用户名: 密码: 验证码:
水滑石类化合物的制备、改性及其在PVC中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水滑石类化合物(LDHs)是一类阴离子型层状材料,层间具有可交换的阴离子。LDHs特殊的层状结构和化学组成使其有望替代传统热稳定剂,成为无毒、廉价、高效的PVC热稳定剂新品种。
     本文本着降低原料成本、简化制备工艺和提高产品性能的原则,研究了恒定pH值法合成MgAl-CO3-LDHs的相关条件,改进了湿法表面改性工艺对MgAl-CO3-LDHs进行表面改性,探索了阴离子交换法合成ZnAlLa-CO3-LDHs的相关条件,并将MgAl-CO3-LDHs与ZnAlLa-CO3-LDHs复配后应用到PVC中。
     实验以LDHs对PVC的热稳定时间(刚果红测试)作为产品的性能指标,采用X射线衍射(XRD)、傅立叶变换红外光谱(FT-IR)、扫描电镜(SEM)、电感耦合等离子体原子发射光谱(ICP)、热重-差示(TG-DSC)、粒度分析等检测手段对LDHs进行测试和表征。论文考察了pH值、原料种类对合成MgAl-CO3-LDHs的影响;采用硬脂酸钠为表面改性剂,对比了常规湿法改性工艺和改进湿法改性工艺对MgAl-CO3-LDHs表面改性效果的影响;研究了pH值、初始溶液中n(La3+)/n(Al3+)、陈化时间对合成前驱体ZnAlLa-NO3-LDHs的影响;探索了阴离子交换时间对制备ZnAlLa-CO3-LDHs的影响。并考察了MgAl-CO3-LDHs与ZnAlLa-CO3-LDHs的复配比例对PVC热稳定性能的影响。
     结果表明:以氯化镁和硫酸铝为原料合成MgAl-CO3-LDHs的优选pH值为10.0;原料种类会影响MgAl-CO3-LDHs的结晶度、微观形貌、红外特征及对PVC的热稳定效果;常规湿法改性工艺中硬脂酸钠的较佳用量为LDHs质量的6%,改进湿法改性工艺中硬脂酸钠的较佳用量为LDHs质量的7%,后者改性的LDHs比前者的平均粒径更小、粒径分布更集中、对PVC的热稳定效果更好;合成前驱体ZnAlLa-NO3-LDHs的优选条件为:反应pH值=8.0,初始溶液n(La3+)/n(Al3+)=1/8,陈化时间24h;阴离子交换时间为1~2h合成的ZnAlLa-CO3-LDHs的结晶度和纯度较高;MgAl-CO3-LDHs和ZnAlLa-CO3-LDHs按质量比1:0.2复配后,对PVC的热稳定时间可达49.3min,优于单一类水滑石对PVC的热稳定效果,复合水滑石体系具有“协同效应”。
     综上所述,以氯化镁和硫酸铝为原料合成MgAl-CO3-LDHs,在保证产品性能的前提下节约了原料成本;改进了湿法改性工艺,缩短了LDHs表面改性的工艺流程,并取得较好的表面改性效果;采用阴离子交换法合成ZnAlLa-CO3-LDHs,并将MgAl-CO3-LDHs与ZnAlLa-CO3-LDHs复配使用,提高了LDHs对PVC的热稳定性能。论文为水滑石类热稳定剂的生产和应用提供了重要的理论依据。
Layered Double Hydroxides (LDHs) or hydrotalcite-like compounds (HTLcs) are a category of anionic layered materials, which contain exchangeable anions in the interlayer. LDHs will replace traditional heat stabilizers to become a new kind of PVC heat stabilizer which have the advantage of non-toxic, inexpensive, efficient due to their special layer structure and chemical composition.
     In this thesis, on the principle of reducing cost, simplifying preparation process and improving the properties of products, synthetic conditions of MgAl-CO3-LDHs with constant pH method were studied. MgAl-CO3-LDHs were modified by the improved wet surface modification process, related conditions of ZnAlLa-CO3-LDHs with anion-exchange method were also investigated and the composites of MgAl-CO3-LDHs/ZnAlLa-CO3-LDHs were applied in PVC.
     The thermal stable time for PVC (congo red test) as the main performance index of LDHs, the samples were tested and characterized by XRD, FT-IR, SEM, ICP, TG-DSC and grading analysis. In this thesis, effects of pH values and materials types on the synthesis of MgAl-CO3-LDHs were investigated; surface modification effects of MgAl-CO3-LDHs prepared with routine wet modification process and improved wet modification process were compared when sodium stearate was used as surface modifier; effects of pH values, n(La3+)/n(Al3+) values of initial solution and aging time on the synthesis of precursor ZnAlLa-NO3-LDHs were discussed; influences of anion-exchange time on the preparation of ZnAlLa-CO3-LDHs were also explored. Besides, effects of composite ratios of MgAl-CO3-LDHs and ZnAlLa-CO3-LDHs on PVC thermal stabilities were investigated.
     The results showed that the optimal pH value was 10.0 when MgAl-CO3-LDHs were prepared with MgCl2 and A12(SO4)3 as the raw materials; the materials types had influences on crystallinity, micro-morphology, infrared feature and thermal stabilities of PVC; the optimum dosage of sodium stearate was 6% of the LDHs weight in routine wet modification process while 7% in improved wet modification process, the later had smaller average diameter, narrower particle distribution and better thermal stabilities of PVC than the former; the optimum reaction conditions of precursor ZnAlLa-NO3-LDHs were:the reaction pH was 8.0, the molar ration of n(La3+)/n(Al3+) was 1/8 in the initial solution, aging time was 24h; the crystallinity and purity of ZnAlLa-CO3-LDHs were higher when anion-exchange time was 1~2h; the heat-stable time for PVC could reach to 49.3min when MgAl-CO3-LDHs and ZnAlLa-CO3-LDHs were composited at mass ratio of 1:0.2, and had better thermal stabilities of PVC than single LDHs, which all suggested there was "synergistic effect" in composite LDHs system.
     In conclusion, MgAl-CO3-LDHs were synthesized using MgCl2 and A12(SO4)3 as materials, which could reduce costs on the base of guaranteeing the properties of products; the surface modification process of LDHs was simplified and surface modification effects was improved by improved wet modification process. ZnAlLa-CO3-LDHs were synthesized with anion exchange method and thermal stabilities of LDHs for PVC were improved when MgAl-CO3-LDHs and ZnAlLa-CO3-LDHs were composited. This thesis provided important theoretical basis for production and application of LDHs as heat stabilizers.
引文
[1]钱伯章.国内外PVC行业分析.聚氯乙烯,2010,38(9):1~6
    [2]钟晓萍,许江菱,殷荣忠,等.2009~2010年世界塑料工业进展.塑料工业,2011,39(3):8~10
    [3]谢建玲,桂祖桐,蔡绪福,等.聚氯乙烯树脂及其应用.北京:化学工业出版社,2007.3~8
    [4]范会茄,刘守田,张良玉.PVC环保热稳定剂的研究进展.石油化工应用,2009,28(8):4~7
    [5]Martins J D, Freire E, Hemadipour H. Applications and market of PVC for piping industry. Polimeros-ciencia E Tecnologia,2009,19(1):58~98
    [6]贺军四,杨占红.水滑石类热稳定剂在PVC中的应用研究进展.塑料工业,2008,36:14~17
    [7]李钟宝,刘秀梅.PVC热稳定剂合成与应用研究进展.塑料助剂,2010,(2):1~8
    [8]宋银银,徐会志,蒋平平,等.PVC热稳定剂的发展趋势.塑料助剂,2010,(4):1~7
    [9]郝子明,余灯华,易志伟,等.PVC结构的不稳定缺陷及其稳定化改性.塑料助剂,2004,(3):36~41
    [10]吴茂英.塑料降解与稳定化(Ⅱ):热降解与热稳定(上).塑料助剂,2009,(3):43~53
    [11]Winkler D E. Mechanism of polyvinyl chloride degradation and stabilization. Journal of Polymer Science,1959,35(128):3~16
    [12]郑震.聚氯乙烯降解理论的进展.塑料,1999,28(3):8~14
    [13]Starnes W H, Jr. Structural and mechanistic aspects of the thermal degradation of poly(vinyl chloride). Progress in Polymer Science,2002,27(10):2133~2170
    [14]Minsker K S, Zaikov G E, Zailov V G. Achievements and research tasks for poly(vinyl chloride) aging and stabilization. Maeromol Symp,2005,228(1): 299~313
    [15]张亨.热稳定剂研究进展.合成材料老化与应用,2001,(4):35~39
    [16]高俊刚,杨丽庭,李燕芳.改性聚氯乙烯新材料.北京:化学工业出版社,2002.45
    [17]赵亮亮.新型PVC钙锌热稳定剂的研制与应用:[硕士学位论文].青岛:青岛科技大学,2009
    [18]张莉.镁铝水滑石为基础的复合稳定体系在PVC热稳定性中的应用研究:[硕士学位论文].北京:北京化工大学,2006
    [19]易师.水滑石的制备与改性研究:[硕士学位论文].长沙:中南大学,2010
    [20]Li B. A study of thermal degradation and decomposition of rigid poly(vinyl chloride) with metal oxides using thermogravimetry and cone calorimetry. Polymer Degradation and Stability,2000,68(2):197~204
    [21]马廷春,姜亦文,李荣勋,等.PVC用新型有机低铅稳定剂及其并用体系.现代塑料加工应用,2008,20(2):36~40
    [22]宫耀华.PVC热稳定剂的应用研究:[硕士学位论文].贵阳:贵州大学,2009
    [23]胡勇.新型有机锑热稳定剂的合成及稳定机理研究:[硕士学位论文].西安:西安科技大学,2009
    [24]贺军四,杨占红.稀土热稳定剂的合成及在PVC中的应用研究进展.塑料助剂,2008,(3):6~8
    [25]Liu P, Zhu L Y, Fang Y, et al. Hydroxylbenzylthioethers as novel organic thermal stabilizers for rigid PVC. Polymer Degradation and Stability,2007,92(3): 503~508
    [26]Sabaa M W, Mohamed R R. Organic thermal stabilizers for rigid poly(vinyl chloride). Part XIII:Eugenol (4-allyl-2-methoxy-phenol). Polymer Degradation and Stability,2007,92(4):587~595
    [27]杨明.塑料添加剂应用手册.南京:江苏科学技术出版社,2002.48~57
    [28]刘鑫,舒万艮,桂客,等.水滑石(HT)类热稳定剂的发展状况和应用前景.塑料助剂,2004,(1):12~13
    [29]段雪,张法智.插层组装与功能材料.北京:化学工业出版社,2007.7~302
    [30]Feitknecht W. Formation of double hydroxides between bivalent and trivalent metals. Helvetica chimica acta,1942,25(2):555~569
    [31]Allmann R, Jepser H P. Structure of hydrotalcite. Neues Jahrb Mineral Monatsh, 1969,12(3):544~551
    [32]Taylor H F W. Segregation and Cation-ordering in sjogrenite and pyroaurite. Mineral Magazine,1969,37:338~342
    [33]Reichle W T. Pulse microreactor examination of the vapor-phase aldol condensation of aceton. Journal of Catalysis,1980,63(2):295~306
    [34]Kwon T, Tsigdinos G A, Pinnavaia T J. Pillaring of layered double hydroxides (LDH's) by polyoxometalate anions. Journal of the American Chemical Society, 1988,110(11):3653~3660
    [35]Wu T, Sun D J, Li Y J, et al. Thiocyanate removal from aqueous solution by a synthetic hydrotalcite sol. Journal of Colloid and Interface Science,2011,355(1): 198~203
    [36]Sharma S K, Sidhpuria K B, Jasra R V. Ruthenium containing hydrotalcite as a heterogeneous catalyst for hydrogenation of benzene to cyclohexane. Journal of Molecular Catalysis A:Chemical,2011,335(1-2):65~70
    [37]Ryu S J, Jung H, Oh J M, et al. Layered double hydroxide as novel antibacterial drugdelivery system. Journal of Physics and Chemistry of Solids,2010,71(4): 685~688
    [38]Chen Y F, Li F, Zhou S H, et al. Structure and photoluminescence of Mg-Al-Eu ternary hydrotalcite-like layered double hydroxides. Journal of Solid State Chemistry,2010,183(9):2222~2226
    [39]Li X D, Yang W S, Li F, et al. Stoichiometric synthesis of pure NiFe2O4 spinel from layered double hydroxide precursors for use as the anode material in lithium-ion batteries. Journal of Physics and Chemistry of Solids,2006,67(5-6): 1286~1290
    [40]Kalouskova R, Novotna M, Vymazal Z. Investigation of Thermal Stabilization of Poly(vinyl chloride) by Lead Stearate and its Combination with Synthetic Hydrotalcite. Polymer Degradation and Stability,2004,85(2):903~909
    [41]Goh K H, Lim T T, Dong Z. Application of layered double hydroxides for removal of oxyanions:A review. Water Research,2008,42:1345
    [42]潘国祥.层状阴离子粘土设计合成、催化性能及计算模拟研究:[博士学位论文].杭州:浙江工业大学,2008
    [43]谢鲜梅.类水滑石化合物的制备、性能及应用研究:[博士学位论文].太原:太原理工大学,2006
    [44]Taylor H F W. Crystal structures of some double hydroxide minerals. Mineralogical Magazine,1973,39:377
    [45]Shen J Y, Tu M, Hu C. Structural and surface acid/base properties of hydrotalcite-derived MgAlO oxides calcined at varying temperatures. Journal of Solid State Chemistry,1998,137(2):295~301
    [46]Stanimirova T, Hibino T, Balek V. Thermal behavior of Mg-Al-CO3 layered double hydroxide characterized by emanation thermal analysis. Journal of Thermal Analysis and Calorimetry,2006,84(2):473~478
    [47]吕海金.镁铝水滑石的合成及应用:[硕士学位论文].青岛:青岛大学,2007
    [48]Zhao Y, Li F, Zhang R, et al. Preparation of layered double-hydroxide nanomaterials with a uniform crystallite size using a new method involving separate nucleation and aging steps. Chemistry of Materials,2002,14(10): 4286~4291.
    [49]赵芸,矫庆泽,李峰,等.非平衡晶化控制水滑石晶粒尺寸.无机化学学报,2001,17(6):830~834
    [50]杨飘萍,宿美平,杨胥微,等.尿素法合成高结晶度类水滑石.无机化学学报,2003,19(5):485~490
    [51]郑建华,田熙科,俞开潮,等.规整、均一纳米水滑石晶体的水热合成与表征.化学学报,2006,64(22):2231~2234
    [52]Cavani F, Trifiro F, Vaccari A. Hydrotalcite-type anionic clays:Preparation, properties and application. Catalysis Today,1991,11(2):173~191
    [53]吕志.原子经济反应合成LDHs及相关动力学研究:[博士学位论文].北京:北京化工大学,2009
    [54]van der Ven L, van Gemert M L M, Batenburg L F, et al. On the action of hydrotalcite-like clay materials as stabilizers in polyvinylchloride. Applied Clay Science,2000,17(1-2):25~34
    [55]Miyata S, Kuroda M. Method for inhibiting the thermal or ultraviolet degradation of thermoplastic resin and thermoplastic resin composition having stability to thermal or ultraviolet degradation. US Patent,4299759,1981-11-10
    [56]杨巧珍,李峰,段雪.层状双羟基氢氧化物(LDH)的表面有机化研究.塑料,2003,32(6):11~14
    [57]刘鑫,舒万艮,桂客,等.水滑石-稀土-锌复合热稳定剂RZL1的研制.塑料助剂,2005,(1):17~19
    [58]Lin Y J, Li D Q, David G, et al. Modulating effect of Mg-Al-CO3 layered double hydroxides on the thermal stability of PVC resin. Polymer Degradation and Stability,2005,88:286~293
    [59]周为民,赵刚,刘凤举Mg-Ca-Zn-Al四元类水滑石热稳定剂.中国专利,200810052676.X,2008-10-15
    [60]刘庆艳,杨占红,易师.复合水滑石热稳定剂对PVC热稳定性能的影响.中国有色金属学报,2010,20(2):363~370
    [61]Yi S, Yang Z H, Wang S W, et al. Effects of MgAlCe-CO3 layered double hydroxides on the thermal stability of PVC resin. Journal of Applied Polymer Science,2011,119(5):2620~2626
    [62]刘志远Ca/Mg/Al类水滑石的合成及其在PVC中的应用:[硕士学位论文].长沙:中南大学,2007
    [63]杨文虎,刘斌,马占峰,等.水滑石的表面改性研究.化学工业与工程,2004,21(5):331~333
    [64]钱康,刘斌,王茁,等.新型无机阻燃剂水滑石表面改性的研究.绝缘材料,2003,36(3):19~22
    [65]张国强,杨乐夫,方荣谦,等.不同制备方法对水滑石性质的影响.厦门大学学报(自然科学版),2006,45(5):673~676
    [66]Pu M, Zhang B F. Theoretical study on the microstructures of hydrotalcite lamellae with Mg/Al ratio of two. Materials Letters,2005,59(27):3343~3347
    [67]Sideris P J, Nielsen U G, Gan Z H, et al. Mg/Al ordering in layered double hydroxides revealed by multinuclear NMR spectroscopy. Science,2008, 321(5885):113~117
    [68]宋国君,孙良栋,李培耀,等.水滑石的合成、改性及其在功能复合材料中的应用.材料导报,2008,22(1):53~57
    [69]赵宝军.几种阴离子对羟基铝溶液及交联蒙脱石性能的研究:[硕士学位论文].北京:北京大学,1989
    [70]Yun S K, Pinnavaia T J. Water content and particle texture of synthetic hydrotalcite-like layered double hydroxides. Chemistry of Materials,1995,7(2): 348~354
    [71]Adachi-Pagano M, Forano C, Besse J P. Synthesis of Al-rich hydrotalcite-like compounds by using the urea hydrolysis reaction—control of size and morphology. Journal of Materials Chemistry,2003,13(8):1988~1993
    [72]Kloprogge J T, Frost R L. Fourier Transform Infrared and Raman Spectroscopic Study of the Local Structure of Mg-, Ni-, and Co-Hydrotalcites. Journal of Solid State Chemistry,1999,146(2):506~515
    [73]Valcheva-Traykova M L, Davidova N P, Weiss A H. Thermal decomposition of Mg, Al-hydrotalcite material. Journal of Materials Science,1993,28(8):2157
    [74]Kloprogge J T, Wharton D, Hickey L, et al. Infrared and Raman study of interlayer anions CO32-, NO3-, SO42- and ClO4- in Mg/Al-hydrotalcite. American Mineralogist,2002,87(3):623~629
    [75]冯春瑶,矫庆泽,李蕾,等.双(羟基)金属复合氧化物的表面改性.应用化学,2001,18(2):140~142
    [76]杨占红,易师,刘庆艳.一种PVC用镁铝稀土类水滑石复合热稳定剂及其 应用.中国专利,200910303613.1,2009-11-11
    [77]Birjega R, Pavel O D, Costentin G, et al. Rare-earth elements modified hydrotalcites and corresponding mesoporous mixed oxides as basic solid catalysts. Applied Catalysis A:General,2005,288(1-2):185~193
    [78]谢鲜梅,安霞,李晋平,等Zn-Al-Ce三元类水滑石的制备及性质研究.分子催化,2004,18(1):36-40
    [79]Radha A V, Kamath P V, Shivakumara C. Conservation of order, disorder, and "crystallinity" during anion-exchange reactions among layered double hydroxides (LDHs) of Zn with Al. Journal of Physical Chemistry B,2007, 111(13):3411~3418
    [80]安霞.稀土类水滑石化合物的制备、表征及应用:[硕士学位论文].太原:太原理工大学,2003
    [81]李蕾,张春英,矫庆泽,等Mg-Al-CO3与Zn-Al-CO3水滑石热稳定性差异的研究.无机化学学报,2001,17(1):113~118
    [82]李杰,郑德.塑料助剂与配方设计技术.北京:化学工业出版社,2004.92~110
    [83]许家友,郭少云.聚氯乙烯用Ca/Zn热稳定剂的研究概况.聚氯乙烯,2004,(1):40~42

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700