用户名: 密码: 验证码:
六铝酸盐型脱硝催化剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮氧化物(NOx)是大气的主要污染物之一,对生态环境、经济发展及人体健康具有很大的危害。氮氧化物的种类较多,造成大气污染的主要有NO.N02和少量的N20。目前,N20的有效消除方法为催化分解;而NO的脱除常用选择性催化还原法(SCR)。六铝酸盐型催化剂在高温下稳定性较好,且催化活性较高,近年来得到广泛性研究。
     本文采用共沉淀法制备了一系列不同金属掺杂的六铝酸盐型脱硝催化剂;同时,制备了以六铝酸盐作为载体,采用等体积浸渍法制备的铁负载型催化剂。通过XRD.H2-TPR、BET.TG-DSC等手段,对所制备的催化剂进行了结构、物性表征,采用微型反应装置研究了该系列催化剂脱除NOx的反应活性。
     (1)实验研究了六铝酸盐催化剂催化分解N20的性能。
     掺杂Cu、Co的Ba系六铝酸盐BaMxAl12-xO19-δ(x=1,2,3,4)的晶体结构较复杂,生成了较多的尖晶石晶相,且催化分解N20的活性较差。实验发现BaCoxAl12-xO19-δ催化分解N20的过程中产生了较大浓度的NO,高达1000ppm。
     La系六铝酸盐具有较好的N20催化分解性能。LaCuAl11O19-δ具有较单一的六铝酸盐晶体结构,且催化分解N20的活性较高。以LaCuAl11O19-δ为基础,复合掺杂第二金属元素Mn.Fe后,形成的LaCuxM1-xAl11O19-δ(X=0.2,0.4,0.6,0.8)催化剂,催化分解N20的活性较高,且在一定程度上降低了尾气中NO的浓度。尝试在LaCu0.4Fe0.6Al11O19-δ催化分解N20的过程中加入还原气CH4,发现其加入不仅提高了N20的转化率,还降低了NO的生成浓度。
     (2)实验研究六铝酸盐催化剂在CH4气氛下催化还原NO的性能。
     采用共沉淀法制备LaMAl11O19-δ催化剂,以碳酸铵为沉淀剂,样品在60℃下老化3h,1200℃下焙烧4h后制得催化剂样品。表征结果表明,不同离子掺杂型六铝酸盐LaMAl11O19-δ催化剂中,M为Mn、Cu、Fe时,催化剂形成了较完整的六铝酸盐晶相,比表面积较大,催化活性表现较佳。实验结果表明Mn、Cu的最佳掺杂量为1,Fe的最佳掺杂量为2。双金属掺杂型六铝酸盐经1200℃焙烧4h后,仍具有明显的六铝酸盐结构。与单金属Mn、Fe掺杂的催化剂相比,LaMnCuAl10O19-δ和LaFeCOAl10O19-δ的催化活性有了明显提高。LaCuxFe1-xAl11O19-δ系列催化剂中,x=0.8时催化剂的活性最好,且活化能较低(为90.52kJ·mol-1)。
     (3)实验研究六铝酸盐负载铁氧化物催化剂在CH4气氛下催化还原NO的反应活性。
     采用等体积浸渍法制备的3wt%Fe2O3/LaAl12O19-δ催化剂,在600℃下焙烧4h后,硝酸铁氧化分解形成了高分散型Fe2O3,并附着在载体的表面上。该催化剂的比表面积较大,催化活性较高(T10%为490℃,T90%为589℃)。连续100h的高温稳定性实验表明,六铝酸盐负载铁的催化剂具有较好的抗热性。
Nitrogen oxides (NOX) are very important pollutants in the atmosphere, which have great harmful effect on ecological environment, economic development and human health. There are many types of NOX, but air pollution mainly caused by NO, NO2, and N2O. Currently, catalytic decomposition is an effective way to remove N2O, which usually is a by-product in petrochemical industry. Selective catalytic reduction (SCR) method is often used to remove NO in the flue gas of coal combustion power plant. Hexaaluminate catalyst has been extensively researched in recent years because it is a kind of high thermal stability catalyst materials with higher catalytic activities under high temperature environment.
     In this paper, a series of transit metal-doped hexaaluminate catalysts were prepared by co-precipitation. And hexaaluminate-supported Fe2O3 catalyst has been prepared by incipient wetness impregnation method. The catalysts were characterized by XRD, H2-TPR, BET, TG-DSC and other means. The catalytic denitrification activities of the samples were examined in a miniature reaction rig.
     (1) The performances of hexaaluminate catalysts for N2O direct decomposition were studied.
     Ba series hexaaluminates BaMxAl12-xO19-δ(M=Cu, Co; x=1,2,3,4), were prepared. These compound crystal structure was much complex and their catalytic activity was poor. At the same time, experimental results showed that there was a great amount of NO in the decomposition products when N2O decomposition over BaCoxAl12-xO19-δcatalyst, which concentration was up to 1000ppm.
     La series of hexaaluminate catalysts expressed advanced N2O direct decomposition activity. Perfect hexaaluminate phase was found in LaCuAl11O19-δcatalyst, which also had better activity for N2O decomposition. LaCuxM1-xAl11O19-δ(x=0.2,0.4,0.6,0.8) was prepared by doping metal elements Mn and Fe in Cu-doped hexaaluminate. Their activities of N2O decomposition were higher than single Cu doped hexaaluminate and NO concentration in the exhaust gas decreased at some extent. When CH4 was added in the process of N2O decomposition over LaCu0.4Fe0.6Al11O19-δ, conversion rate of N2O was increased and the concentration of by-product NO was decreased ulteriorly.
     (2) NO catalytic reduction activities were studied over hexaaluminate under CH4 atmosphere.
     LaFeAl11O19-δwas prepared by co-precipitation with ammonium carbonate as precipitant. The precursor was precipitated at 60℃for 3h and then was calcinated at 1200℃for 4h. The characterized results showed that LaMAl11O19-δ(M was Mn, Cu and Fe) expressed perfect hexaaluminate phase and the catalyst samples had higher catalytic activity. The results showed that the optimal doping amount of Mn, Cu and Fe is 1,1 and 2, respectively.
     Bi-metal doped catalysts LaMMAl10O19-δwere also formed complete hexaaluminate phase under calcinated at 1200℃for 4h. They showed high specific surface area and good catalytic activity. Comparison with single Mn or Fe-doped catalysts, catalytic activities of LaMnCuAl10O19-δand LaFeCoAl10O19-δhad significantly improved. In the series of LaCuxFe1-xAl11O19-δsamples, the catalyst with x=0.8 had a better activity for N2O decomposition and its activation energy was about 90.52 kJ·mol-1.
     (3) Investigation on NO catalytic reduction over hexaaluminate supported iron catalysts.
     Incipient wetness impregnation method was employed to prepared 3wt% load Fe2O3 on LaAl12O19-δcatalyst. The precursor was calcinated at 600℃for 4h to form a high dispersed Fe2O3 on the hexaaluminate carrier surface with a higher specific surface area. Experiment of NO reduced reaction with CH4 as reductant showed that the catalyst catalytic activity was excellent, which temperature of T10% and T90% were 490℃and 589℃, respectively.100 hours continuous lifetime experiment indicated that no obvious activity decline was observed.
引文
[1]陈进生.火电厂烟气脱硝技术-选择性催化还原法[M].北京:中国电力出版社,2008.
    [2]Sun Y, Wang L L, Wang Y S, et al. In situ measurements of SO2, NOx, NOy, and O3 in Beijing, China during August 2008[J]. Science of The Total Environment,2011,409 (5):933-944
    [3]Grundstrom M, Linderholm H W, Klingberg J, et al. Urban NO2 and NO pollution in relation to the North Atlantic Oscillation NAO[J]. Atmospheric Environment,2011,45(4):883-888
    [4]杨飏.氮氧化物减排技术与烟气脱硝工程[M].北京:冶金工业出版社,2007.
    [5]李少敏.空气中氮氧化物的污染物分析及治理技术[J].河南科技,2010,01:95-96
    [6]王强.脱硝将成为“十二五”减排着力点[J].中国石油和化工
    [7]唐晓龙.低温选择性还原NOx技术及反应机理[M].北京:冶金工业出版社,2007.3
    [8]吴新敏,孙建国,石斌,等.乌鲁木齐市空气中氮氧化物的污染特征及来源分析[J].干旱环境监测,2002,16(3):137-161
    [9]崔文娟,董琳茜,孙佩石,等.微生物法脱除烟气NOx技术的研究进展与展望[J].云南大学学报(自然科学版),2010,32(S2):236-239
    [10]Gomez-Garcia M A, Pitchon V, Kiennemann A. Pollution by nitrogen oxides: an approach to NOx abatement by using sorbing catalytic materials[J]. Environment International,2005,31(3): 445-467
    [11]杨楠,王雪.氮氧化物污染及防治[J].环境保护与循环经济,2010,(11):63-67
    [12]Stadler H, Christ D, Habermehl M, et al. Experimental investigation of NOX emissions in oxycoal combustion[J]. Fuel,2011,90(4):1604-1611
    [13]Fang P, Cen C P, Tang Z X, et al. Simultaneous removal of SO2 and NOx by wet scrubbing using urea solution [J]. Chemical Engineering Journal,2011,168(1):52-59
    [14]郭喜媛,蒋云华,卢宜芳,等.笑气吸入在人工流产镇痛中的应用及护理[J].护理研究,2004,18(3):509-510
    [15]苏涛.大气中氮氧化物的形成及防治[J].科学咨询(决策管理),2009,11(06):4344
    [16]苏小云,减祥生.工科无机化学[M].上海:华东理工大学出版社,2004.22-26
    [17]Shen Q, Li L D, Li J J, et al. A study on N2O catalytic decomposition over Co/MgO catalysts[J]. Journal of Hazardous Materials,2009,163(2-3):1332-1337
    [18]王赛,王淑莹,巩有奎,等.新型生物脱氮工艺中N20产生及释放研究进展[J].水处理技术,2010,36(3):5-10
    [19]Butler T J, Vermeylen F M, Rury M, et al. Response of ozone and nitrate to stationary source NOx emission reductions in the eastern USA [J]. Atmospheric Environment,2011,45(5):1084
    [20]张新民,柴发合,王淑兰,等.中国酸雨研究现状[J].环境科学研究,2010,23(5): 527
    [21]Roy S, Hegde M S, Madras G. Catalysis for NOx abatement[J]. Applied Energy,2009,86(11): 2283
    [22]Fenger J. Air pollution in the last 50 years - From local to global [J]. Atmospheric Environment,2009,43(1):13
    [23]Itano Y, Bandow H, Takenaka N, et al. Impact of NOx reduction on long-term ozone trends in an urban atmosphere [J]. Science of The Total Environment,2007,379(1):46-55
    [24]刘盛余,徐圆圆,曲兵.湿法脱除烟气中NO的研究现状[A].成都市科技年会分会场——世界现代田园城市空气环境污染防治学术交流会论文集[C].四川:四川省环境科学学会, 2010:141-145
    [25]于学义,南波秀树,德永兴公,等.电子束辐照处理烟道气-CO对脱出NOx和SO2的影响[J].原子能科学技术,1991,25(4):61-65
    [26]Fang P, Cen C P, Tang Z X, et al. Simultaneous removal of SO2 and NOx by wet scrubbing using urea solution [J]. Chemical Engineering Journal,2011,168(3):52-59
    [27]Hu X D, Zhao G B, Legowski S F, et al. Moisture effect on NOx conversion in a nonthermal plasma reactor [J]. Environmental Engineering Science,2005,22(6):854-869
    [28]卓文钦,吴新,丛俊.y-Fe203对SCR DeNOx的促进试验研究[J].南京师范大学学报(工程技术版),2010,10(1):54-58
    [29]赵晓旭,程党国,陈丰秋,等.N20直接分解催化剂的研究进展[J].化工进展,2009,28(9):1562-1567
    [30]Obalova L, Fila V. Kinetic analysis of N2O decomposition over calcined hydrotalcites [J]. Applied Catalysis B:Environmental,2007,70 (1-4):353-359
    [31]Kondratenko E V, Kraehnert R, Radnik J, et al. Distinct activity and time-on- stream behavior of pure Pt and Rh metals and Pt-Rh alloys in the high-temperature N2O decomposition [J]. Applied Catalysis A: General,2006,298(10):73-79
    [32]Tzitzios V K, Georgakilas V. Catalytic reduction of N2O over Ag-Pd/Al2O3 bimetallic catalysts [J]. Chemosphere,2005,59:887-891
    [33]Ohnishi C, Asano K, Iwamoto S, et al. Alkali-doped Co3O4 catalysts for direct decomposition of N2O in the presence of oxygen [J]. Catalysis Today,2007,120:145-150
    [34]Dacquin J P, Lancelot C, Dujardin C, et al. Influence of preparation methods of LaCoO3 on the catalytic performances in the decomposition of N2O[J]. Applied Catalysis B:Environmental, 2009,91(3-4):596-604
    [35]王虹,王军利,李翠清,等. ACo2O4/HZSM-5催化剂上N20的直接分解[J].物理化学学报,2010,26(10):2739-2744
    [36]Tian M, Wang A Q, Wang X D, et al. Effect of large cations (La3+ and Ba2+) on the catalytic performance of Mn-substituted hexaaluminates for N2O decomposition [J]. Applied Catalysis B:Environmental,2009,92(3-4):437-444
    [37]Fellah M F, Onal I. N2O decomposition on Fe-and Co-ZSM-5:A density functional study [J]. Catalysis Today,2008,137(2-4):410-417
    [38]Wu H P, Qian Z Y, Xu XL, et al. N2O decomposition over K-promoted NiAl mixed oxides derived from hydrotalcite-like compounds [J]. Journal of Fuel Chemistry and Technology, 2011,39(2):115-121
    [39]Li H, Yu D H, Hu Y, et al. Effect of preparation method on the structure and catalytic property of activated carbon supported nickel oxide catalysts[J]. Carbon,2010,48(15):4547-4555
    [40]阳鹏飞,周继承,任文明.不同方法制备的Cu/HZSM-5催化剂上NO的催化分解反应[J].燃料化学学报,2011,39(2):122-127
    [41]Sugisawa T, Shiraishi J, Machihara D, et al. Adsorption and decomposition of NO on Pt (112) [J]. Applied Surface Science,2001,169-170:292-295
    [42]Gao L Z, Chua H T, Kawi S. The direct decomposition of NO over the La2CuO4 nanofiber catalyst [J]. Journal of Solid State Chemistry,2008,181(10):2804-2807
    [43]徐青,郑章靖,凌长明,等.氮氧化物污染现状和控制措施[J].安徽农业科学,2010,38(29):16388-16391
    [44]Wang X Q, Sigmon S M, James J. Support and particle size effects on direct NO decomposition over platinum [J]. Catalysis Today,2004,96(1-2):11-20
    [45]Hong W J, Iwamoto S, Hosokawa S, et al. Effect of Mn content on physical properties of CeOx-MnOy support and BaO-CeOx-MnOy catalysts for direct NO decomposition[J]. Journal of Catalysis,2011,277(2):208-216
    [46]Iwakuni H, Shinmyou Y, Yano H, et al. Direct decomposition of NO into N2 and O2 on BaMnO3-based perovskite oxides[J]. Applied Catalysis B:Environmental,2007,74(3-4): 299-306
    [47]Kustova M Y, Rasmussen S B, Kustov A L, et al. Direct NO decomposition over conventional and mesoporous Cu-ZSM-5 and Cu-ZSM-11 catalysts: Improved performance with hierarchical zeolites[J]. Applied Catalysis B:Environmental,2006,67(1-2):60-67
    [48]李喆,徐国胜,何剑.氮氧化物污染治理技术的发展[A].第11界全国电除尘学术会议论文集[C].河南:中国环保产业协会电除尘委员会,2005:664-670
    [49]田海影,刘盛强,刘鲁宁,等.降低柴油机尾气中NOx排放的最新发展技术[J].山东建筑大学学报,2010,25(6):633-637
    [50]吕健.浅谈SCR烟气脱硝技术[J].锅炉制造,2008,40(3):40-41
    [51]薛纪纬.SCR催化剂的制备和脱硝性能影响因素的研究[D].北京:北京交通大学,2010
    [52]陈晓梅.钴基催化剂上烃类选择催化还原氮氧化物反应机制研究[D].辽宁:大连理工大学,2009
    [53]Kondratenko E V, Kondratenko V A, Richter M, et al. Influence of O2 and H2 on NO reduction by NH3 over Ag/Al2O3: A transient isotopic approach[J]. Journal of Catalysis,2006,239(1): 23-33
    [54]Klimczak M, Kern P, Heinzelmann T, et al. High-throughput study of the effects of inorganic additives and poisons on NH3-SCR catalysts—Part Ⅰ: V2O5-WO3/TiO2 catalysts [J]. Applied Catalysis B:Environmental,2010,95(1-2):39-47
    [55]Brandenberger S, Krocher O, Tissler A, et al. The determination of the activities of different iron species in Fe-ZSM-5 for SCR of NO by NH3 [J]. Applied Catalysis B:Environmental, 2010,95(3-4):348-357
    [56]Sjovall H, Blint R J, Olsson L. Detailed kinetic modeling of NH3 SCR over Cu-ZSM-5 [J]. Applied Catalysis B:Environmental,2009,92(1-2):138-153
    [57]范红梅,仲兆平,金保升,等.V205-W03/TiO2催化剂氨法SCR脱硝反应动力学研究[J].燃料化学学报,2006,34(3):377-380
    [58]周立新.工业脱硫脱销技术问答[M].北京:化学工业出版社,2006.226-228
    [59]Long X L, Xin Z L, Chen MB, et al. Nitric oxide absorption into cobalt ethylenediamine solution[J]. Separation and Purification Technology,2007,55(2):226-231
    [60]帅石金,张文娟,董红义,等.柴油机尿素SCR催化器优化设计[J].车用发动机,2007,(1):44-47
    [61]杜成章,刘诚.尿素热解和水解技术在锅炉烟气脱硝工程中的应用[J].华北电力技术,2010,(6):39-42
    [62]赵秀华CuO/CexTi1-xO2催化剂的结构及对NO+CO反应性能的研究[D].浙江:浙江大学,2008
    [63]程晓庆NiO/CeO2催化剂上CO-NO的反应机理研究[D].辽宁:大连理工大学,2009
    [64]Sica A M, Gigola C E. Interaction of CO, NO and NO/CO over Pd/y-Al2O3 and Pd-WOx/γ-Al2O3 catalysts [J]. Applied Catalysis A: General; 2003,239(1-2):121-139
    [65]杨剑斌.H2选择性还原NO的产物分布和反应机理研究[D].辽宁:中国科学院大连化学 物理研究所,2005
    [66]张浩.铁系金属氧化物催化还原NO、性能研究[D].黑龙江:哈尔滨工程大学,2007
    [67]Toops T J, Walters A B, Vannice M A. The effect of CO2, H2O and SO2 on the kinetics of NO reduction by CH4 over La2O3 [J]. Applied Catalysis B:Environmental,2002,38(3):183-199
    [68]房华.有氧条件下甲烷选择性催化还原NOx的研究[D].四川:四川大学,2006
    [69]张惠.甲烷选择性催化还原氮氧化物的基础研究[D].浙江:浙江大学,2005
    [70]王文宗,武文江.火电厂烟气脱硫及脱硝实用技术[M].北京:中国水利水电出版社,2009.124-125
    [71]赵骧.催化剂[M].北京:中国物资出版社,2001.627-633
    [72]Ren L L, Zhang T. Reduction of NO with methane over Fe/ZSM-5 catalysts [J]. Chinese Chemical Letters,2010,2(6):674-677
    [73]刘于英,张金桥,贺勇,等.富氧条件Co/H-ZSM-5催化剂上CH4选择催化还原NO的研究[J].工业催化,2006,14(4):55-59
    [74]Shi C L, Walters A B, Vannice M A. NO reduction by CH4 in the presence of O2 over La2O3 supported on Al2O3[J]. Applied Catalysis B:Environmental,1997,14(3-4):175-188
    [75]Watanabe T, Miki Y, Masuda T, et al. Performance of γ-Ga2O3-Al2O3 solid solutions prepared by spray pyrolysis for CH4-SCR of NO [J]. Applied Catalysis A: General,2011,396 (1-2): 140-147
    [76]孙诚,吴东方,周建成.六铝酸盐型天然气燃烧催化剂研究进展[J].精细石油化工进展,2007,8(12):16-20
    [77]Yin F X, Ji S F, Wu P Y, et al. Preparation, characterization, and methane total oxidation of AAl12O19 and AMAl11O19 hexaaluminate catalysts prepared with urea combustion method [J]. Journal of Molecular Catalysis A: Chemical,2008,294(1-2):27-36
    [78]Gardner T H, Spivey J J, Campos A, et al. Catalytic partial oxidation of CH4 over Ni-substituted barium hexaaluminate catalysts [J]. Catalysis Today,2010,157(1-4):166-169
    [79]赵丽娜,崔运成,王庆伟.新型材料六铝酸盐LaMAl11O19-δ的合成及催化性能[J].化工进展,2008,27(8):1240-1245
    [80]陆富生.甲烷催化燃烧催化剂催化理论与应用研究进展[J].化工时刊,2009,23(8):52-56
    [81]任晓光,于君英,宋永吉,等.金属掺杂对六铝酸镧的结构及甲烷催化燃烧性能的影响[J].化工进展,2007,26(6):838-841
    [82]马丽景,王林宏,李殿卿,等. Mn、Fe取代六铝酸盐的结构和甲烷催化燃烧性能[J].化工学报,2006,57(11):2604-2609
    [83]Kim S, Lee D W, Lee J Y, et al. Catalytic combustion of methane in simulated PSA off gas over Mn-substituted La-Sr-hexaaluminate (LaxSr1-xMnAl11O19) [J]. Journal of Molecular Catalysis A: Chemical,2011,335(1-2):60-64
    [84]Kondratenkoa E V, Kondratenkoa V A, Santiagob M, et al. Mechanism and micro-kinetics of direct N2O decomposition over BaFeAl11O19 hexaaluminate and comparison with Fe-MFI zeolites[J]. Applied Catalysis B:Environmental,2010,99 (1-2):66-73
    [85]董留涛,宋永吉,李翠清,等.LaCuxZn1-xAl11O19-δ六铝酸盐催化剂分解N2O的催化性能[J].环境化学,2009,28(2):238-291
    [86]宋永吉,董留涛,李翠清,等.不同方法制备LaCu0.8Zn0.2Al11O19-δ催化剂及其催化分解N20活性研究[J].环境污染与防治,2009,31(9):19-22
    [87]Bukhtiyarova M V, Ivanova A S, Plyasova L M, et al. Selective catalytic reduction of nitrogen oxide by ammonia on Mn(Fe)-substituted Sr(La) aluminates[J]. Applied Catalysis A: General, 2009,357(2):193-205
    [88]郭彦鑫.沉淀法制备铜基甲醇合成催化剂的研究进展[J].化学工业与工程技术,2010,31(5):42-45
    [89]Guthenke A, Chatterjee D, Weibel M, et al. Development and application of a model for a NOx storage and reduction catalyst[J]. Chemical Engineering Science,2007,62 (18-20):5357-5363
    [90]马兵.汽车尾气氮氧化物催化还原的数值模拟研究[D].辽宁:大连理工大学.2010
    [91]朱安民.天然气燃烧催化剂的逆微乳液合成及性能研究[D].北京:北京化工大学,2007
    [92]Koci P, Plat F, Stepanek J, et al. Dynamics and selectivity of NOx reduction in NOx storage catalytic monolith[J]. Catalysis Today,2008,137(2-4):253-260
    [93]李萍,蔡青,李婷.通风矿井瓦斯的催化燃烧[J].科技资讯(工业技术),2010,(01):82
    [94]Spivey J J. Deactivation of Reforming Catalysts[J]. Fuel Cells: Technologies for Fuel Processing,2011:285-315
    [95]宋永吉,董留涛,李翠清,等.共沉淀法制备六铝酸盐及其N20催化分解性能[C].功能材料,2010,276-278
    [96]马丽景,崔梅生,王林宏,等BaMnxAl12-xO19-δ六铝酸盐催化剂上甲烷催化燃烧性能[J].中国科学B辑:2008,38(2):110-115
    [97]翟彦青,孟明,陈久岭,等La、Ba离子对高温燃烧催化剂六铝酸盐结构和性质的影响[J].应用化学,2005,22(3):320-325
    [98]丁佳,罗来涛.钻系尖晶石型复合氧化物的甲烷催化燃烧性能研究[J].分子催化,2009,23(1):48-52
    [99]Gunter M M, Ressler T, Jentoft R E, et al. Redox Behavior of Copper Oxide/Zinc Oxide Catalysts in the Steam Reforming of Methanol Studied by in Situ X-Ray Diffraction and Absorption Spectroscopy[J]. Journal of Catalysis,2001,203(1):133-149
    [100]董留涛.六铝酸盐型N20催化分解催化剂的研究[D].北京:北京化工大学,2009
    [101]田鸣,王晓东,朱燕燕,等.铁和锰的化学状态对LaFexMnyAl12-x-yO19催化剂上N20分解的影响[J].催化学报,2010,31(1):100-105
    [102]房晟忠,世民,李发荣,等.氮氧化物排放模型及排放清单研究现状[J].环境科学导刊,2010,29(3):4-7
    [103]Lopez G J, Polupan G, Velazquez M T, et al. Analytical and experimental research for decreasing nitrogen oxides emissions [J]. Applied Thermal Engineering,2009,29(8-9): 1614-1621
    [104]赵亮亮.六铝酸盐复合氧化物的制备及甲烷燃烧催化性能的研究[J].科技资讯,2008,36:14-15
    [105]Gardner T H, Shekhawat D, Berry D A, et al. Effect of nickel hexaaluminate mirror cation on structure-sensitive reactions during n-tetradecane partial oxidation[J]. Applied Catalysis A: General,2007,323(30):1-8
    [106]余倩.六铝酸盐催化剂的制备及其在新能源二甲醚催化燃烧中的应用[D].广东:广东工业大学,2008
    [107]郑建东,任晓光,宋永吉.Mn离子掺杂对K2MnxAl12-xO19-δ催化剂结构及其甲烷燃烧性能的影响[J].燃料化学学报,2009,37(5):624-628
    [108]王华,何方.熔融盐循环热载体无烟燃烧技术基础[M].北京:冶金工业出版社,2006.15-19
    [109]张涯远,蒋政,张世超,等.六铝酸盐气溶胶催化剂的催化性能[J].物理化学学报,2008,24(2):211-216
    [110]郑建东,任晓光,宋永吉,等.碳酸铵加入量对共沉淀法制备LaMnAl11O19-δ催化剂的影响[J].稀土,2007,28(5):40-44
    [111]任晓光,郑建东,宋永吉LaFexAl12-xO19催化剂制备及其对甲烷催化燃烧活性的研究[J].石油与天然气化工,2007,36(6):441-445
    [112]逄芳,徐占林,牛春艳,等.不同金属取代LaMAl11O19-δ催化剂的制备及甲烷催化燃烧的性能[J].贵州化工,2008,3(1):16-18
    [113]Kniep B, Girgsdies F, Ressler T. Effect of Precipitate Aging on the Microstructural Characteristics of Cu/ZnO Catalysts for Methanol Steam Reforming [J]. Journal of Catalysis, 2005,236:34-44
    [114]智科端,魏秀荣,陈建华,等.沉淀剂对铜锰复合氧化物组成结构及催化性能的影响[J].内蒙古工业大学学报,2010,29(1):36-41
    [115]Anillo A, Altomare A, Moliterni A G,et al. Hydrothermal synthesis, structural characterization and magnetic studies of the new pillared microporous ammonium Fe(Ⅲ) carboxyethylphosphonate: [NH4][Fe2(OH)O3P(CH2)2CO2] [J]. Journal of Solid State Chemistry,2005,178(1):306-313
    [116]刘华,史忠华,陈耀强,等.以氨水和碳酸铵为沉淀剂制备氧化铝的对比研究[J].无机化学学报,2004,20(6):688-692
    [117]Yeh T F, Lee H G, Chu K S, et al. Characterization and catalytic combustion of methane over hexaaluminates[J]. Materials Science and Engineering A,2004,384(1-2):324-330
    [118]赵丽娜,崔运成,王庆伟.新型材料六铝酸盐LaMAl11O19-δ的合成及催化性能[J].化工进展,2008,27(8):1240-1245
    [119]崔梅生,张顺利,李明来,等.搀杂六铝酸盐LaMxAl12-xO19-δ上甲烷催化燃烧研究[J].中国稀土学报,2003,21:87-90
    [120]Xu Z L, Zhao L N, Pang F, et al. Partial Oxidation of Methane to Synthesis Gas over Hexaaluminates LaMAl11O19-δ catalysts[J] Journal of Natural Gas Chemistry,2007,16(1): 60-63
    [121]Bukhtiyarova M V, Ivanova A S, Slavinskaya E M, et al. Catalytic combustion of methane on substituted strontium ferrites[J]. Fuel,2011,90(3):1245-1256
    [122]Kim S, Lee D W, Lee JY, et al. Catalytic combustion of methane in simulated PSA offgas over Mn-substituted La-Sr-hexaaluminate (LaxSr1-xMnAl11O19) [J]. Journal of Molecular Catalysis A: Chemical,2011,335(1-2):60-64
    [123]Li N, Wang A Q, Liu Z M, et al. On the catalytic nature of Mn/sulfated zirconia for selective reduction of NO with methane [J]. Applied Catalysis B:Environmental,2006,62(3-4): 292-298
    [124]Tian W, Yang H S, Fan X Y, et al. Catalytic reduction of NOx with NH3 over different-shaped MnO2 at low temperature[J]. Journal of Hazardous Materials,2011,188(1-3):105-109
    [125]陈树伟,闫晓亮,陈佳琪,等.富氧条件下Mn/ZSM-5选择催化CH4还原NO[J].催化学报,2010,31(9):1107-1114
    [126]于君英.掺杂六铝酸镧催化剂的反相微乳液法制备及性能研究[D].北京:北京化工大学,2007
    [127]刘源,钟炳,彭少逸,等.钾助剂对Cu/Zro:合成甲醇催化剂活性的影响[J].催化学报,1998,19(2):107-110
    [128]Zielinski J, Zglinicka I, Znak L, et al. Reduction of Fe2O3 with hydrogen[J]. Applied Catalysis A: General,2010,381(1-2):191-196
    [129]Basinska A, Jozwiak W K, Goralski J, et al. The behaviour of Ru/Fe2O3 catalysts and Fe2O3 supports in the TPR and TPO conditions[J]. Applied Catalysis A:General,2000,190(1-2): 107-115
    [130]Hetrick C E, Patcas F, Amiridis M D. Effect of water on the oxidation of dichlorobenzene over V2O5/TiO2 catalysts[J]. Applied Catalysis B:Environmental,2011,101(3-4):622-628
    [131]荆国华,李俊华,杨栋,等.分子筛类催化剂上甲烷选择性催化还原NOx研究进展[J].化工进展,2009,28(3):504-511
    [132]Yang T T, Hsiaotao T B, Cheng X X. Effects of O2, CO2 and H2O on NOx adsorption and selective catalytic reduction over Fe/ZSM-5[J]. Applied Catalysis B:Environmental,2011, 102(1-2):163-171
    [133]Luo J Y, Hou X X, Wijayakoon P, et al. Spatially resolving SCR reactions over a Fe/zeolite catalyst[J]. Applied Catalysis B:Environmental,2011,102(1-2):110-119
    [134]朱洪法.催化剂载体制备及应用技术[M].北京:石油工业出版社,2002
    [135]邵长丽,殷长龙,刘晨光,等.深度加氢脱硫催化剂载体效应的研究进展[J].石油化工,2007,36(10):1074-1080
    [136]Fierro G, Moretti G, Ferraris G, et al. A Mossbauer and structural investigation of Fe-ZSM-5 catalysts:Influence of Fe oxide nanoparticles size on the catalytic behaviour for the NO-SCR by C3H8 [J]. Applied Catalysis B:Environmental,2011,102(1-2):215-223
    [137]朱剑虹,余剑,段正康,等Fe2O3/HZSM-5催化转化乙醇制备低碳烯烃[J].过程工程学报,2010,10(1):97-102
    [138]刘延,程铁欣,李文兴,等.负载型NiO/六铝酸盐催化剂载体中镍离子的存在对催化剂的结构及甲烷二氧化碳重整反应性能的影响[J].复旦学报(科学自然版),2003,42(3):401-404
    [139]王伟.堇青石负载铁系氧化物催化还原NOx的性能研究[D].黑龙江:哈尔滨工程大学,2007
    [140]顾立军,谢颖,刘宝生,等.焙烧温度对CuO/γ-Al2O3和CeO2-CuO/γ-Al2O3催化剂NO还原活性的影响[J].燃料化学学报,2004,32(2):235-240
    [141]张浩,徐海云,范海明.负载型金属氧化物催化剂分解臭氧性能研究[J].舰船防化,2008,(5):1-5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700