用户名: 密码: 验证码:
AZ80镁合金负重轮冲击响应特性测试分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
构件及材料的动态测试是高性能新型装备研究、抗冲击新材料研发和高速制造技术开发的必要前提和理论基础。镁合金是迄今在工程中应用最轻的金属结构材料,在航空航天、交通运输、武器装备等对结构重量敏感的领域,具有广泛的应用前景和发展潜力。负重轮是应用镁合金作为替代新材料的典型部件,可减轻履带式车辆重量增强其机动性和通行能力,同时能有效吸振提高装甲车辆人机适应性,但这类构件需要有良好的抗冲击性能。因此,系统测试分析镁合金负重轮的冲击响应特性,对镁合金负重轮承载能力评价、结构设计优化、材料选择改进以及推动其应用具有重要的意义。
     在构建的自由式Hopkinson压杆测试系统上,对从AZ80镁合金负重轮切取的长细杆,测试了其弹性应力波传播及应力幅值衰减规律,分析了镁合金冲击作用下的阻尼性能。研究表明应力波在AZ80合金杆中传播时,应力波幅值随子弹速度增加而增大,随传播距离的增加明显减小;不同位置处的应力波幅值差值随子弹速度增加而增大,但不受子弹长度和形状的影响。测试范围内,AZ80合金的应力衰减系数在2.79~5.91m-1,应力幅值减小13~27%。对应力-时间曲线的傅立叶转换结果表明,幅值谱在1~4Hz频段出现幅值峰且急剧下降的现象,表明AZ80合金负重轮减振性能的最佳频率为1~4Hz。借助G-L位错钉扎理论模型分析表明,由于存在大量的弱钉钉扎位错,AZ80镁合金表现出良好的阻尼性能。
     借助构建的分离式Hopkinson压杆试验系统,测试分析了挤压成形的AZ80合金负重轮(沿与幅板径向成0°、45°、和90°方向)、ZK60合金挤压棒材以及AZ31合金铸棒的动态力学性能,应变速率范围在800s-1至3000s-1之间,并与准静态下的力学行为进行了比较。AZ80、ZK60、AZ31合金均表现出正的应变速率效应,AZ80合金0°、45°、和90°方向的应变率敏感系数分别为0.00669、0.03189、0.03004。随应变率的提高,断裂强度(最大应力)呈逐步递增的趋势,受加载方向影响较大,而断裂应变(最大应变)呈突增的趋势,基本不受加载方向影响。从0.001s-1至3000s-1,三个方向断裂强度平均提高51.4%,断裂应变平均提高124.6%。以Johnson-Cook本构方程为基础,分别建立了AZ80合金三个方向的本构模型。
     采用光学显微镜、扫描电镜等手段,开展了AZ80合金负重轮微观组织测试技术研究,探讨了镁合金动态冲击下的微观变形机制、应变速率敏感性及断裂机制。结果表明:高应变率下的微观变形机制与加载方向密切相关,90°、45°和0°方向的塑性变形机制分别为以拉伸孪生加位错滑移、基面滑移及锥面滑移为主,同时伴随着动态再结晶。随着镁合金中合金含量的增加,孪晶所占的面积百分数不断的减少,孪生在塑性变形中所起到的作用降低。不同压缩方向的局域化变形机制与加载方向密切相关,0°方向形成了由孪晶组成的变形局域化区域,其它两个方向的局域化变形不明显;AZ80合金负重轮的断裂机制基本以脆性断裂为主,随加载应变率的增加塑性有所改善。
Dynamic testing on components and materials is necessary precondition and theoreticalbasis for R&D of new equipment with high performance, anti impact new materials and highspeed manufacturing technology. Magnesium alloy is the lightest metal structural materials inengineering applications. There are good application prospects in the fields such as aerospace,transportation and weapon equipment. The magnesium alloy loading wheel can enhancemobility and capacity of the armored vehicle by weight reduction and improve theadaptability because of excellent shock absorbing performance. Therefore, it is necessary totest and analyze the dynamic response characteristics of magnesium alloy loading wheels inorder to optimize structure design, improve material to and promote its application.
     The stress wave propagation characteristics and shock damping of AZ80alloy weretested and analyzed on the freestyle Hopkinson pressure bar. The results show that the stressamplitude increases with bullet speed increasing and decreases obviously with thepropagation distance increasing. While the difference value of the stress amplitude increaseswith the bullets velocity increasing, this is not affected by the length and shape of the bullet.Within the testing range, the stress attenuation coefficient of AZ80alloy was between2.79m-1and5.91m-1and stress amplitude decreases by13~27%. The results of Fouriertransformation of stress-time curve show that the peak of amplitude appears and then declinessharply in the1~4Hz frequency band, which indicates that the optimal frequency of dampingproperties of AZ80alloy wheel is1~4Hz. The AZ80alloy wheel behaves good dampingproperties due to the presence of a large number of weak pinning dislocations according to theG-L dislocation pinning theoretical model.
     The dynamic mechanical response of AZ80loading wheel (along with the direction ofthe radial direction of plate into0°,45°, and90°), ZK60bar extruded and AZ31castingsamples were tested and analyzed on the split Hopkinson pressure bar. The range of strain rate in this experiment is about800s-1~3000s-1. The dynamic mechanical behaviors werecompared with the quasi-static mechanical behavior. These three kinds of alloy exhibitpositive effect of strain rate. The strain rate sensitivity coefficient of AZ80alloy at0°,45°,and90°directions is0.00669、0.03189and0.03004respectively. With the increasing of strainrate, the maximum stress shows a trend of gradual increasing, which is greatly affected bycompression direction. The maximum strain behaves a trend of suddenly increasing, which isnot affected by the compression direction. For three direction from10-3s-1to3×10-3s-1,themaximum stress increased an average of51.4%and the maximum strain increased an averageof124.6%. On the basis of Johnson-Cook constitutive equation, constitutive model of AZ80alloy at three directions were established.
     Microstructures and fracture morphology of the samples after testing were analyzed bymeans of the optical microscope and scanning electron microscopy etc. The deformationmechanism, the strain rate sensitivity and fracture mechanism of magnesium alloy under thedynamic impact were discussed. The results show that the deformation mechanism of AZ80alloy under high strain rate is closely related to the loading direction. The plastic deformationmechanism of different directions (90°,45°and0°) is given priority to tensile twin dislocationglide, basal slip and cone slip respectively, accompanied by dynamic recrystallization. Withthe increase of alloy content in magnesium alloy, the area percentages of the twin reducecontinuously, and the role of twin playing in the plastic deformation reduce. Localizeddeformation mechanism of different compression directions is closely related to the loadingdirections. The sample of0°direction formed a deformation localization area consisted oftwin, and the localized deformation of the other two directions is not obvious. Fracturemechanism of AZ80magnesium alloy is the brittle fracture basically. The plasticity improvedwith the increasing of the strain rate.
引文
[1]钟皓,刘培英,周铁涛.镁及镁合金在航空航天中的应用及前景[J].航空工程与维修.2002,4:41-42.
    [2]张春香,陈培磊,陈海军等.镁合金在汽车工业中的应用及其研究进展[J].铸造技术.2008,29.4:531-535.
    [3]刘倩,单忠德.镁合金在汽车工业中的应用现状与发展趋势[J].铸造技术.2007,28.12:1668-1671.
    [4]杜理平,廖君.镁合金在车用轻量化材料中的应用[J].浙江水利水电专科学校学报.2008,20.1:60-62.
    [5]彭岳华.镁合金材料在汽车中的应用[J].汽车与配件.2008,20:46-47.
    [6]沙桂英,徐永波,于涛,张修丽,韩恩厚,刘路. AZ91镁合金的动态应力-应变行为及其应变率效应[J].材料热处理学报.2006,4:77-81.
    [7]王长义,刘正,毛萍莉.{1012}拉伸孪晶对AZ31B镁合金动态力学行为及应变速率敏感性的影响[J].热加工工艺.2011,40.12:19-22.
    [8]唐伟,韩恩厚,徐永波,刘路.热处理对AZ80镁合金结构及性能的影响[J].金属学报.2005,41.11:1199-1206.
    [9] R. Q. Liang, A. S. Khan. A critical review of experimental results and constitutive models for BCCand FCC metals over a wide range of strain rates and temperatures. International Journal of Plasticity.1999,15:963~980.
    [10] M. E. Kassner, S. Nemat-Nasser, Z.G. Suo, et al. New Directions in Mechanics. Mechanics ofMaterials.2005,37.2:231~259.
    [11] A.A.Salem, S.R.Kalidindi, S.L.Semiatin. Strain Hardening due to Deformation Twinning in α-titanium:Constitutive Relations and Crystal-Plasticity Modeling. Acta Materialia.2005,53.12:3495~3502.
    [12] S. Nemat-Nasser. Introduction to High Strain Rate Testing. ASM Handbook. Eds. H. Kuhn, D. Medlin.2000,8:427~428.
    [13]朱耀.AA7055铝合金在不同温度及应变率下力学性能的实验研究.博士学位论文.哈尔滨:哈尔滨工业大学,2010.
    [14]常列珍,张治民.SHPB实验技术及其发展[J].机械管理开发.2006,5:29-31.
    [15]董钢.分离式霍普金森压杆试验技术数值模拟.硕士学位论文.合肥:合肥工业大学,2005.
    [16]陈裕泽,陶俊林,黄西成.SHPB实验技术的原理研究.第三届全国爆炸力学实验技术学术会议论文集:156-164.
    [17] Vogel D.,Michel B.,Toztaver W.,Schreppel. U. and Clos R. Lasermetrological Measurement ofTransient Strain Fields in Hopkinson Bar Experiments. SPIE, Speckle Techniques, BirefringenceMethod and Application to Solid Mechanics.1991,Vol.1554A:262-274.
    [18]孙琦清,高桦等.材料在应力波作用下的断裂云纹法和HPB装置测动态COD.固体力学学报.1986,7.3:32-36.
    [19] Xue Q.,Bai Y.L. and Shen L.T. Modified SHTB and Its Application to Microscopic Study ofThemro-visco-Plastic Shear Localization. Proc. of the Inter. Symp. Intense Dyn. Loading and ItsEffects. Chendu:1992:405-408.
    [20] Albertini C.and Montagnani M. Testing Techniques Based on the Split Hopkinson Bar. Con. Ser.No.2I,The Inst. Of Phys.,London:22-31.
    [21] Shiori J. Ultrasonic Method of Detecting Behavior of Dislocations During and Immediately AfterVery High Srtain Rate Deformation. Proc. Of the Inter Symp. On Intense Dyn. Loading And ItsEffects. Chendu:1992:35-46.
    [22]巫绪涛,胡时胜,张芳荣.两点应变测量法在SHPB测量技术上的运用.爆炸与冲击.2003,23.4:309-312.
    [23]陈思颖,黄晨光,段祝平.数字散斑相关法在高速变形测量中的应用.中国激光.2004,31.6:735-739.
    [24]王礼立,朱珏,赖华伟.冲击动力学研究中实测波信息的解读分析.第八届全国冲击动力学学术讨论会会议论文集.银川:2007:85-90.
    [25]宋博,宋力,胡时胜. SHPB实验数据处理的解耦方法.爆炸与冲击.1998,18.2:168-171.
    [26]朱珏,胡时胜,王礼立.37mm分离式Hopkinson压杆中应力波的传播与反分析.第三届全国爆炸力学实验技术交流会论文集.黄山:2004:35-38.
    [27] Caha R W著.非铁合金的结构与性能[M].第八卷.丁道云等译.北京:科学出版社,1999.
    [28]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用[M].北京:机械工业出版社,2002.
    [29]陈振华.镁合金[M].北京:化学工业出版社,2004.
    [30] Polmear I J. Magnesium alloys and applications [J]. Mater Sci&Tech.1994,10:114.
    [31] Yo Kojima,Shigeharu Kamado. Fundamental magnesium research in Japan. Materials science forum.2005, Vols488-489:9-16.
    [32] Kojima Y. Platform science and technology for advanced magnesium alloys. Materials Science Forum.2000,350-351:1-18.
    [33] Kainer K U, Buch F von. The current state of technology and potential for further development ofmagnesium applications. Kainer K U. Magnesium Alloys And Their Applications, Chichester:Wiley-VCH,2003.1-22
    [34]张军生,吴迪,王江涛.国产警用38毫米转轮防暴发射器[J].轻兵器,2007.
    [35]张津,章宗和.镁合金及应用[M].北京:化学工业出版社,2004,301-304.
    [36]许小忠,刘强,程军.镁合金在工业及国防中的应用[J].华北工业学院学报.2002,23.3:38.
    [37]黄少东,唐全波,赵祖德.用镁合金促进兵器装备轻量化[J].金属成形工艺.2002,20.5:8-10.
    [38]黄晓艳,刘波.轻合金是武器装备轻量化的首选金属材料[J].轻合金加工技术.2007,8:42.
    [39]刘向阳.镁合金压铸技术及应用[J].金属世界.2005,2:43.
    [40]康鸿跃,陈善华,马永平,王忠海.镁合金在军事装备中的应用[J].金属世界.2008,1:61-64.
    [41]唐全波,黄少东,伍太宾.镁合金在武器装备中的应用分析[J].兵器材料科学与工程.2007,30.2:69-72.
    [42]王敬丰,凌闯,梁浩,赵亮,潘复生.镁合金动态力学性能的研究现状及发展方向[J].材料导报.2010,24.4:80-85.
    [43]毛萍莉,刘正,王长义,王峰.镁合金高速冲击载荷下的变形行为研究进展[J].材料导报A.2012,26.4:95-101.
    [44] Ishikawa K, Watanabe H, Mukai T. High strain rate deformation behavior of an AZ91magnesiumalloy at elevated temperatures [J]. Mater Lett.2005,59.12:1511-1515.
    [45] Li B, Joshi S, Azevedoa K, et al. Dynamic testing at high strain rates o f an ultrafine-grainedmagnesium alloy processed by ECAP[J]. Mater Sci Eng A.2009,517.24-29:24-29.
    [46] Mukai T, Yamanoi M, Watanabe H, et a l. Effect of grain refinement on tensile ductility in ZK60magnesium alloy under dynamic loading [J]. Mater Trans.2001,42.7:1177.
    [47] Watanabe H, Mukai T, Koichi Ishikawa, et al. Realization of high strain rate super plasticity at lowtemperatures in an Mg-Zn-Zr alloy [J]. Mater Sci Eng A.2001,307.1-2:119-128.
    [48] E.El-Magd, M.Abouridouane. Characterization, modeling and simulation of deformation and fracturebehavior of the light-weight wrought alloys under high strain rate loading [J]. Int J Impact Eng.2006,32.5:741-758.
    [49] I. Ulacia, N.V. Dudamell, et al. Mechanical behavior and microstructural evolution of a Mg AZ31sheet at dynamic strain rates [J]. Acta Materialia.2010,58:2988–2998.
    [50] Yokoyama T.Impact tensile stress-strain characteristic of wrought magnesium alloys[J].Strain.2003,39.4:167.
    [51] Yokoyama T.Impact tensile stress-strain characteristic of extruded magnesium alloys[J].J Jpn InstLight Metals.2001,51.10:544.
    [52] Nuno Peixinho, Claudia Doellinger. Characterization of Dynamic Material Properties of Light Alloysfor Crashworthiness Applications [J]. Materials Research.2010,13.4:471-474.
    [53]毛萍莉,刘正,王长义.高应变速率下AZ31B镁合金的压缩变形组织[J].中国有色金属学报.2009,19.5:816.
    [54] Pingli Mao, Zheng Liu, Changyi Wang. Texture effect on high strain rates tension and compressiondeformation behavior of extruded AM30alloy. Mater Sci Eng A.2012,539.1-2:13-21.
    [55]黄海,黄维刚.AZ61镁合金的动态力学性能与显微分析.材料工程.2009,11:51-53.
    [56]张星,张治民,李保成.AZ31镁合金动态力学行为实验研究.弹箭与制导学报.2007,27.4:226
    [57] Yang Yongbiao, Wang Fuchi, Tan Chengwen, et al. Plastic deformation mechanisms of AZ31magnesium alloy under high strain rate compression [J]. Trans Nonferrous Metals SocChina.2008,18.5:1043.
    [58]胡杨.ZK60镁合金的塑性变形及其动态力学性能研究.硕士学位论文.太原:中北大学,2012.
    [59]徐伟芳.冲击拉伸实验技术及其在镁铝合金上的应用.硕士学位论文.绵阳:中国工程物理研究院,2002.
    [60]张万甲,张玉松,宋春香.MB2等四种金属材料的本构关系和动态断裂研究[J].爆炸与冲击.1995,15.1:44-53.
    [61]席通.高应变速率下镁合金变形机制及失效行为研究.硕士学位论文.辽宁沈阳:沈阳工业大学,2013.
    [62]薛翠鹤.AZ31镁合金板材温热高速率本构关系研究.硕士学位论文.武汉:武汉理工大学,2010.
    [63] I.Ulacia, C.P.Salisbury, I.Hurtado, M.J.Worswick.Tensile characterization and constitutive modeling ofAZ31B magnesium alloy sheet over wide range of strain rates and temperatures.Journal of MaterialsProcessing Technology.2011,211:830–839.
    [64] I.R.Ahmad, D.W.Shu. Compressive and constitutive analysis of AZ31B magnesium alloy over a widerange of strain rates.Materials Science&Engineering A.2014,592:40–49.
    [65] Wei Qian Song,Peter Beggs,Mark Easton.Compressive strain-rate sensitivity of magnesium–aluminumdie casting alloys.Materials and Design.2009,30:642–648.
    [66]包含胜,卢维娴,董新龙等.铸镁合金ZM5-T4本构特性的宏观与微观研究.宁波大学学报.1991,4.1:89-95.
    [67] Meyers A, Marc A. Dynamic behavior of materials. Berlin: Springer,1994:296-299.
    [68] Galiyev A M, Kaibyshev R O, Gottstein G. Grain refinement of ZK60magnesium alloy during lowtemperature deformation. Magn Techn.2002,31.8:181-187.
    [69] Watanabe H, Mukai T,Koichi I.Realization of high strain rate superplasticity at low temperatures in aMg-Zn-Zr alloy. Mater Sci Eng A.2001,307.1-2:l19-123.
    [70]廖慧敏,龙思远,蔡军.高应变率对AM60镁合金力学性能的影响.机械工程材料.2009,33.1:83-85.
    [71]刘长海.AZ31合金动态力学性能研究.硕士学位论文.辽宁阜新:辽宁工程技术大学,2003.
    [72]张星,张治民.AZ31镁合金动态力学行为实验研究.弹箭与制导学报.2007,27.4:226-231.
    [73]曹凤红,龙思远.高应变速率对挤压态AZ61镁合金力学行为的影响.特种铸造及有色合金.2009,29.6:501-506.
    [74] Mukai T, Mohri T, Mabunchi T, et al. Experimental study of structural magnesium alloy with highabsorption energy under dynamic loading. Scripta Materialia.1998,39.9:1249-1253.
    [75]王礼立.应力波基础.北京:国防工业出版社.1995:18-23.
    [76]吴三灵,李科杰,张振海,苏建军.强冲击试验与测试技术.北京:国防工业出版社.2010.
    [77]李林安.应变率历史对材料本构关系影响的实验研究及SHB系统的数值分析.博士学位论文.天津:天津大学,1994.
    [78]王长义.高应变速率下镁合金的动态力学行为及变形机制.博士学位论文.沈阳:沈阳工业大学,2011.
    [79]徐宏研.塑性变形对负重轮用镁合金与涂层腐蚀性能的研究.博士学位论文.太原:中北大学2009.
    [80] Tsutomu Murai, Shin-ichi Matsuoka, Susumu Miyamoto, et al. Effects of extrusion conditions onmicrostructure and mechanical properties of AZ31B magnesium alloy extrusions.J.Mater.Proc.Technol.2003,141:207-212.
    [81]翟秋亚,王智民,袁森,蒋百灵,李树丰.挤压变形对AZ31镁合金组织和性能的影响.西安理工大学学报.2002.3:254-259.
    [82] Xuqing Chang, Tiehua Ma. Effect of deformation degree on mechanical properties of AZ80magnesium alloy.Advanced Materials Research.2011,Vols.239-242:3262-3265.
    [83]张平,丁毅,马立群,刘广,张振忠,沈晓东.镁合金的阻尼性能研究.物理学进展.2006,26.3-4:419-422.
    [84]陶艳玲.镁合金阻尼减振性能及机理研究.硕士学位论文.重庆:重庆大学.2004.
    [85]谭伟民,沈晓冬,张振忠等.镁基材料的阻尼性能研究进展与展望[J].材料导报.2006,20.8:127-139.
    [86]孔志刚,刘鸿波,张虎.Zr含量对Mg-Zr合金组织和性能的影响[J].北京航空航天大学学报.2004,30.10:972-975.
    [87] NISHIYAMA K,MATSUI R,IKEDA Y,et al.Damping properties of a sintered Mg-Cu-Mn alloy[J].Journal of Alloys and Compounds.2003,355:22-25.
    [88] WAN Di-qing, WANG Jin-cheng, LIN lin, et al.Damping properties of Mg-Ca binary alloys[J].PhysicaB.2008,403:2438-2442.
    [89] SRIKANTH N, CALVIN H K, GUPTA M. Effect of length scale of alumina particles of different sizeson the damping characteristics of an Al-Mg alloy[J].Materials Science and Engineering A.2006,423:189-191.
    [90] XIE Zhen-kai, TANE M, HYUN S, et al. Vibration damping capacity of lotus-type porous magnesium[J].Materials Science and Engineering A.2006,417:129-133.
    [91] Xuqing Chang, Tiehua Ma. Dynamic Testing at High Strain Rates of AZ31Magnesium Alloys onSHPB Equipment. Applied Mechanics and Materials,2013,303–306:2648-2651
    [92]张星,张治民,李保成. AZ31镁合金动态力学行为研究.弹箭与制导学报.2007,27(4):226-227
    [93]常旭青,马铁华,张星,胡杨. ZK60镁合金高速冲击载荷下的变形行为研究.热加工工艺,2014,(4):33-35
    [94]李保成,张星,马丹.镁合金冲击性能研究.新技术新工艺.2005,7:54-55.
    [95] Mukai T, Yamanoi M, Higashi K.Processing of ductile magnesium alloy under dynamic tensileloading, Mater. Trans.2001,42:2652-2654.
    [96]杨震琦.层状复合结构动态力学行为及应力波传播特性研究.博士学位论文.哈尔滨:哈尔滨工业大学.2010.
    [97] J R. Johnson, W. H. Cook. A Constitutive Model and Data for Metals Subjected to Large Strains, HighStrain Rates and High Temperatures.Proceedings of the Seventh International Symposium on Ballistic,the Hague, the Netherlands,1983:541-547.
    [98] J. R. Johnson, W. H. Cook. Fracture Characteristics of Three MetalsSubjected to Various Strains,Strain Rates, Temperatures and Pressures.Engineering Fracture Mechanics.1985,21(1):31-48.
    [99] O.S.Lee, M.S.Kimb. Dynamic material property Characterization by using split Hopkinson pressurebar (SHPB) technique. Nuclear Engineering and Design.2003,22.6:120-121.
    [100] W.Hubert, J.R.Meyer, David S.Kleponis. Modeling the high strain rate behavior of titaniumundergoing ballistic impact and penetration.International Journal of Impact Engineering.2001,26.1-10:509-521.
    [101] F. J. Zerilli, R. W. Armstrong. Dislocation-Mechanics-Based Constitutive Relations forMaterials Dynamics Calculations. J. Appl. Phys.,1987,61.5:1816-1825.
    [102] D. J. Steinberg, S. G Cochran, M. W. Guinan. A Constitutive Model for Metals Applicable at HighStrain Rate. J. Appl. Phys.1980.51.3:1498-1503.
    [103] M. A. Meyers. Dynamic Behavior of Materials. John Wiley and Sons, Inc.1994
    [104] D. J. Steinberg, C. M. Lund. A Constitutive Model for Strain Rates from10-4to106s-1. Appl. Phys.1989,65.4:1528-1533.
    [105] D. J. Steinberg. Rate-Dependent Constitutive Model Molybdenum. J. Appl. Phys.1993,74.6:3827-3831.
    [106] Barnett M R, Nave M D, Bettles C J. Deformation microstructures and textures of some cold rolledMg alloys [J]. Materials Science and Engineering A.2004,386:205–211.
    [107] Davies H J, Bolmaro R E. Deformation and texture evolution in AZ31magnesium alloy duringuniaxial loading [J]. Acta Materialia.2006,54:549–562.
    [108] Gharghouri M A. Study of the mechanical properties of Mg-7.7at%Al by in-siu neutron diffraction[J]. Philosophical Magazine A.1999,79.7:1671-1695.
    [109] Wang Y N, Huang J C. The role of twinning and untwining in yielding behavior inhot-extrudedMg–Al–Zn alloy [J]. Acta Materialia.2007,55:897–905.
    [110]陈振华.变形镁合金[M].北京:化学工业出版社,2005.
    [111] Yilong Bai, Qing Xuc, Yongbo Xu, Letian Shen. Characteristics and microstructure in the evolutionof shear localization in Ti-6A1-4V alloy [J]. Mechanics of Materials.1994,17.2-3:155~164.
    [112] Meyers M. A, Xu Y B, Xue Q, Pérez-Prado M. T. Microstructural evolution in adiabatic shearlocalization in stainless steel [J]. Acta Materialia.2003,51.5:1307~1325.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700