiation of H genome, and the relationship of the Y genome to other genomes in Elymus species. Molecular Phylogenetics and Evolution,46:897-907
    [141]Sun G L. Mohammad Pourkheirandish Takao Komatsuda.2009. Molecular evolution and phylogeny of the RPB2 gene in the genus Hordeum. Annals of Botany,103:975-983
    [142]Svitashev S, Bryngelsson T, Li X, Wang RR-C.1998. Genome-specific repetitive DNA and RAPD markers for genome identification in Elymus and Hordelymus. Genome,41:120-128
    [143]Swofford D L.2003. PAUP*:Phylogenetic analysis using parsimony (*and other method). Version 4.0b 10. Sinauer Associates, Sunderland, Massachusetts, USA.
    [144]Tajima F.1989. Statistical method for testing the neutral mutation of hypothesis by DNA polymorphism. Genetics,123:585-595
    [145]Tamura K, Dudley J, Nei M, et al.2007. MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Plant Systematic Evollution,24:1596-1599.
    [146]Tateoka T.1958. Notes on some grasses. VIII. On leaf structure of Arundinellaand Garnotia, Bot. Gaz.120,101-9
    [147]Thornhill D J, Lajeunesse T C, Santos S R.2007. Measuring rDNA diversity in eukaryotic microbial systems:how intragenomic variation, pseudogenes, and PCR artifacts confound biodiversity estimates. Molecular Ecology,16:5326-5340
    [148]Turpe A M.1962. Las especies del genero Deyeuxia de la Provincia de Tucuman (Agentina). Lilloa 31
    [149]Tzvelev N N.1976. Zlaki SSSR (Grasses of the Soviet Union). Leningrad:Academiya Nauk SSSR,176-189
    [150]Vasil I K. Progress in the regeneration and genetic manipulation of cereal crops.1988. Biotechnology,6:37-42
    [151]Volkov R A, Borisjuk N V, Panchuk Ⅱ, et al.1999. Elimination and rearrangement of parental rDNA in the allotetraploid Nicotiana tabacum. Molecular Biology and Evolution,16:311-320
    [152]Wang R R C, Hsiao C.1984. Morphology and cytology of interspecific hybrid of Leymus mollis. [J]. Hered,75:488-492
    [153]Wang R R-C, Bothmer R von, Dvorak J, et al.1994. Genome symbols in the Triticeae (Poaceae) [A]. In:Wang R R-C, Jensen K B, Jaussi C. Proceedings of the 2nd International Triticeae Symposium[C]. Utah:Logan, USA,:29-34
    [154]Wang R R-C, Jensen K. B.1994. Absence of the J genome in Leymus species (Poaceae:Triticeae): evidence from DNA hybridization and meiotic pairing. Genome,37:231-235
    [155]Warrilow D & Symons R H.1996. Sequence analysis of the second-largest subunit of tomato RNA polymerase Ⅱ. Plant Molecular Biology,30:337-342
    [156]Watterson G A.1975. On the number of segregation sites in genetic models without recombination. Theoretical Population Biology,7:256-276
    [157]Webb M E & Almeida M T.1990. Micromophology of the leaf epidermis in the taxa of the Agropyron-Elymus complex(Poaceae). Botanical Journal of The Linnean Society,103:153-158
    [158]Wen J.1999. Evolution of eastern Asian and eastern North American disjunct pattern in flowering plants[J]. Annual Review of Ecology and Systematics,30:421-455
    [159]Wendel J F, Schnabel A, Seelanan T.1995. An unusual ribosomal DNA sequence from Gossypium gossypioides reveals ancient, cryptic, intergenomic introgression. Molecular Phylogenetics and Evolution,4:298-313
    [160]Wernegreen J J, Moran N A.2000. Decay of mutualistic potential in aphid endosymbionts through silencing of biosynthetic loci:Buchnera of Diuraphis. Proceeding of the Royal Sociaty of London series B,267:1423-1431
    [161]Wu Z Y, Peter H R, Hong D Y.2006. Flora of China illustrations. [M]. Bei jing:Science Press,22: 386-394
    [162]Xia X, Xie Z. DAMBE.2001. Software package for data analysis in molecular biology and evolution. [J]. Journal of Heredity,92:371-373.
    [163]Xiao LQ, Moller M, Zhu H.2010. High nrDNA ITS polymorphism in the ancient extant seed plant Cycas:incomplete concerted evolution and the origin of pseudogenes. Molecular Phylogenetics and Evolution,55:168-177
    [164]Zhang C, Fan X, Yu H Q, et al.2009. Phylogenetic analysis of questionable tetraploid species in Roegneria and Pseudoroegneria (Poaceae:Triticeae) inferred from a gene encoding plastid acetyl-CoA carboxylase. Biochemistry Syst. Ecol.,37:412-420
    [165]Zhang H Q, Yang R W, Dou Q W, et al.2006. Genome constitutions of Hystrix patula, H. duthiei ssp. duthiei and H. duthiei ssp. longearistata (Poaceae:Triticeae) revealed by meiotic pairing behavior and genomic in-situ hybridization. Chromosome Research,14:595-604
    [166]Zhang H Q, Zhou Y H.2006. Meiotic pairing behaviour reveals differences in genomic constitution between Hystrix patula and other species of genus Hystrix Moench (Poaceae:Triticeae). Plant Systematic Evollution,258:129-136
    [167]Zhang HQ, Fan X, Sha LN, et al.2008. Phylogeny of Hystrix and related genera (Poaceae:Triticeae) based on nuclear rDNA ITS sequences. [J]. Plant Biology,10:635-642
    [168]Zhang HB, Dvorak J.1991. The genome origin of tetraploid species of Leymus (Poaceae:Triticeae) inferred from variation in repeated nucleotide sequences. American Journal of Botany,78:871-884
    [169]Zhang W, Qu LJ, Gu H, et al.2002. Studies on the origin and evolution of tetraploid wheats based on the internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA. Theoretical and Applied Genetics.104:1099-1106
    [170]Zhou YH, Zheng YL, Yang JL, Yen C.2000. Relationships among species of Elymus and Hystrix assessed by RAPD. Genetic Resources and Crop Evolution,47:191-196

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700