用户名: 密码: 验证码:
大型同步发电机复杂结构下发热与冷却机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型发电机的温度状况直接影响着电机的性能,因此发电机的散热问题一直备受关注,发电机的通风结构成为了研究的重点。采用不同的通风结构直接影响着发电机内部的风路及风量分配,进而对电机的散热状况产生很大的影响。发电机内部的发热与冷却问题一直是电机设计研究中的重点问题,尤其是如何确定发电机的温度分布和最高温升位置,不仅可以为发电机内绝缘等级的选取,还可以为发电机安全和稳定运行提供参考。因此,对发电机内温升分布的准确计算具有实际的工程意义。
     本文根据电磁场理论,建立了大型汽轮发电机端部实体模型,通过对发电机端部三维瞬态电磁场求解,确定了发电机空载和额定负载端部区域漏磁分布及端部铜屏蔽、压圈、压指的涡流损耗,对比研究了发电机端部铜屏蔽相对压圈位置改变及空实心铜屏蔽内、外层铜屏蔽之间风道宽度对端部区域漏磁分布及端部各结构件涡流损耗的影响。通过将三维瞬态涡流场计算得到的结构件损耗结果作为热源,结合大型汽轮发电机的实际结构和流体力学、传热学理论,建立了大型汽轮发电机三维端部区域流体与传热耦合的数学模型,给出了相应的基本假设和边界条件,基于有限体积法对该发电机三维端部区域耦合场进行求解,确定了端部区域各构件的温度分布,并将铜屏蔽温度计算结果与实测值进行比较,验证了计算方法的准确性与可靠性。还对端部构件铜屏蔽与压圈之间不同距离和空实心铜屏蔽时端部区域内流体速度分布和端部构件铜屏蔽、压圈、压指温度分布的变化规律进行了数值分析,为大型汽轮发电机通风系统结构设计提供了可靠的依据。
     此外以一台全空冷水轮发电机为例,根据该电机特殊的通风冷却结构,确定了转子旋转情况下的计算区域,建立了三维流体场和温度场的计算模型,给定相应的基本假设与边界条件,采用有限体积法对其通风和发热问题进行计算,得到转子支架、磁轭通风沟、磁极间隙以及定转子气隙内冷却气体的流速分布与转子各部分的温度分布,详细分析了极靴表面和磁极中心线处流体流速和温度沿轴向的变化趋势,并将转子表面温度的计算结果与运行试验数据进行比较,验证了该计算结果的可靠性。
     图76幅,表13个,参考文献136篇。
The thermal condition of the large generator affects the performance of machine directly, so the heat dissipation problem of the generator has aroused considerable concern, and the ventilation structure of the generator has become the focus of research. The ventilation structure affects the internal wind road and air distribution of the generator directly, and then has a great influence on generator heat dissipation. The internal heating and cooling problem have always been the key problems in the study of the electric machine design, what is especial is how to determine the highest temperature rise position of the generator accurately, and this may provide a reference for not only the selection of generator's insulation class, but also the safe and stable operation of the generator.
     In this dissertation, according to the theory of electromagnetic field, the calculation model of the end region in large turo-generator is established. By solving the transient magnetic field in end region, the three-dimensional transient electro-magnetic field distribution and eddy current loss is obtained under no and rated load. Meanwhile, the influence of metal screen position and the width of ventilation between inner and outer screens on three-dimensional transient magnetic field distribution and eddy current loss are investigated. Using the eddy current loss, which is gained from numerical calculation of electromagnetic fields as heat source, combined with the actual large turbo generator structure and the theories of fluid mechanics and heat transfer, the three-dimensional multi-physics fields coupling mathematical models of large turbo-generator end region is established. After the determinations of related basic assumptions and boundary conditions, the multi-physics fields of this generator three-dimensional end region are coupling analyzed by using the Finite Volume Method, and the temperature distributions of each structure end component region is obtained. The calculated temperature distribution in copper shield is compared with the measured values, by which the accuracy and reliability of the calculation method are verified. By using the same analysis method, the fluid velocity distributions in end region with different distances between the copper shielding and clamping plate and the empty solid copper shield structure are investigated, as well as the variation of temperature distribution in copper shield, clamping plate and press fingers. The obtained results could provide a reliable basis for large turbo ventilation system design.
     In addition, the heat transfer and the cooling mechanism in a fully air-cooling hydro-generator are studied. According to the special ventilation cooling structure of the machine, considering the rotor rotating the calculation region is determined, and a three-dimensional fluid field and temperature field calculation model is proposed. Then, the corresponding basic assumptions and boundary conditions are given, and the Finite Volume Method is adopted for the cooling and heat transfer analyses. The cooling air flow velocity distribution in the rotor bracket, in yoke ventilating grooves, in gap between magnet poles, and in air-gap between stator and rotor are studied, and the temperature distribution in rotor components are obtained. The flow velocity of fluid in the pole shoe surface and the magnetic pole center line, and the change trend of temperature along the axial direction are analyzed in detail. From the comparison of the calculated rotor surface temperature with the test data, the reliability of the calculation results is verified.
引文
[1]汪耕.我国大型发电机制造技术展望[J].上海电力,2005:358-362.
    [2]丁舜年.大型电机的发热和冷却[M].北京:科学出版社,1992
    [3]汪静,戴庆忠,吕坤,陈婷等.核电汽轮发电机的春天[J].东方电机,2011(2):1-17.
    [4]汪耕,李希明.大型汽轮发电机设计、制造与运行[M].上海:科学技术出版社,2000:27-73.
    [5]C. Ginet, R. Joho. The turbogenerator-a continuous engineering challenge [J]. IEEE transactions on power tech.2007:1055-1060.
    [6]F. E. Anderson. Generator Cooling (air or hydrogen)-37th Ge Turbine state-of-the-art technology seminar[m]. Ge industrial & power systems,1993.
    [7]Klaus Weigeit. Design features of large turbo-generators[J]. Abb review,1989, (1):3-14.
    [8]戴庆忠.当代国外汽轮发电机工业特点及技术发展概况[J].发电设备,2000:39-42.
    [9]黄顺礼.国外的空冷汽轮发电机技术[J].大电机技术,1997,(11):14-15
    [10]张海学,李雅范.国产300MW汽轮发电机的冷却技术[J].东北电力技术,1994(5):29-32.
    [11]金煦,袁益超等.大型空冷汽轮发电机冷却技术的现状与分析[J].大电机技术,2004,33-37.
    [12]赵勇,孙克彬等.国产600MW级汽轮发电机关键结构特点分析[J].热力发电,2009,38(12),5-11.
    [13]袁建华,梁旭彪等.1000MW极水氢氢冷却发电机[J].上海电力,2005,348-351.
    [14]顾守录,袁益超等.大型汽轮发电机通风系统研究综述[J].能源研究与信息,2004,20(4):195-200.
    [15]顾守录,袁益超,刘聿拯.大型汽轮发电机通风冷却方式研究[J].能源研究与信息,2004,20(2):79-85
    [16]王冬萌.汽轮发电机技术的现状与发展趋势[J].科技创新与应用,2011,(24):65
    [17]袁达夫,梁波.大型水轮发电机冷却方式[J].大电机技术,2008,(1):1-6
    [18]戴庆忠.国外大型空冷水轮发电机技术进展[J].东方电机,2007,(6):1-32
    [19]阎永忠.特大型水轮发电机冷却方式研究[J].人民长江,2009,40(2):37-40
    [20]Jack A G. Mecrow B C. Calculation of three-dimensional electromagnetic fields involving laminar eddy currents [J]. PIEE Pt. A,1987,134(8):663-671.
    [21]Jacobs D A H, Minors R H, Steel J G, Myerscough C J, Rollason M L J. Calculation of losses in the end region of turbogenerators[J]. Proceedings of the Institution of Electrical Engineers,1977,124(4):356-362.
    [22]Khan G K M, Buckley G W, Bennett R B, Brooks N. An integrated approach for the calculation of losses and temperatures in the end-region of large rurbinegenerators [J]. IEEE Transactions on Energy Conversion,1990,5(1):183-194.
    [23]Holland S A. Three dimensional finite element analysis of stator clamp plate losses of large turbo-generators [C]. International Conference on Power Electronics, Machines and Drives,2002:586-591.
    [24]Fujita M, Ueda T, Tokumasu T, Nagakura K, Kakiuchi M, Otaka T. Eddy current analysis in the stator end structures of large capacity turbine generators[C]. International Conference on Electrical Machines and Systems,2009:1-6,15-18.
    [25]Yamazaki K, Tada S, Mogi H, Mishima Y, Kaido C, Kanao S, Takahashi K, Ide K, Hattori K, Nakahara A. Eddy Current Analysis Considering Lamination for Stator Core Ends of Turbine Generators[J]. IEEE Transactions on Magnetics,2008, 44(6):1502-1505.
    [26]Yamazaki K, Yamato Y, Mogi H, Kaido C, Nakahara A, Takahashi K, Ide K, Hattori K. In-plane eddy current analysis for end and interior stator core packets of turbine generators[C]. International Conference on Electrical Machines,2008:1-6.
    [27]Kazuo Shima, Takeo Murai, Tadashi Fukami, Yoko Furukawa, Akiyoshi Komura. Measurement and Analysis of In-Plane Eddy Current in Lamination Steel Using a New Tester[C]. International Conference on Electrical Machines (ICEM),2012:1771-1777.
    [28]Masafumi Fujita, Yasuo Kabata, Tadashi Tokumasu, Ken Nagakura, Mikio Kakiuchi, Susumu Nagano. Circulating Currents in Stator Coils of Large Turbine Generators and Loss Reduction [J]. IEEE Transactions on industry Applications,2009,45(2):685-693.
    [29]Masafumi Fujita, Tadashi Tokumasu, Hiroyuki Yoda, Hideaki Tsuda, Kaoru Ito, Susumu Nagano. Magnetic Field Analysis of Stator Core End Region of Large Turbogenerators [J]. IEEE Transactions on Magnetics,2000,36(4):1850-1853.
    [30]Weiss J, Stephens C M. Finite Elements for Three-Dimensional Magnetostatic Fields and its Application to Turbine-Generator End Regions [J]. IEEE Transactions on Power Apparatus and Systems,1981,100(4):1591-1596.
    [31]Freese M. Analytic Calculation of Turbo Generator End Winding Inductances using Neumann's Formula[C]. International Symposium on Power Electronics Electrical Drives Automation and Motion,2010:1597-1602.
    [32]Freese M. Comparison between an Analytic Method and a Numerical Calculation to Determine the End Winding Inductances of a Turbo Generator[C]. International Conference on Electrical Machines (ICEM),2010:1-5.
    [33]R. Albanese, F. Calvano, G. Dal Mut, F. Ferraioli, A. Formisano, F. Marignetti, R. Martone, A. Romano, G.Rubinacci, A. Tamburrino, S. Ventre. Coupled Three Dimensional Numerical Calculation of Forces and Stresses on the End Windings of Large Turbo Generators via Integral Formulation [J]. IEEE Transactions on Magnetics, vol.48, no.2, pp.875-878, Feb.2012.
    [34]R. D. Stancheva and I. I. Iatcheva.3-d electromagnetic force distribution in the end region of turbogenerator [J]. IEEE Transactions on Magnetics, vol.45, pp.1000-1003. Mar.2009.
    [35]K. Takahashi, K. Hattori, A. Nakahara and M. Saeki. Three Dimensional Harmonic Field and Eddy Current Analysis for Rotor End Region of Turbine generator [C]. IEEE International 2007, IEMDC'07, vol.1, pp.477-481, May.2007.
    [36]M. Fujita, T. Ueda, T. Tokumasu, K. Nagakura, M. Kakiuchi and T. Otaka. Eddy current analysis in the stator end structures of large capacity turbine generators[C]. International Conference on ICEMS 2009, pp.1-6, Nov.2009.
    [37]K. Yamazaki, S. Tada, H. Mogi, Y. Mishima, C. Kaido, S. Kanao, K. Takahashi, K. Ide, K. Hattori and A. Nakahara. Eddy current analysis considering lamination for stator core ends of turbine generators [J]. IEEE Transactions on Magnetics, vol.44, pp.1502-1505, June.2008.
    [38]Mehran Mirzaei, Andreas Binder, Bogdan Funieru, and Marko Susie. Analytical Calculations of Induced Eddy Currents Losses in the Magnets of Surface Mounted PM Machines With Consideration of Circumferential and Axial Segmentation Effects [J]. IEEE Transactions on Magnetics, vol.48, no.12, pp.4831-4841, Dec.2012.
    [39]K. Lee, C. Kim, and K. Park. Development of an eddy-current-type magnetic floor hinge [J]. IEEE Transactions on Industrial Electronics, vol.53, pp.561-568, April.2006.
    [40]E. Plantive, S. Salon and M. V. K. Chari. Advances in the axiperiodic magnetostatic analysis of generator end regions [J]. IEEE Transactions on Magnetics, vol.32, pp. 4278-4280, Sept.1996.
    [41]V. Chechurin, I. Kadi-ogly, M. Roytgarts and Yu. Varlamov. Computation of electromagnetic field in the end zone of loaded turbogenerator [C]. IEEE International Conference on Electric Machines and Drives,2003:419-425.
    [42]R. Prieto, J. A. Oliver, J. A. Cobos and M. Christini. Magnetic component model for planar structures based on transmission lines[J]. IEEE Transactions on Industrial Electronics, vol.57, pp.1663-1669, May.2010.
    [43]V. Barbero, G. Dal Mut, G. Grigoli and M. Santamaria. Axisymmetric analysis and experimental measurement of magnetic field in the end region of a turbine generator [J]. IEEE Transactions on magnetics, vol. mag-19, pp.2623-2627. Nov.1983.
    [44]R. Ramarotafika, A. Benabou, and S. Clenet. Stochastic modeling of soft magnetic properties of electrical steels:application to stators of electrical machines [J]. IEEE transactions on magnetics, vol.48, no.10, pp.2573-2584, Dec.2012.
    [45]Adewale, I.D., GuiYuntian. Decoupling the influence of permeability and conductivity in pulsed eddy-current measurements [J]. IEEE transactions on magnetics, vol.49, no.3, pp.1119-1127, Mar.2013
    [46]阮江军,陈贤珍,周克定.汽轮发电机端部3D涡流场计算中定子线圈端部渐开线的三维解析表示[J].大电机技术,1995,(6):21-24.
    [47]夏海霞,姚缨英,熊素铭,倪培宏,倪光正,梁旭彪,咸哲龙,范成西.1000 MW汽轮发电机端部磁-热耦合分析[J].中国电机工程学报,2008,28(14):118-122.
    [48]Yao. Yingying, Xia. Haixia and Ni. Guangzheng, "3-D eddy current analysis in the end region of a turbogenerator by using reduced magnetic vector potential," IEEE Transactions on magnetics, vol.42, pp.1323-1326. Apr.2006.
    [49]单继聪,梁旭彪,杨仕友,黄磊,咸哲龙,倪光正.大型汽轮发电机定子绕组端部电磁力解析计算[J].机电工程,2008,25(10):98-100.
    [50]吴永霞,张甲,梁旭彪,倪光正,黄磊,咸哲龙,杨仕友.大型汽轮发电机端部电磁场数值分析[J].机电工程,2012,29(3):249-252.
    [51]黄学良,胡敏强,杜炎森.发电机端部涡流电磁场分析[J].东南大学学报,1995,25(5):14-20.
    [52]黄学良,胡敏强,杜炎森,周鹗.汽轮发电机端部涡流电磁场及影响因素的研究[J]. 电工技术学报,1996,11(2):1-6.
    [53]黄浩,冯晋光,梁艳萍,马贤好,李林合.大型空冷汽轮发电机定子端部漏抗的数值计算[J].大电机技术,2006,(6):20-23.
    [54]梁艳萍,黄浩,李林合,马贤好.大型空冷汽轮发电机端部磁场数值计算[J].中国电机工程学报,2007,27(3):73-77.
    [55]潘峰,汤岷,刘传坤.220MW空冷汽轮发电机端部磁热耦合计算[J].东方电气评论,2012,26(102):14-17,21.
    [56]Li weili, Guan chunwei, and Zheng ping. Calculation of a complex 3-d model of a turbogenerator with end region regarding electrical losses, cooling, and heating [J]. IEEE Transactions on Energy Conv., vol.26, no.4, pp.875-878, Dec.2011.
    [57]L. Wang, F. Huo, W. Li, Y. Zhang, Q. Li, Y. Li and C. Guan. Influence of Metal Screen Materials on 3-D Electromagnetic Field and Eddy Current Loss in the End Region of Turbogenerator [J]. IEEE Transactions on Magnetics, vol.49, no.2, pp.939-945,2013.
    [58]A.N.鲍里先科.电机中的空气动力学与热传递[M].魏书慈,邱建甫译.北京:机械工业出版社,1985.
    [59]Nonaka S, Yamamoto M, Nakano M and Kawase M. Analysis of ventilation and cooling system for induction motors [J]. IEEE Transactions on Power Apparatus and systems, 1981,100(11):4636-4643.
    [60]Yangsoo Lee, Song Yop Hahn and S. K. Kauh. Thermal analysis of induction motor with force cooling channels [J]. IEEE transaction on magnetic,2000,36(4):1398-1402.
    [61]A. Boglietti, A. Cavagnino, D. A. Staton, M. Popescu, C. Cossar and M. I. Megilp. End space heat transfer coefficient determination for different induction motor enclosure types[J]. IEEE Trans. Ind. Appl.,2009,3(45):929-937.
    [62]M. S. Rajagopal, k. N. Seetharamu and p. A. Aswathnarayana. Transient thermal analysis of induction motors [J]. IEEE transactions energy conversion,1998,13(1): 62-69.
    [63]G. Traxler-samek, R. Zickermann and A. Schwery. Cooling airflow, losses, and temperatures in large air-cooled synchronous machines[J]. IEEE trans. Ind. Electron., 2010,57(1):172-180.
    [64]R. Wrobel, A. Mlot and P. H. Mellor. Contribution of end-winding proximity losses to temperature variation in electromagnetic devices [J]. IEEE trans. Ind. Electron..2012, 2(59):848-857.
    [65]E. Gurevich, P. Oshurkov. Determination of rotor winding temperature of the turbogenerator with the brushless excitation system[J]. Helsink university of technology, 2005,27(3):156-160.
    [66]Krok R, Miksiewicz R, Mizia W. Modeling of temperature fields in turbogenerator rotor at asymmetrical load[J]. Helsink university of technology,2008,58(2):1005-1009.
    [67]Preis K, Biro O, Dyczij R E. Application of fem to coupled electric thermal and mechanical problems [J]. IEEE transactions on magnetics,2008,30(5):3316-3319.
    [68]K. Preis, I. Bardi, O. Biro. Numerical analysis of 3d magnetostatic fields[J]. IEEE transactions on magnetics,2005,27(5):3798-3803.
    [69]K. Hameyer, J. Driesen, D. G. Herbert. The classification of coupled field problems[J]. IEEE transactions on magnetics,1999,35(3):1618-1621.
    [70]A. F. Armor. Transient three-dimensional finite-element analysis of heat flow in turbine-generator rotors, IEEE-pas,1980, (3):934-946.
    [71]Masafumi Fujita, Yasuo Kabata, Tadashi Tokumasu, Mikio Kakiuchi, Hidekazu Shiomi, Susumu Nagano. Air-cooled Large Turbine Generator with Multiple-pitched Ventilation Ducts[C]. IEEE International Conference on Electric Machines and Drives,2005: 910-917.
    [72]M. F. Latini, G. C. Britojr, A. S. Correia R. Hydro generators with water-cooled type stator winding:difficulties and solutions on doing dielectric tests[C]. Cigre 2006, A1-201:1-8.
    [73]G. Traxler-Samek, R. Zickermann, and A. Schwery, Cooling airflow, losses, and temperatures in large air-cooled synchronous machines. IEEE Trans. Ind. Electron., 2010,57(1), pp.172-180.
    [74]A.M.3bъIсина-Моложен, M.П.Поляк Tеплообмен В колъцевом канале, обраэованном неподвижнъIм иврашаюшхся сооснъIмишилиндрами. Телоэнергетика,1970, (6): 56-61.
    [75]R. Albanese, F. Calvano, G. Dal Mut, et al. Coupled Three Dimensional Numerical Calculation of Forces and Stresses on the End Windings of Large Turbo Generators via Integral Formulation. IEEE Transactions on Magnetics,2012,48(2):875-878.
    [76]Miao Lijie, Liu Tongyan. The Application of FEM in the Physical Field Computation[C]. Proceedings of the Fifth International Conferenceon Electrical Machines and Systems, ICEMSZOOI. Shenyang, China,2001:1081-1084.
    [77]G H. Jang, S. J. Park, S. H. Lee. Electromechanical Analysis of a HDBS Pindle Motor Considering Electromagnetics, Thermal Analysis, Hydrodynamic Bearing and Rotor Dynamics[J]. IEEE Transactions on Magnetics.2005,41(5):1608-1611.
    [78]Luan Ru, Cu Gtlobiao. Coupled Electromagnetic and Thermal Analysis of Stator Insulating Structure[C]. Sixth International Conference on Electrical Machines and Systems, ICEMS 2003.2003:146-148.
    [79]S. J. Pickering, D. LamPard, M. Shanel. Ventilation and Heat Transferina Symmetrically Ventilated Salient Pole Synchronous Machine[C]. International Conference on Power Electronics, Machines and Drives.2002:462-467.
    [80]M. Shanel, S. J. Pickering, D. LamPard. Conjugate Heat Transfer Analysis of a salient pole rotor in an air cooled synchronous generator[C]. IEMDC'03. IEEE International Conference on Electric Machines and Drives,2003:vol.2,737-741.
    [81]Sungmun Cho, JaekwangKim, Hyunko Jung. Cheolgyun Lee. Stress and Thermal Analysis Coupled with Field Analysis of Mtlltilayer Buried Magnet Synchronous Machine with a Wide Speed Range[J]. IEEE Transactions on Magnetics.2005,41(5): 1632-163.
    [82]白延年.水轮发电机设计与计算[M].北京:机械工业出版社,1982:522-601.
    [83]朱自强等编著.应用计算流体力学[M].北京:北京航空航天大学出版社,1998:2-5.
    [84]陶文铨编著.数值传热学[M].西安:西安交通大学出版社,2001:1-5,90-99,347-370, 137-155.
    [85]李广德,张伟红.空冷汽轮发电机的通风系统设计[J].大电机技术,1998,(4):12-15.
    [86]杨越,李广德等.抽水蓄能发电电动机通风模型试验研究与分析[J].大电机技术,2007(3):5-8.
    [87]刘平安,付元初,李广德.全空冷巨型水轮发电机冷却技术研究[J].水电站机电技术,2008,31(2):1-5.
    [88]蔡兵,李广德.五强溪电站水轮发电机通风冷却研究[J].大电机技术,1999,3:15-20.
    [89]李和明,李俊卿.电机中温度计算方法及其应用综述[J].华北电力大学学报,2005,32(1):2-5.
    [90]张曙明,袁益超等.发电机通风计算解法研究[J].大电机技术,2005(2):5-9.
    [91]胡晓红,袁益超等.汽轮发电机转子气隙取气通风系统的研究进展[J].电站系统工程,2006,22(6):16-18.
    [92]马有福,袁益超等.气隙取气汽轮发电机转子全隐式取风斗取风特性数值研究[J].中国电机工程学报,2008,28(11):120-125.
    [93]张嘉康,郑东平,邓崎林.700MW级汽轮发电机通风试验研究[J].能源研究与信息,2012,28(1):30-34.
    [94]郑东平,蔡荣善.100-200MW空冷汽轮发电机的通风与温升计算[J].发电设备,2006(3):192-194.
    [95]薛超,郑东平.大型同步电机通风系统的计算和分析[J].上海大中型电机,2010(4):23-27.
    [96]郑东平,胡磊等.QFSN_1100_4型核电发电机温升的计算与设计[J].上海大中型电机,2010(4):7-12.
    [97]刘双,安志华,秦光宇.150MW级空冷汽轮发电机通风系统研究及性能验证[J].大电机技术,2007(1):8-10.
    [98]秦光宇,安志华等.灯泡式水轮发电机通风冷却及温升计算研究[J].大电机技术,2008(2):7-9.
    [99]姚若萍,饶芳权.蒸发冷却水轮发电机定子温度场研究[J].中国电机工程学报,2003,23(6):87-90.
    [100]张大为,汤蕴璆.大型水轮发电机定子最热段三维温度场的有限元计算[J].哈尔滨电工学院学报,1992,5(3):186-194.
    [101]黄立民,魏永田,陈季平等.水轮发电机通风系统的网络矩阵计算[J].哈尔滨电工学院学报,1993,16(3):210-218.
    [102]魏永田,孟大伟等.电机内热交换[M].北京:机械工业出版社,1998:166-250.
    [103]温嘉斌,孟大伟等.大型水轮发电机通风发热综合计算[J].中国电机工程学报,2000,20(11):6-9.
    [104]温嘉斌,孟大伟等.大型水轮发电机通风发热模型研究及通风结构优化计算[J].电工技术学报,2000,15(6):1-4.
    [105]李伟力,靳慧勇,丁树业,熊斌.大型同步发电机定子多元流场与表面散热系数数值计算与分析[J].中国电机工程学报,2005,25(23):138-143.
    [106]周封,熊斌,李伟力,程树康.大型电机定子三维流体场计算及其对温度场分布 的影响[J].中国电机工程学报,2005,25(24):128-132.
    [107]靳慧勇,李伟力,马贤好,丁树业.大型空冷汽轮发电机定子内流体速度与流体温度数值计算与分析[J].中国电机工程学报,2006,26(16):168-173.
    [108]丁树业,李伟力,靳慧勇,熊斌.发电机内部冷却气流状态对定子温度场的影响[J].中国电机工程学报,2006,26(3):131-135.
    [109]路义萍,李伟力,韩家德等.大型汽轮发电机转子风道结构对空气流量分配影响[J].电工技术学报,2008,23(4):20-24.
    [110]李伟力,杨雪峰,顾德宝,等.多风路空冷汽轮发电机定子内流体流动与传热耦合计算与分析[J].中国电机工程学报,2009,24(12):24-30.
    [111]李伟力,李勇,杨雪峰,顾德宝.大型空冷汽轮发电机定子端部温度场与流体场的计算与分析[J].中国电机工程学报,2009,29(36):80-87.
    [112]霍菲阳,李勇,李伟力,杨雪峰.大型空冷汽轮发电机定子通风结构优化方案的计算与分析[J].中国电机工程学报,2010,30(6):69-75.
    [113]李伟力,陈玉红,霍菲阳,张奕黄.大型水轮发电机转子旋转状态下磁极间流体流动与温度场分布[J].中国电机工程学报,2012,32(9):132-139.
    [114]F. Masafumi, K. Yasuo, T. Tadash, et al. Air-cooled large turbine generator with multiple-pitched ventilation ducts[C]. Electric machines and drives,2005:910-917.
    [115]M. Shanel, S. J. Pickering. D. Lampard. Conjugate heat transfer analysis of a salient pole rotor in an air cooled synchronous generator[C]. IEEE international electric machines and drives conference, iemdc'03, madision, Wisconsin, USA,2003:737-741.
    [116]R. Depraz, R. Zickermann, R. Schwery and F. Avellan. CFD validation and air cooling design methodology for large hydro generator[C]. In proc.17th icem,2006:1-6.
    [117]G. Traxler-samerk, R. Zickermann and A. Schwery. Cooling airflow, losses, and temperature in large air-cooled synchronous machines[J]. IEEE trans. Ind. Electron.. 2010,57(1):172-180.
    [118]D. A. Staton, A. Cavagnino, Convection heat transfer and flow calculations suitable for electric machines thermal models[J]. IEEE trans. Ind. Electron., vol.55, no.10, pp. 3509-3516, oct.2008.
    [119]D. Gerling, G. Dajaku. Thermal calculation of systems with distributed heat generation[C]. The tenth intersociety conference on thermal and thermomechanical phenomena in electronics systems, itherm'06,2006:645-652.
    [120]N. rostami, M. R. feyzi. Lumped-parameter thermal model for axial flux permanent magnet machines[J]. IEEE trans on magnetics,2013,49(3):1178-1184.
    [121]M. Fukushima, K. Yamashita, M. Teraoka. Study on a ventilation simulation for hydro-turbine generator motor[J]. IEEE transactions on energy conversion, vol. Ec-1, (3):174-181.
    [122]G. traxler-samerk, R Zickermann and A. Schwery. Cooling airflow, losses, and temperature in large air-cooled synchronous machines[J]. IEEE trans.Ind.electron, 2010,57(1):172-180.
    [123]A. David, Andrea Cavagnino. Convection heat transfer and flow calculations suitable for electric machines thermal models[J]. IEEE transactions on industrial electronics, 2008,55(10):3509-3516.
    [124]M. Shanel, S. J. Pickering, D. Lampard. Conjugate heat transfer analysis of a salient pole rotor in an air cooled synchronous generator[C]. IEEE international electric machines and drives conference, iemdc'03, Madision, Wisconsin, usa,2003:737-741.
    [125]M. Rioual. A thermohydraulic modelling for the stator bars of large turbo-generators: development, validation by laboratory and on site tests[J]. IEEE transactions on energy conversion,1997,12(1):1-9.
    [126]Wenming tong, Shengnan Wu, Ahongliang An, Renyuan Tang. Thermal analysis of direct-drive permanent magnet wind generator using both lumped parameter network and finite element method. Proceedings of the power and energy engineering conference (appeec),2010:1-4.
    [127]I. J. Perez, J. G. Kassakian. A stationary thermal model for smooth air-gap rotating electric machines[J]. IEEE Trans on electric machines and electro-mechanics.1979, (3):285-303.
    [128]陈丕璋,严烈通,姚若萍.电机电磁场理论与计算[M].科学出版社,1986"86-123.
    [129]谢德馨,杨仕友.工程电磁场数值分析与综合[M].北京:机械工业出版社,2008:19-23
    [130]汤蕴璆,梁艳萍.电机电磁场的分析与计算[M].北京:机械工业出版社,2010:320-325.
    [131]张帅帅.计算流体动力学及其应用[M].武汉:华中科技大学出版社,2011:1-12,320-340.
    [132]徐旭,徐鸿,李桃,等.立式水轮发电机通风系统及转子温度场研究[J].工程热物理学报,2009,30(10):1717-1719.
    [133]汪小芳.水轮发电机通风系统的风阻网络解析法[J].浙江水利科技,2011(6):21-24.
    [134]朱殿华,郭伟.水轮发电机多物理场综合优化设计[J].天津大学学报,2011,44(3):277-282.
    [135]阎永忠.探讨特大型水轮发电机的冷却方式[J].水电站机电技术,2009,32(4):10-14.
    [136]朱殿华,郭伟.水轮发电机多物理场综合优化设计[J].天津大学学报,2011,44(3):277-282.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700