用户名: 密码: 验证码:
新型输油气双金属复合管道腐蚀及可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高含硫油气田的大量开采,油气管网腐蚀的问题已成为研究的焦点。双金属复合管不仅具有较高的机械力学性能和抗腐蚀能力,又可降低耐蚀合金管道的成本,在高腐蚀性油气田中被广泛应用。由于国内双金属复合管使用技术标准和耐蚀可靠性评价研究不足,焊缝的耐蚀性能评价尚未形成相应的标准,对双金属复合管抗腐蚀性能和可靠性还需进一步研究。因此,开展复合管基管选材、内衬管评价、复合管连接、结合强度评价等分析,有助于补充研究的不足,为双金属复合管的应用提供依据。论文选题结合了能源企业实际应用的需求,同时涉及到材料学、化学与化工、能源科学等多领域与学科,选题具有实际应用价值和基础理论意义。
     本论文以在含S2-、Cl-的油气输送环境中具有一定代表性的316L-20G机械式双金属复合管材为研究对象,以寻求316L-20G双金属复合管抗腐蚀的技术作为研究目的,以解释316L-20G双金属复合管的腐蚀机理为基础,以近代电化学研究方法为手段,较为系统地研究了316L-20G双金属复合管内衬耐蚀合金在含S2-、Cl-腐蚀介质中的腐蚀情况与抗腐蚀技术,分析了多种腐蚀因素交互作用下的腐蚀机理,研究了复合管连接处漏失状况下的电偶腐蚀行为,探讨了不同阴极极化条件下基层金属与内衬合金的保护电位及机理,实验验证了复合管连接处合金元素迁移扩散现象,分析了连接处元素迁移扩散机理与焊缝电化学腐蚀行为。根据研究结果得出如下主要结论:
     ①复合管内衬合金316L和304号钢在Na2S腐蚀介质中,均表现出随着Na2S浓度的增加自腐蚀电位负移、腐蚀电流增加、腐蚀加剧;同时在中低温范围内,随着温度的升高,自腐蚀电位负移、腐蚀电流增加,加快了管道腐蚀。借助化学平衡移动的基本原理分析了Na2S浓度对腐蚀速度的影响;借助物质传递理论解释了温度的升高对腐蚀性质的影响;
     ②复合管内衬合金316L和304号钢在S2-与Cl-共存的腐蚀介质中,因金属表面钝化膜具有一定的完整性,内衬合金的自腐蚀电位稍有正移,自腐蚀电流较低;随着浸蚀时间延长,由于Cl-在金属表面发生点蚀,金属表面钝化膜被破坏,自腐蚀电流急剧增大。但当Cl-浓度增加到一定程度,达到或超过S2-浓度时,一定量的Cl-优先与金属离子结合,阻碍了其它阴离子(S2-)参与电极反应,同时也使溶液中吸附的氧减少,腐蚀电流逐步降低,腐蚀反而被抑制。
     ③在316L-20G双金属复合管的基层金属及内衬合金的电偶腐蚀反应中,阴极过程为氧分子还原,它受氧分子扩散控制;阳极过程为金属原子氧化,受电子转移过程控制;两种材料间存在电位差,20G处于阳极,即活性溶解状态;316L处于阴极,即被保护状态;当复合管连接处发生漏失,对腐蚀介质中的20G和316L进行阴极保护时,两者具有电位差,316L和20G在腐蚀介质中形成电偶腐蚀电池,整体腐蚀加剧,在选择阴极电化学保护中,20G和316L保护电位最好选在氧浓度扩散区。
     ④利用菲克定律及EDS元素扫描对316L-20G双金属复合管焊缝分析,研究表明焊缝过渡层中合金元素被碳钢稀释,碳原子向316L不锈钢层和焊缝区域扩散,同时316L和焊丝中的合金元素Cr、Ni向碳钢迁移。同时,焊缝过渡层对合金元素的迁移起到了良好的隔离作用,保持了316L母材耐腐蚀性能,也降低了碳的活度,阻碍了碳的扩散,保证了焊缝具有较好的机械性能。
     ⑤通过对316L-20G双金属复合管焊缝组织进行电化学综合腐蚀实验,对比交流阻抗谱的Nyquist图和Bode图,可以得出,316L-20G双金属复合管焊缝在达到交流阻抗最大后,阻抗略有减小直至相对稳定,其数量级仍然达到105,焊缝具有良好的抗腐蚀能力,可以在油气田污水输送管道中推广使用。
With the highly corrosive oil and gas fields of mining, oil and gas pipelinescorrosion has become the focus of the study. Bimetal compound pipe not only has highmechanical properties and corrosion resistance, but also reduce the cost of corrosionresistant alloy pipes, which is widely used in highly corrosive oil and gas fields. Due tolack of reliability evaluation methods of the corrosion and the domestic composite pipetechnical specifications, the corrosion resistance of the weld evaluation method has notyet formed the corresponding standard, that to measure the corrosion resistance of thecomposite pipe weld reliability by using standard methods, and domestic need toconduct in-depth research on corrosion resistance of the composite pipe welds.Therefore, to make composite pipe the base pipe selection, evaluation liner, compositepipe connection, bond strength evaluation helps to supplement the lack of research, toprovide the basis for the bimetal compound pipe applications. Thesis topics combinedthe practical application of energy companies needs, while related to materials science,chemistry and chemical engineering, energy science and other areas and disciplines,which has practical value and basic theoretical significance.
     In this thesis, to select a certain representative316L-20G the mechanicalcomposite pipe as the object of study, which in the oil and gas transportationenvironment with S2-and Cl-, to seek316L-20G composite pipe corrosion technology asresearch purposes, to explain316L-20G composite pipe corrosion mechanism as thebasis, to research by modern electrochemical research methods as the means,systematically studied the corrosion and anti-corrosion technology of the316L-20Gcomposite pipe liner corrosion resistant alloys in the corrosive media with S2-and Cl-,and analyzed corrosion mechanism in the interaction of various corrosive factors, andstudied the galvanic corrosion behavior in leakage conditions of the composite tubejunction, and discussed protection potential and mechanism of grassroots metals andalloys liner in the different conditions of cathodic polarization, and verified themigration and diffusion of the alloying elements in the composite pipe junction, andanalyzed the dispersal mechanism and electrochemical corrosion behavior of the weldconnection element. Based on the findings, drawn as follows conclusions:
     ①Composite pipe lined with metal316L and304steel in different Na2S corrosivemedia, have shown with increasing of Na2S concentration the corrosion potential negative shift, corrosion current increases, and increased corrosion; while in the lowtemperature range, as the temperature rise, corrosion potential negative shift, corrosioncurrent increases, and accelerated corrosion of the pipeline. Analyzed the impact ofNa2S concentration on the corrosion rate by the basic principles of chemical equilibriumshift; Explained the temperature on the properties of corrosion by mass transfer theory.
     ②Composite pipe lined with metal316L and304steel in the coexistence of S2-and Cl-corrosive media have shown that, because of the metal surface passivation filmhas some integrity, lined with alloy corrosion potential slightly positive shift, and thecorrosion current lower. With etched time extended, as Cl-pitting corrosion on the metalsurface, the metal surface passivation film is destroyed, and the corrosion currentincreases rapidly. But when the Cl-concentration is increased to a certain extent, reachedor exceed the S2-concentration, a certain amount of Cl-in priority combined with metalions, hindered other anionic (S2-) in the electrode reaction, and also reduced adsorbedoxygen in the solution, and corrosion current gradually decreased, but was inhibited.
     ③In galvanic corrosion reaction of316L-20G composite pipe lined grassrootsmetals and alloys, the cathodic process is the reduction of oxygen molecules, which issubject to the oxygen molecule diffusion control; anodic process is oxidation of themetal atom, which is subject to the electron transfer process control;Potential difference exists between the two materials,20G in an anode, which activedissolution state, and316L in cathode,which incurs protection status; when thecomposite tube junction leakage occurs, for corrosive media20G and316L cathodicprotection, both of which have potential difference, and316L and20G in the corrosivemedium to form galvanic corrosion cell, the overall increased corrosion. In the choice ofcathodic electrochemical protection,20G and316L protection potential preferably inoxygen concentration diffusion region.
     ④By the Fick and EDS element scan316L-20G double metal composite pipeweld analysis, researched that alloying element of transition weld is diluted with carbonsteel, and the carbon atom diffused to316L stainless steel layer and the weld area, whilethe alloy elements Cr, Ni of316L and the wire migrated to carbon steel. At the sametime, weld transition played a good isolation effect in migration of the alloy elements,maintained the corrosion resistance of the base material316L, but also reduced thecarbon activity, hindered the diffusion of carbon, and ensured that the weld has goodmechanical performance.
     ⑤Test electrochemical corrosion of316L-20G bimetal compound pipe, and compared to Nyquist plot and Bode diagram of AC impedance spectroscopy, can bedrawn that,316L-20G bimetal compound pipe welds after reaching the maximum ACimpedance, the impedance decreases slightly until relatively stable, and its magnitude isstill reached105, which means that the weld has good corrosion resistance, and canpromote the use of in the oil and gas sewage pipeline.
引文
[1]范军,蒲继文,周丹,赵榆,何焱.天然气长输管道建设对生态环境的影响及防范措施[J].油气田环境保护,2010,20(3):23-26.
    [2]刘绘新,苏水平.川东气田油管蚀现状的基本特征[J].天然气工业,2010,20(5):77-79.
    [3]李鹤林,路民旭.腐蚀科学与防腐蚀工程技术新进展[M].北京:化学工业出版社,1999:1.
    [4]常宏岗,罗勤,陈赓良,等.天然气气质管理与能量计量[M].北京:石油工业出版社.2008.
    [5]马文英,姚熙春.关注腐蚀的分析和处理方法优选[J].国外油田工程,2002,18(11):62-64.
    [6]李晓源,文九巴,李全安.油气田井下油管的防腐技术[J].腐蚀科学与防护技术,2003,15(5):272-276.
    [7]宋伟,李娅,冯小波,等.重庆气矿气井腐蚀现状及防腐对策[J].石油与天然气化工,2003,33(6):437-443.
    [8]李文生.川西高温高压气井完井工艺技术[J].天然气勘探与开发,2004,27(4):25-28.
    [9]刘祥康,谈锦锋,李季.罗家寨气田飞仙关气藏高酸性气井完井工艺技术实践[J].钻采工艺,2004,27(3):20-22.
    [10]王凯,严其柱,赵兴凯.河南油田注水井油管防腐工艺研究[J].石油天然气学报,2005,27(5):672-673.
    [11]杨全安,李琼玮,姜毅.靖边气田井筒腐蚀预测及缓蚀剂加注研究[J].天然气工业,2005,25(4),68-70.
    [12]贾丽,刘元清,崔连.选确定气井腐蚀因素的四种方法[J].油气田地面工程,2006,25(7):10-12.
    [13]史春轩,赵中华,张新杰,等.注水井管柱腐蚀分析及防护措施的应用[J].石油矿场机械,2006,35(3):87-89.
    [14]李娅,宋伟,黎洪珍,等.重庆气矿气井缓蚀剂应用效果分析[J].天然气与石油,2006,24(4):54-56.
    [15] Tiziana Cheldi,Paolo Cavaasi,Luckmo Lazzari,Luca. ezzotta·USE of decision tree analysisand montecarlo simulation for downhole material[J].Selection corrosion,97:18-21.
    [16] Noelis Romero.Experimences in the design of cras for erosion/corrosion control theproduction facilities of eastern venezula[J].Oil fields corrosion97:13-15.
    [17] Perry Nice,Ardjan Kopliku,Lucrezia Scoppio.Material selection testing for the asgardfield[J].Well tubulars corrosion97:59-62.
    [18]郜玉新.油气田新型复合管道的开发研究[J].管道技术与设备,2011,(4):49-51.
    [19] S.Papavinasam,R.w.Revie. Comparison of Techniques for Monitoring Corrosion Inhibitorsin oil and Gas Pipelines[J]. Corrosion,Apr,2009:12-17.
    [20]贝克曼.阴极保护手册[M].北京:化学工业出版社,2010.25-36.
    [21]陈群尧,曹晓燕.中国管道腐蚀与防护技术综述[J].防腐保温技术,2007,15(l):1-7.
    [22]潘柏定.城镇燃气理地钢质管道牺牲阳极法阴极保护应用探讨[J].特种设备安全,技术,2007(2):31-35.
    [23] Toshio, Y. and Shigetomo, M. Corrosion Problems of Pipeline and Solution,12th OffshoreTechnology Conference,May,2008:3891-3894.
    [24] Place, M.C. Qualification of Corrosion-Resistant Alloys for Sour Service,23rd OffshoreTechnology Conference, May,2011:6603-6607.
    [25] Chen, W. C. And Petersen, C. W. Corrosion Performance of elded CRA lined Pipes forFlowlines,23rd Offshore Technology Conference, May,2011:6693-6697.
    [26]曾德智,杜清松,谷坛,等.双金属复合管防腐技术研究进展[J].油气田地面工程,2008.27(12):64-65.
    [27]曾德智.双金属复合管液压成型理论与试验研究[D].四川:西南石油大学,2007.
    [28]杨武,顾浚祥,黎樵燊,等.金属的局部腐蚀[M].北京:化学工业出版社,2009.
    [29]钱乐中.油气输送用耐腐蚀双金属复合管[J].特殊钢,2007.28(4):42-44.
    [30] ROMMERSKIRCHEN I. New progresscaps10years of work with bubi pipes[J].WorldOil,2005,226(7):69-70.
    [31] ГОЛОВИНС.В. Meтa лличскиетpyб опроводы с плакировкой из коррозионно-стойкогосп лава[J].Газ. пром-сть,1992,22(9):30-31.
    [32]凌星中.内复合双金属管制造技术[J].焊管,2001,24(2):43-46.
    [33]宋彬.双金属复合管的制造及应用[J].给水排水,2002.28(10):65-66.
    [34]赵卫民.金属复合管生产技术综述[J].焊管,2003.26(3):11-14.
    [35]顾建忠.国外双层金属复合钢管的用途及生产方法[J].上海金属.2000,22(4):16-24.
    [36]陈海云,曹志锡.双金属复合管塑性成形技术的应用及发展[J].化工设备与管道,2006,43(5):16-18.
    [37]何德江.大庆油田徐深一井油管腐蚀原因分析与控制[J].石油化工腐蚀与防护,2004(4):63-64.
    [38]刘勇,候远盛,王义,等.双金属复合管道在牙哈凝析气田的应用[J].油气田地面工程,2006,25(9):37-39.
    [39]杨红春,杨小平,杨明忠,等.牙哈凝析气田腐蚀机理及防护措施研究[J].钻采工艺,2007,30(2):117-119.
    [40]郭崇晓,张燕飞,吴泽.双金属复合管在强腐蚀油气田环境下的应用分析及其在国内的发展[J].新技术,2010,24(2):14-17.
    [41] Kong J H, Zhen L, Guo B, et al. Influence of conten microstructure and mechanicalProperties of high streng th pipeline steel[J]. Materials and Design,2011,(25):723-728.
    [42] Sami Penttil,Iva Betova,Martin Bojinov, et al. Estimation of kinetic parameters of thecorrosion layer constituents on steels in supercritical water coolant conditions [J].CorrosionScience2011(53):4193–4203.
    [43] X.Go′mez, J.Echeberria. Microstructure and mechanical properties of carbon steelA210-superalloy Sanicro28bimetallic tubes[J]. Materials Science and Engineering2009(A348):180-183.
    [44]宋亚峰,油气田开采用冶金复合双金属复合管开发与应用[C].2008双(多)金属复合管/板材生产技术开发与应用学会研讨会文集,2008:57-63.
    [45] Binder Singh,Tom Folk,Paul Jukes,et a1.Engineering pragmatic solutions for CO2corrosionproblems[C].Proceedings Corrosion.Houston.Paper No.07310,NACE2007.
    [46] pecification for CRA Clad or Lined Steel Pipe[M].API Specification5LD SecondEdition,1998.
    [47]王沫,曾德智,林元华,等.双金属复合管管流摩阻分析[J].石油钻采技术.2008.36(4):71-74.
    [48] F Li, B Wei, Z Bai, X Shao, R Cai; Fit for Purpose Analysis on Bimetallic Lined Pipe inYaha Gas Condensate Field ICPTT-ASCE(2011).
    [49]李发根.高腐蚀性油气田用双金属复合管[J].油气储运.2010.29(5):359-362.
    [50]许爱华,院振刚,杨光,等.双金属复合管的施工焊接技术[J].天然气与石油.2010.28(8):22-25.
    [51]刘向宏,吴晓祖,陈贞国,等.界面扩散对316L-20钢复合线机械性能的影响金属学报[J].金属学报.2012.29(7):324-327.
    [52]吕世雄,王廷,冯吉才.20G/316L双金属复合管弧焊接头组织与性能[J].焊接学报.2009.30(4):94-96.
    [53]张念涛,徐连勇,韩永典,等.X65/316L耐蚀合金内衬管焊接接头CO2腐蚀行为研究[J].焊管.2012.35(1):8-12.
    [54] O. Serikov. Morden Materials Of Bimetallic Tube[J]. Metallurgist,2005(49):347-348.
    [55] Russell D. Kane, S. Mark Wilhelm, Toshlo Yoshida, Shigetomo Matsui, Toshinorl Iwase.Analysis of Bimetallic Pipe for Sour Service[J].SPE Production Engineering,2001(8):291-296.
    [56] Russell D K,Wilhelm S M.BIMETALLIC PIPE CHOSEN FOR CORROSIVE SERVICE[J].SPE Production Engineering.2001(03):232-237.
    [57] Spence M A,Roscoe C V. Bi-metal CRA-lined pipe employed for north sea fielddevelopment [J]. Oil&Gas Journal,2009(18).67-71.
    [58] NACE Standard TM0177-2005Laboratory testing of metals for Resistance to Sulfide stresscracking and stress corrosion cracking in H2S environments[S].NACE,2005.
    [59] NACE Standard TM0284-2003Evaluation of Pipeline and Pressure vessel steels forResistance to hydrogen-induced cracking [S].NACE,2003.
    [60] ISO15156-2003石油天然气工业-油气生产中用于含H2S环境的材料[S].ISO,2003.
    [61] Yu Fang,Qin Jianping.Application of dual metal pipe in pipe line service[J].SteelPipe,2000,29(1):34-36.
    [62]王能利,潘希德,薛锦.20/0Cr18Ni9复合管焊接工艺和接头的抗腐蚀性能[J].焊接,2003(5):23-26.
    [63]催兵.恶劣环境下油气管内腐蚀及防护研究[D].四川:西南石油学院,2002.
    [64]藏国君.油气管道段塞流腐蚀机理与内防腐技术研究[D].四川:西南石油学院,2003.
    [65]张智.恶劣环境油井管腐蚀机理与防护涂层研究[D].四川:西南石油学院,2005.
    [66]李春富.油气开发过程中的CO2腐蚀机理及防护技术研究[D].四川:西南石油学院,2005.
    [67]王春兰.油气长输腐蚀管道剩余强度评价技术研究[D].四川:西南石油学院,2003.
    [68]杨洲.硫化氢对石油管线钢应力腐蚀开裂和氢渗透行为的影响[D].北京:中国科学院,2004.
    [69]张先普,陈继明,张效羽.我国油田套管损坏的原因探讨[M].陕西:陕西科学技术出版社,1996(04).
    [70]赵凤兰.注水系统的腐蚀规律与防腐技术[J].油气田地面工程,2002,21(6):19-23.
    [71]任俊.长庆气田腐蚀与防护[M].北京:天然气工业出版社.1998.
    [72] MorsiK M. Studiesre vealbe stin stallation, coatingsfo rde sertg atheringlines[J].Oil and gas1o urnal,1998.96(5):33-37.
    [73]李静,严密林.油管钢高温高压条件下油管钢高温高压CO2腐蚀行为研究[J].钢铁,2001,36(6):48-51.
    [74] Yan Milin, Corrosion/1999, NACE,1999: Paper No.28:3443-3447.
    [75] Lu Minxu, Corrosion/I999, NACE,1999: Paper No.26:2382-2385.
    [76]彭建雄,刘烈炜,胡倩.碳钢在CO2/H2S体系中的腐蚀规律研究[J].2000,21(2):60-63.
    [77]戴金星,胡见义,贾承造,等.关于高硫化氢天然气田科学安全勘探开发的建议[J].石油勘探与开发,2004,31(2):1-5.
    [78]康永印.API X52钢在CO2/H2S饱和的NaCl溶液中的腐蚀行为研究[D].天津:天津大学,2009.
    [79] Yang Huai yu, Chen Jiajian, Cao Chunan, et al. Study on corrosion inhibition mechanism inH2S aqueous solutions [J]. J Chin Soc Corros Prot,2000,20(1):33-36.
    [80] Ramanarayanan T A, Smith S N. Corrosion of iron in gaseous environments and ingassaturated aqueous [J]. Environments Corrosion,1990,34(1):56-59.
    [81] Li Rong, Gou Xinglong, He Xiaoying. Corrosion behavior of N80steel in acid solution withH2SO3[J]. J Chin Soc Corros Prot,2003,(5):271-275.
    [82] Fan zhaoting, Zhang shengtao, Dai zhixiang, Hu yu. Hydrogen sulfide and carbon dioxide tothe gas pipeline Corrosion Mechanism and Protection Research[J],Mechanic Automation andControl Engineering,2011:333-336.
    [83]王博,马红竹,黄国莲.油田注水腐蚀问题研究[J].西安石油学院学报(自然科学版),2001,16(2):39-40.
    [84]范兆廷,袁宗明,刘佳,等.H2S及CO2对管道腐蚀机理与防护研究[J].油气田地面工程.2008,27(10):39-40.
    [85]杨怀玉,曹楚南.H2S水溶液中的腐蚀与缓蚀作用机理的研究(3):不同pH值H2S溶液中碳钢的腐蚀电化学行为[J].中国腐蚀与防护学报,2000,2(5):97-104.
    [86]刘富胜.压力容器常用钢16MnR和316L不锈钢在含硫和Cl-介质中的腐蚀试验研究[D].杭州:浙江工业大学,2001,21(8)20-23.
    [87] Sardisco J.B, Pitts R.E. Corrosion of Iron in an H2S-CO2-H2O System, Mechanism of SulfideFilm Formation and Kinetics of Corrosion Reaction[J].Corrosion.1965,21(8):245-253.
    [88] Berkowitz B.J, Horowitz H.H. The Role of in the Corrosion and Hydrogen Embrittlement ofSteel[J]. J Electrochem Soc.1982,129(3):468-474.
    [89]苑海涛,弓爱君,高瑾,等.硫酸盐还原茵的微生物腐蚀及其防护研究进展[J].化学与生物工程.2009,26(1):11-13.
    [90]赵力成,孙成,张付宝,等.SRB对X70管线钢在污染土壤中腐蚀行为的影响[J].腐蚀科学与防护技术.2007.27(1):27-30.
    [91] Warren P Iverson. Research on the mechanisms of anaerobic corrosion [J].InlernalionalBiodeferioration&Biodegradation.2009.47(2):63-70.
    [92] C S B. Erosion-corrosion of copper-nickle alloys in sea water and other aqueousenvironments aliterature review[J].Corrosion.2009(32):242-252.
    [93]章博,高含硫天然气集输管道腐蚀与泄露风险研究[D].山东:中国石油大学,2010.
    [94]黄义荣.磨溪气田气体流速对腐蚀的影响[J].油气储运.2008,17(6):25-28.
    [95]高德利,赵增新,秦疆,等.局部腐蚀条件下内压对管道腐蚀速率的影响[J].钻采工艺.2009,32(3):88-92.
    [96]寇杰,梁法春,陈婧.油气管道腐蚀与防护[M].北京:中国石化出版社,2008.
    [97]张清,李全安.H2S分压对油管钢H2S/CO2腐蚀的影响[J].腐蚀科学与防护技术,2003,28(3):45-48.
    [98]龙凤乐,郑文军,陈长风,等.温度、CO2分压、流速、PH值对X65管线钢CO2均匀腐蚀速率的影响规律[J].腐蚀与防护.2005,26(7):290-294.
    [99]查全性.电极过程动力学导论[M].科学出版社,1983.
    [100]李获.电化学原理[M].北京:北京航空航天大学出版社,1986.
    [101]藤屿昭等著.陈震等译.电化学测试方法[M].北京大学出版社,1995.
    [102]方华,王佰增.油管锌、铝合金热喷涂防腐技术[J].油气田地面工程,1999,8(6):40-43.
    [103]周计明.油管钢在含CO2/H2S高温高压水介质中的腐蚀行为及防护技术的作用[D].西安:西北工业大学,2002.
    [104]王凤平,李晓刚.API N80钢在含CO2多相介质中的腐蚀规律[A].第二届石油化工业用材研究会论文集[C].成都:2001.
    [105]陆峰.复合材料/金属电偶腐蚀研究[J].表面技术,1991,20(3):41-44.
    [106]苏艳,朱玉琴,康凤.Ti8LC钛合金与主要结构材料的电偶腐蚀及防护研究[J].表面技术,2010,39(5):46-48.
    [107]刘俊超,陈胜利,赵景茂.镍基合金与碳钢的电偶腐蚀及其影响因素[J].石油化工腐蚀与防护,2010,27(2):25-27.
    [108]戈仁刚.东方1-1气田缓蚀剂性能的室内评价研究[J].石油天然气学报,2010,32(4):334-336.
    [109]殷名学,曹晓燕,罗泽斌,等.抗硫油管与镍铬合金钢材料的电偶腐蚀研究[J].天然气与石油,2009,27(2):16-19.
    [110]严密林,李鹤林,邓洪达,等.G3油管与SM80SS套管在CO2环境中的电偶腐蚀行为研究[J].天然气工业,2009,29(2):111-112,116.
    [111]陈兴伟,吴建华,王佳.电偶腐蚀影响因素进展[J].腐蚀科学与防护技术,2010,22(4):363-366.
    [112]刘华剑,邓春龙,王佳,等.海洋环境中电偶腐蚀研究进展[J].装备环境工程,20l1,8(2):58-61.
    [113]郭娟,侯文涛,许立坤,等.海洋干湿交替环境下电偶腐蚀及其研究方法进展[J].装备环境工程,20l2,9(2):67-71.
    [114] CAI Z,VERMILYEAR S,BRANTLEY W A.In Vitro Corrosion Resistance of HighPalladium Dental Casting Alloys[J].Dental Materials,1999,15(3):202-210.
    [115]曹楚南,张鉴清著,电化学阻抗谱导论[M].北京:科学出版社.2002.
    [116] A. J. Bard, L. R. Faulkner, John Wiley&Sons. Fundamentals and Applications[J].Electrochemical Methods,2001:154-157.
    [117]曹楚南,王佳,林海潮.氯离子对钝态金属电极阻抗频谱的影响[J].中国腐蚀与防护学报,1989,(9):261-263.
    [118]陈长风,路民旭.N80钢CO2腐蚀电极过程交流阻抗分析[J].金属学报,2003,39:94-98
    [119]孙兆栋,杜敏,张静,等.316L不锈钢在海水中的阴极极化行为研究[J].材料科学与工艺,2011,19(1):36-40.
    [120]李辉,康人木,周上祺.压力对铍/铜/HR-1不锈钢热静压组织结构的影响[J].重庆大学学报,2010,33(5):83-85.
    [121] KHEDER A R I, AKBAR A A, JUBEH N M. Diffusion welding of OFHC copper toaustenitic stainless steel316L[J]. International Journal for the Joining of Materials,2004,16(4):97-102.
    [122] RYBIN V V, GREENBERG B A, ANTONOVA O V, etal. Examining the bimetallic joint oforthorhombic titanium aluminide and titanium alloy(diffusion welding)[J].WeldingJounal,2007,86(7):205-210.
    [123] ARIK H, AYDIN M, KURT A. Weldability of Al4C3-Al composites via diffusion weldingtechnique[J]. Materials and Design,2005,(26):555-560.
    [124] LIU S Y. Joints performance of diffusion bonding between pure Cu and stainless steel anddynamic analysis of atomic diffusion[J]. Transactions of the China Welding Institution,2009,30(9):101-104.
    [125] KARFOUL M K, TATLOCK G J,.MUNARY R T. The behavior of iron and aluminiumduring the diffusion welding of carbon steel to aluminum [J]. Journal of MaterialsScience,2007,42(14):5692-5699.
    [126]陈文华,秦展琰,沈以赴.1420铝锂合金扩散焊工艺及中间层材料对接头性能的影响[J].焊接学报,2005,26(10):101-104.
    [127] WANG X S, ZHANG P C, XIAN X B. Interface characterization of Be/CuCrZr joints by hotisostatic pressing bonding[J]. Rare Metal Materials and Engineering,2008,37(12):2161-2164.
    [128] TORUN O, CELIKYUREK I. Microstructure and strength of diffusion-bonded joint betweennickel aluminide Ni75Al25and AISI316L stainless steel using a nickel interlayer[J].Kovove Materialy-Metallic Materials,2009,47(4):263-267.
    [129] QIN B, SHENG G M, HUANG J W, et al. Application of nickel nano-particles in thediffusion bonding of titanium alloy and stainless steel[J]. Nuclear Power Emgineering,2004,25(5):457-462.
    [130]赵丽敏,刘黎明,徐荣正,等.镁合金与铝合金的夹层扩散焊连接[J].焊接学报,2007,28(10):9-12.
    [131]杨雄,易松林,冉小丰,等.水平射流钻头真空扩散焊中间层材料对接头性能的影响试验[J].石油天然气学报,2008,30(5):152-154.
    [132]许爱华,院振刚,杨光,等.双金属复合管的施工焊接技术[J].天然气与石油,2010.28(6):22-26.
    [133]杨平生,俞进,柯勇,等.双金属复合钢管界面及焊缝的微观结构[J].南昌大学学报,2005.29(6):603-609.
    [134]刘建彬,韩静涛,鲍善勤,等.热处理对双金属复合管X60/2205组织及力学性能的影响[J].热加工工艺,2009,38(4):125-127.
    [135]孙育禄,白真权,张国超,等.油气田腐蚀用双金属复合管研究现状[J].全面腐蚀控制,2011,25(5):10-12.
    [136]吕世雄,王廷,冯吉才.20G/316L双金属复合管弧焊接头组织与性能[J].焊接学报,2009,30(4):93-95.
    [137]齐敬春,王明鹏.碳钢内衬不锈钢复合管材的特性及应用[J].中国建材科技,2009(3):23-25.
    [138]於方,秦建平.双金属管在管道输送中的应用[J].钢管,2010,29(1):34-36.
    [139] H62黄铜/碳钢双金属管内压扩散复合的研究[D].辽宁:大连交通大学2005.
    [140]赵万星,陈景秋.利用流管-有限体积法的河流水质二维数值模拟[J].重庆大学学报,2004,24(8):105-107.
    [141] JIZ-G,MORTON M R.HAMRICK J M.Wetting and drying simulation of estuarine process[J].Estuarine,Coastal and Shelf Science,2001,53:683-700.
    [142] Fan zhaoting, Zhang shengtao, Liu jia. Electrochemical Studies of316L/20G clad pipe weldjoint corrosion behavior [J]. Advanced Materials Research,662(2013):387-391.
    [143]范兆廷,张胜涛,殷林亮,刘佳等.316L-20G双金属复合管焊缝组织元素扩散分析[J].重庆大学学报,2012.35(11):99-103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700