用户名: 密码: 验证码:
水分胁迫及复水对作物生长及养分吸收补偿效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱地区降雨量少且时空分布不均,作物很难有效利用土壤中有限的水分和养分。干旱胁迫已成为农业减产的主要原因。作物受旱后补充供水可在一定程度上产生补偿生长,使产量得到部分恢复。同时,施肥对作物抵抗干旱及促进复水后的恢复效应有一定的作用。本研究以冬小麦及夏玉米作试材,在盆栽条件下控制水分和养分的供应,以研究其对作物的生长发育及水分、养分吸收规律的影响,旨在查明作物的水分敏感期、复水最大效应期以及施肥对作物抵御干旱、恢复生长的作用,以求为干旱地区节水农业的发展提供有益的理论依据。所得主要结论如下:
    (1)不同时期、不同程度水分胁迫对冬小麦生长发育及吸收能力造成一定的伤害。总的来看,分蘖期适应水分胁迫能力强于拔节期,因此受胁迫伤害较轻;重度胁迫受害较中度胁迫严重,但复水后小麦生长及生理反应的补偿效应也相对明显。分蘖期根冠比远大于拔节期,这是分蘖期适应干旱能力强的重要原因之一。复水后地上部生长速率显著大于根系,使根冠比降低。由于恢复供水后耗水量的增幅大于干物质生产的增幅,所以复水后水分利用效率(WUE)是显著降低的。
    (2)施肥可增强小麦抗旱性,使分蘖期小麦干物质积累几乎不受水分胁迫的影响,高肥处理对拔节期受旱小麦复水后籽粒及总干物质生产的恢复有促进作用。另外,施肥还可降低拔节期冬小麦的气孔导度和蒸腾速率,减少水分无效散失。在中度胁迫下,施肥可以提高小麦的WUE。
    (3)水分胁迫在不同程度上抑制了玉米的生长发育,重度胁迫影响普遍大于中度胁迫,苗前期受水分影响大于苗后期。土壤水分条件对养分吸收的影响顺序为磷>氮>钾。WUE并未简单地随水分胁迫的加重而提高,在苗前期以充分供水的对照为最高,苗后期中度胁迫WUE较高。从复水后总的恢复效果来看,苗前期中度胁迫及苗后期重度胁迫复水后恢复效应较明显,可以作为经济补水的重要时期。
    (4)从苗期生长及养分吸收上看,施氮的效应尚不明显,但从生理反应上表现出了一定的作用。高氮处理对改善玉米苗前期植株水分状况有一定作用,但对苗后期效果不明显。施氮同样能降低玉米气孔导度及蒸腾速率,提高水分利用的经济性。
    (5)从水分胁迫及复水后夏玉米生长发育及水分、养分吸收动态来看,胁迫5天后复水的处理短期内恢复较快,后期逐渐缓慢;胁迫10天后复水的处理恢复相对缓慢,但始终保持着持续增长的趋势,最终各种生长及吸收指标接近于胁迫5天的处理。无论何种水分条件,根冠比均随生育期的延长而降低,复水后降低趋势较明显,而充分供水条件下根冠比随生育期的延长降低较少。WUE随生育期延长而增高,前期增长快,后期减缓,呈“S”形曲线。相比之下,未复水的处理WUE一直高于充分供水的处理,复水后WUE的变化趋势与充分供水的处理较为相似。
    (6)施氮对玉米苗期生长发育动态影响不太明显,低氮处理在复水初期恢复速度有略高于高氮处理的倾向,直到后期才逐渐被高氮处理所超过。
    总之,不同时期、不同程度的水分胁迫对不同作物所造成的伤害不同,复水后所产生的补偿效应也不相同,同一作物复水后不同生长发育指标的恢复也有较大差别,复水可以使受旱作物在一定程度上解除胁迫,恢复生理功能,增加产量,但水分利用效率有所降低。施肥在一定程度上提高了作物的抗旱性。
Lack of rainfall and its uneven distribution are main reasons to affect the efficient use of water and nutrient in soil by crops in dry land areas. Water has become the main cause of reduction of yield in this area. It is found that if a crop suffered from the drought rewatered, there would be some compensatory growth, and the yield also would have compensatory. In the same time, fertilization can play an important role in crop drought resistance and the formation of compensatory effect after rewatering. In this research, winter wheat and summer corn were selected as experimental crops. Our purpose is to investigate the sensitive period of drought resistance of the crop and the most effective period of water recovery, and their relationship with the fertilization to provide useful information for the water saving technology in agriculture in dry land areas. The main results were as follows:
    (1) The time and duration of water stress will affect the growth and nutrient uptake of winter wheat. In general, the adapting capacity of wheat to water stress in tillering stage was stronger than in jointing stage, so it suffered less injury. Serious water stress did more harm to wheat than middle water stress,and also showed a greater recovery in growth than middle water stress when water supply was recovered. At tillering stage, the ratio of root/shoot was higher than that at jointing stage, which was one of the most important reasons that wheat had a strong drought resistance capacity at tillering stage. After rewatering, the growth rate of overground part was faster the root, therefore,the ratio of root / shoot decreased;the increase of water consumption was greater than dry matter when rewatering, therefore, its water use efficiency (WUE) declines.
    (2) At tillering stage, water stress had limited effects on wheat dry matter production when the soil fertility was high. During the jointing stage, the grain and total dry matter production was increased when water was supplied again. In addition, fertilization reduced the stomatal conductance and the rate of transpiration of winter wheat, so water dissipation was reduced. Under the condition of middle water stress, fertilization improved the water use efficiency of winter wheat.
    (3) Water stress restrained the growth of summer corn,and serious water stress had a more significant influence to corn than the middle water stress. In prophase of seeding stage, water played a more important role than anaphase of seeding stage. Soil water
    condition influenced the uptake of nutrient in soil, the order of influence degree was phosphorus>nitrogen>potassium. Water use efficiency was the highest under of the condition of full water supply. In anaphase of seeding stage, the WUE was in a relative high level. When water supply was recovered, the injury of middle stress in prophase of seeding stage and serious in anaphase of seeding stage was recovered significantly.
    (4) High level nitrogen treatment could play some action in improving the water status of injured corn in prophase of seeding stage, but it had little effect in anaphase of seeding stage. Fertilization reduced the stomatal conductance and the rate of transpiration of summer corn,therefore,water was saved.
    (5) In the angle of trends of corn growth under water stress and rewatering condition, treatments of 5 days water stress recovered growth in a short time, treatments of 10 days stress recovered slowly, but they kept the increasing for a long time;finally, they catched up with the treatments of 5 days stress. No matter what water condition, the ratio of root/shoot declined along with corn growth. After rewatered, it showed an obvious trend of decreasing. On the contrary, the treatments of full water supplied showed a little decrease. With corn growth, WUE was increased; it increases fast in prophase and slower in anaphase of seeding stage. After water recovery, WUE of corn showed the same trends with the treatments of full water supplied.
    (6) It seems that nitrogen treatment has no significant effect o
引文
1. 陈培元,李英,陈建军,等.限量灌溉对冬小麦抗旱增产和水分利用的影响[J].干旱地区农业研究,1992,10(1):48~53.
    2. 陈培元,詹谷宇,谢伯泰.冬小麦根系的研究[J].陕西农业科学,1980(6):1~6.
    3. 陈晓远,罗远培,李韵珠.拔节期复水对苗期受旱冬小麦的激发效应[J].中国农业大学学报,1999,4(3):23~28.
    4. 陈晓远,罗远培.水分胁迫及复水对冬小麦粒叶比的影响[J].干旱地区农业研究,2001,19(1):66~71.
    5. 陈新平,杨志福,李晓林.土壤水分胁迫条件下施用钾肥对小麦抗旱性的影响[A]北京土壤钾素和钾肥效益[C].北京:中国农业科技出版社,1994,6~11
    6. 程素云,乔存芳,韩广民,等.施肥在提高旱作小麦水分生产效率中的作用[J].干旱地区农业研究,1984,2(3):69~78.
    7. 程宪国,汪德水,张美容,等.不同土壤水分条件对冬小麦生长及养分吸收的影响[J].中国农业科学,1996,29(4):67~74.
    8. 戴庆林,杨文耀.阴山丘陵旱农区水肥效应与耦合模式的研究[J].干旱地区农业研究,1995,13(1):20~24.
    9. 邓西平,山仑.旱地春小麦对有限灌水高效利用的研究[J].干旱地区农业研究,1995,13(3):42~46.
    10. 杜建军,李生秀,高亚军,等.氮肥对冬小麦抗旱适应性及水分利用的影响[J].西北农业大学学报,1999,27(5):1~5.
    11. 杜建军,田霄鸿,王朝辉,等.根系吸收水分和养分的作用以及以肥促根的效应[A].汪德水主编.旱地农田肥水关系原理与调控技术[C]北京:中国农业科技出版社,1995,106~110.
    12. 冯广龙,罗远培,刘建利,等.不同水分条件下冬小麦根与冠生长及功能间的动态消长关系[J].干旱地区农业研究,1997,15(2):73~79.
    13. 高亚军,王喜庆,杜建军,等.施肥对提高水分利用效率的影响[A].汪德水主编.旱地农田肥水关系原理与调控技术[C]北京:中国农业科技出版社,1995,191~194.
    14. 郭庆荣,李玉山.土壤水分胁迫对玉米生长发育及产量的影响[A].中国土壤学会,中国植物营养与肥料学会青年工作委员会编.迈向21世纪的土壤与植物营养科学[C].北京:中国农业出版社,1997,419~420.
    15. 韩蕊莲,梁宗锁.黄土高原适生树种苗木的耗水特性[J].应用生态学报,1994,5(2):210~213.
    16. 洪法水.自然干旱胁迫下小麦品种游离脯氨酸累积与抗旱性的关系[J].安徽农业科学,1991(4):311~314.
    17. 胡荣海.作物根系特征及其抗旱性研究进展[A].邹琦,王学臣主编.作物高产高效生理学研究进展[C].北京:科学出版社,1994,269~275.
    18. 黄占斌,山仑.水分利用效率及其生理生态机理研究进展[J].生态农业研究,1998,6(4):19~23.
    19. 贾树龙,孟春香,唐玉霞,等.水分胁迫条件下小麦的产量反应及对养分的吸收特征[J].土壤通报,1995,26(1):6~8.
    20. 荆家海,肖庆德.水分胁迫和胁迫后复水对玉米叶片生长速率的影响[J].植物生理学报,1987,13(1):51~57.
    21. 康绍忠,张建华,梁宗锁,等.控制性交替灌溉——一种新的农田节水调控思路[J].干旱地区农业研究,1997,15(1):1~6.
    22. 冷石林,韩仕峰,王立祥,等.中国北方旱地作物节水增产理论与技术[M].北京:中国农业科技出版社,1996.
    23. 李德全,邹琦,程炳嵩.土壤水分胁迫下小麦叶片渗透调节的动态变化[J].华北农学报,1990,5(增刊):44~48.
    24. 李焕章.小麦“根——土”系统的研究[M].北京:中国作物栽培生理学术讨论会,1986.
    25. 李建国.冬小麦三个生育阶段的耐旱性研究[J].干旱地区农业研究,1991,9(4):53~59.
    26. 李勤报,梁厚果.水分胁迫下小麦幼苗呼吸代谢的改变[J].植物生理学报,1986,12(4):379~387.
    27. 李生秀,高亚军,王喜庆,等.水分对土壤养分迁移的影响[A].汪德水主编.旱地农田肥水关系原理与调控技术[C]北京:中国农业科技出版社,1995,6~11.
    28. 李生秀,巨孝棠,王喜庆.水分对土壤养分矿化的影响[A].汪德水主编.旱地农田肥水关系原理与调控技术[C]北京:中国农业科技出版社,1995,1~5.
    29. 李生秀,李世清,高亚军,等.施用氮肥对提高旱地作物利用土壤水分的作用机理和效果[J].干旱地区农业研究,1994,12(1):38~46.
    30. 李世清,李生秀.水肥配合对玉米产量和肥料效果的影响[J].干旱地区农业研究,1994,12(1):47~53.
    31. 李世清,田霄鸿,李生秀.养分对旱地小麦水分胁迫的生理补偿效应[J].西北植物学报,2000,20(1):22~28.
    32. 李秧秧,邵明安.小麦根系对水分和氮肥的生理生态反应[J].植物营养与肥料学报,2000,6(4):383~388.
    33. 梁银丽,陈培元.土壤水分和氮素营养对冬小麦根苗生长的影响[J].作物学报,1996,22(4):476~482.
    34. 梁宗锁,李新有,康绍忠.影响夏玉米单叶WUE的冠层因子分析[J].西北植物学报,1996,16(1):13~16.
    35. 刘殿英,黄炳茹,董庆裕.土壤水分对冬小麦根系的影响[J].山东农业大学学报,1991,22(2):103~110.
    36. 刘殿英,石立岩,黄炳茹,等.栽培措施对冬小麦根系活力和植株性状的影响中国农业科学,1993,26(5):51~56.
    37. 刘建利,冯广龙,罗远培.水分变动对冬小麦根系生长的影响[A].中国土壤学会,中国植物营养与肥料学会青年工作委员会编.迈向21世纪的土壤与植物营养科学[C].北京:中国农业出版社,1997,49~53.
    38. 刘小兰.黄土高原农业持续发展中水肥资源的高效利用[D].陕西杨陵:西北农业大学博士学位论文,1998.
    39. 卢明远,杨玉兰,郭秀银,等.旱棚控制条件下水肥相互配合对春小麦的耦合效应[A].汪德水主编.旱地农田肥水关系原理与调控技术[C].北京: 中国农业科技出版社,1995,213~220.
    40. 罗远培.土壤——植物——大气连续体与系统动态模型[J].灌溉排水,1986,1(5):8~14.
    41. 马耀华,张一平,查公良,等.旱地土壤培肥之研究:有机肥料对土壤无机复合状况及水分利用率的影响[J].干旱地区农业研究,1984,2(3):69~78.
    42. 马元喜,王晨阳,周继泽.小麦根系主要生态效应的研究[J].河南农业大学学报,1994,28(1):12~18.
    43. 马元喜.水分逆境对小麦膜脂过氧化保护酶系统的影响[J].江苏农学院学报,1996,17(专刊):56~62.
    44. 马元喜.小麦的根[M].北京:中国农业出版社,1999.
    45. 马忠明.有限灌溉条件下作物——水分关系的研究[J].干旱地区农业研究,1998,16(2):75~79.
    46. 毛达如.植物营养研究方法[M].北京:北京农业大学出版社,1994.
    47. 穆兴民.水肥耦合效应与协同管理[M].北京:中国林业出版社,1999.
    48. 南京农业大学主编.土壤农化分析[M].北京:农业出版社,1986.
    49. 潘瑞炽,董愚得.植物生理学[M].北京:高等教育出版社,1995.
    50. 山仑,陈培元.旱地农业生理生态基础[M].北京:中国科学出版社,1998.
    51. 山仑,吴玫君,谢其明,等.小麦灌浆期生理特性和土壤水分条件对灌浆影响的研究[J].植物生理学通讯,1980,16(3):41~46.
    52. 山仑,徐萌.节水农业及其生理生态基础[J].应用生态学报,1991,2(1):70~76.
    53. 山仑.旱地农业中有效水高效利用的研究[J].水土保持研究,1996,3(1):8~13.
    54. 山仑.我国西北地区植物水分研究与旱地农业增产[J].植物生理学通讯,1983,19(5):7~10.
    55. 山仑.植物水分利用效率和半干旱地区农业用水[J].植物生理学通讯,1994,30(1):61~66.
    56. 上官周平,陈培元.水分胁迫对玉米光合作用的影响[A].中国科学院西北水土保持研究所集刊[C],1988,8:72~76.
    57. 上官周平,周维.栽培条件对冬小麦叶片水分利用效率的影响[J].植物营养与肥料学报,1998,4(3):231~236.
    58. 沈荣开,张瑜芳,黄冠华.作物水分生产函数与农田非充分灌溉研究评述[J].水科学进展,1995,6(3):248~254.
    59. 盛宏达,奚雷,王韶唐.小麦籽粒发育初期土壤水分亏缺对植株各部位光合作用的影响[J].植物生理学报,1986,12(2):109~115.
    60. 史吉平,董永华.水分胁迫对小麦光合作用的影响[J].国外农学——麦类作物,1995(5):49~51.
    61. 苏珮,山仑.拔节期复水对玉米苗期受旱胁迫的补偿效应[J].植物生理学通讯,1995,31(5):341~344.
    62. 孙占祥,魏亚燕,于希臣.不同时期干旱胁迫对玉米生长发育及产量的影响[A].全国第二届青年农学会学术年会论文集[C].北京:中国农业出版社,1995:380~382.
    63. 汤章城.植物对水分胁迫的反应和适应性[J]. 植物生理学通讯,1983,9(1):1~7.
    64. 汪德水,程宪国,张美容,等.旱地土壤中的肥水激励机制[A].汪德水主编.旱地农田肥水关系原理与调控技术[C].北京: 中国农业科技出版社,1995,195~203.
    65. 汪德水,姚晓晔,张美容,等.变量施肥对麦地土水势及植株抗旱性能的影响[A].汪德水主编.旱地农田肥水关系原理与调控技术[C].北京: 中国农业科技出版社,1995,123~128.
    66. 汪德水.旱地农田肥水协同效应与耦合模式[M].北京:气象出版社,1999.
    67. 王邦锡,何均贤,黄久常.水分胁迫导致小麦叶片光合作用下降的非气孔因素[J].植物生理学报,1992,18(1):77~84.
    68. 王邦锡,黄久常,赵大千,等.旱地施肥对春小麦产量和水分利用效率影响的研究[J].干旱地区农业研究,1990,8(4):98~104.
    69. 王晨阳,马元喜.不同土壤水分条件下小麦根系生态生理效应的研究[J].华北农学报,1992,7(4):1~8.
    70. 王晨阳.干旱胁迫对冬小麦根系活性氧代谢的影响[J].华北农学报,1997,18(4):31~36.
    71. 王金盛,郭栋生,丁起盛,等.水分胁迫对玉米幼苗几种生理生化指标的影响及其与抗旱性的关系[J].山西农业大学学报,1992,12(2):137~140.
    72. 王俊儒,李生秀.不同生育时期水分有限亏缺对冬小麦产量及其构成因素的影响[J].西北植物学报,2000,20(2):193~200.
    73. 王韶唐.植物的水分利用效率和旱地农业生产[J].干旱地区农业研究,1987,5(2):67~80.
    74. 王树安主编.作物栽培学各论(北方本)[M].北京:中国农业出版社,1994.
    75. 王万里.植物对水分胁迫的响应[J].植物生理学通讯,1981,17(5):55~64.
    76. 吴春胜.不同水平氮、磷及水分对玉米苗期根系的影响[J].吉林农业大学学报,1990,12(4):24~26.
    77. 武宝轩.小麦幼苗中超氧化物歧化酶活性与幼苗脱水忍耐力相关性的研究[J].植物学报,1985,27(2):152~160.
    78. 西北农业大学植物生理生化教研组编.植物生理学实验指导[M].西安:陕西科学技术出版社,1986.
    79. 徐萌,山仑.不同水分条件下无机营养对春小麦水分状况和渗透调节的影响[J].植物学报,1992,34(8):596~602.
    80. 徐萌,山仑.无机营养对春小麦抗旱适应性的影响[J].植物生态学与地植物学学报,1991,15(1):79~87.
    81. 徐萌.无机营养与抗旱性的关系[J].干旱地区农业研究,1989,7(4):77~83.
    82. 徐学选,穆兴民.小麦水肥产量效应研究进展[J].干旱地区农业研究,1999,17(3):6~12.
    83. 许旭旦.ABA等内源激素与植物的抗旱性[J].植物生理学通讯,1988,14(1)1~8.
    84. 许振柱,李长荣,陈平,等.土壤干旱对冬小麦生理特性和干物质积累的影响[J].干旱地区农业研究,2000,18(1):113~118.
    85. 阎隆飞,王学臣主编.生命科学进展(第一辑)[C].北京:中国农业大学出版社,1996,227~234.
    86. 杨根平,王宏玲,王韶唐.不同无机营养水平对水分胁迫下的冬小麦幼苗水分关系的影响[J].干旱地区农业研究,1989,7(3):78~85.
    87. 姚晓晔,汪德水,程宪国,等.不同施肥水平下旱地冬小麦水分效应的研究[J].土壤肥料,1994,(6):15~18.
    88. 姚雅琴,汪沛洪,胡东维,等.水分胁迫下小麦叶肉细胞超微结构变化与抗旱性的关系[J].西北植物学报,1993,13(1):16~20.
    89. 张福所,江荣风.植物氮素和水分相互作用的机理[A].李韵珠等编.土壤水分和养分的有效利用[C].北京:北京农业大学出版社,1994,149~155.
    90. 张岁歧,山仑.氮素营养对春小麦抗旱适应性及水分利用的影响[J].水土保持研究,1995,2(1):31~35.
    91. 张锡梅,徐勇.不同作物在不同土壤含水量条件下的耗水特性[J].生态学报,1989,9(1):97~98.
    92. 张雄.用“TTC”法测定小麦根系和花粉的活力及应用[J].植物生理学通讯,1982,8(3):48~50.
    93. 赵爱芬,黄学文.春小麦根系生长的动态研究[J].华北农学报,1993,8(1):88~93.
    94. 赵炳梓,徐富安.水肥条件对小麦、玉米N、P、K吸收的影响[J].植物营养与肥料学报,2000,6(3):260~266.
    95. 赵伯善,王林权编.农业化学实验指导[M].陕西杨陵:西北农业大学,1989.
    96. 赵立新,荆家海,王韶唐.不同施肥水平对旱地冬小麦水分利用效率的影响[J]植物生态学与地植物学学报,1991,15(4):330~343.
    97. 赵立新,荆家海,王韶唐.旱地冬小麦施肥效应研究[J].干旱地区农业研究,1991,9(4):46~51.
    98. 赵振达,张金盛.提高氮肥利用率的研究.II.土壤水分状况与作物氮肥利用的关系[J].土壤通报,1979(5):39.
    99. 中国科学院南京土壤肥料研究所编.土壤理化分析[M].上海:上海科学技术出版社,1978.
    100. 朱志华,胡荣海,昌晓平.不同抗旱性冬小麦幼苗根系对水分胁迫的反应[J].植物生理学通讯,1996,32(6):410~413.
    101. 邹邦基译.栽培植物营养诊断分析测定法[M].[日]农村省农林水产技术会议事务局监修,1984.
    102. Acevedo E, et al. Immediate and subsequent growth responses of maize leaves to changes in water stress[J].Plant Physiol.,1971,48:631~636.
    103. Arnon I. Physiological principles of dry land crop production[A]. In: Gopta U S(ed.).Physiological aspects of dry land farming[C].New Dehli: Oxford & IBH Publishing Co.,1975:133~145
    104. Asseng S, Ritchie J T, Smucker A J M, et al. Root growth and water uptake during water deficit and recovering in wheat[J].Plant and Soil,1998,201:265~273.
    105. Bannister P. Observation on water potential and drought-resistance of trees and shrubs after a period of summer drought around Dunedin[J].New Zealand Journal of Botany,1986,24:387~392.
    106. Bawa A K, Sen D N. Ecophysiological studies of some arid zone grasses: water relations[J].Current Agriculture,1992,16(1~2):51~57.
    107. Begg J E, Turner N C. Crop water deficits[J].Adv.Agron.,1976,28:161~207.
    108. Blackman P G. Davies W J. Root-to-shoot communication in maize plants of the effects of soil drying[J].Exp.J.Bot.,1985,36:39.
    109. Bloodworth M E, Burleson C A. Root distribution of some irrigated crops using undisrupted soil cores[J].Agron,J.,1995,50:317~320.
    110. Bohm W. Methods of studying root systems[M].Springer-Verlag Berlin Heidelberg, New York,1979.
    111. Boyer J S. Differing sensitivity of photosynthesis to low leaf water potentials in corn and soybean[J].Plant Physiol.,1970,46:233~235.
    112. Boyer J S.In:Kozlowski T T(ed).Water deficits and plant growth.Vol.4.New York: Academic Press,1976,153~190.
    113. Brouwer R. Functional eqilibrium: sense or nonsense[J].Neth.J.Agric.Sci.,1983,31:335~348.
    114. Brown S C, Keatinge J D H, Gregory P J, et al. Effect of fertilizer, variety and location on barley production under rain-fed conditions in northern Syria[J].Root and shoot growth. Field Crops Res.1987,16:53~66.
    115. Chazen O W, Hartung P M, Neumann. The different effect of PEG 6000 and NaCl on leaf development are associated with differential inhibition of root water transport[J].Plant Cell and Environment,1995,18:727~735.
    116. Comfort S D, Malzer G L, Busch R H. Nitrogen fertilizer of spring wheat genotypes.Influence on root growth and soil water depletion[J].Agron.J.1988,80:88~93.
    117. Davies W J, Zhang J. Root signals and the regulation of growth and development of plants in drying soil[J].Ann.Rev.Plant Phyiol.Plant Mol.Bio.,1991,42:55~76.
    118. Dreesman D C, et al. Expression of genes encoding Rubisco in sugar beet(Beta vulgaris.L)plants subjected to gradual desiccation[J].Plant and Cell Physiol.,1994,35(4):645~653.
    119. El-Taafari S, et al. Drought resistance and response to abscisic acid: analysis of a synthetic approach[J].Cahiers Agricultures,1993,2(4):256~263.
    120. Flower T H, Challagha J R Q. Nitrification in soils incubated with pig slurry or ammonium sulphate[J].Soil Boil.Boichem.,1983,15(3):337~342.
    121. Hanson A D, et al. Evaluation of free proline accumulation as an index of drought resistance using two contrasting barley cultivars[J].Crop Sci.,1977,17:720~726.
    122. Huck M G, et al. Soybean adaptation to water stress at selected stages of growth[J].Plant Physiol.,1983,73:422~427.
    123. Jacobsen J V. Regulation of ribonucleic acid metabolism by plant hormones[J].Ann.Rev.Plant Physiol.,1977,28:537.
    124. Jamison V C. Changes in air-water relationship due to structural improvement of soils[J].Soil Sci.1953,76:143~151.
    125. Jones M M, Rawson H M. Influence of rate of development of leaf water deficits upon photosynthesis, leaf conductance, water use efficiency and osmotic potential in sorghum[J].Plant Physiol.,1979,45:103~111.
    126. Jordan W R, Richie J T. Influence of soil water stress evaporation, root absorption and internal water status of cotton[J].Plant Physiol.,1971,48:783~788.
    127. Kaul R. Effect of water stress on respiration of wheat[J].Can.J.Bot.,1996,44:623~632.
    128. Kramer J P. Water deficits and plant growth[A].In: Kramer J P(ed.).Water relations of plant.Academic Press,New York,London,1983,354~359.
    129. Liang J, Zhang J, Wong M H. Effects of air-filled soil porosity and aeration on the initiation and growth of secondary roots of maize(Zea mays)[J].Plant and Soil,1996,186:245~254.
    130. Legg B J, Day W, Lawlor D W, et al. The effects of drought on barley growth: Models and measurements showing the relative importance of leaf area and photosynthetic rate[J].J.Agric.Sci.,1979,92:703~716
    131. Mackay A D, Barber S A. Effect of cyclic wetting and drying of a soil on root hair growth of maize roots[J]. Plant and Soil,1987,104:291~293.
    132. Mahi S S, Mcgill W B. Nitrification in three Alberta Soil: Effect of temperature, moisture and substrate concentration[J]. Soil Biol. Biochem.,1982,15:397~399.
    133. Mengel K, Braunschweig Von L C. The effect of soil moisture upon availability of potassium and its influence on the growth young maize plant(Zea mays L.)[J].Soil Sci.,1972,114:142~148.
    134. Mengel K, Kirby E A. Principles of plant nutrition (third edition)[M].Bern, Switzerland: International Potash Institute,1987,68~79.
    135. Michel B, Kaufmann. The osmotic potential of polyethylene glycol 6000[J].Plant Physiol.,1973,51:914~916.
    136. Monay N P. Osmotic pressure of aqueous polyethylene glycols. Relationship between molecular weight and vapor pressure deficit[J].Plant Physiol.,1989,91:766~769.
    137. Morgan J A. Interaction of water supply and N in wheat[J].Plant Physiol.,1984,76:112~117.
    138. Morgan J A. The effects of N nutrition on the water relation and gas exchange characteristics of wheat (Triticum aestivum L.) [J].Plant Physiol.,1986,80:52~58.
    139. Morgan J A. Possible role of abscisic acid in reducing seed set in water-stressed wheat plants[J].Nature,1980,285:655.
    140. Nakama M, et al. After-effects of water stress on matter production process of sugar cane at early grown stage[J].Sci.Bull.Coll.Agric.Univ.Ryukyus,1988,35:113~120.
    141. Nir I, Poljakoef-Mayber A, Klein S. The effect of water stress on mitochondria of root cell[J].Plant Physiol.,1970,45:173~177.
    142. Power J F. Soil management for efficient water use: Soil fertility[A].In: Taylor H M, Jordan W R, Sinclair T R(ed). Limitation to efficient water use in crop production[C].ASA-CSSA-SSSA,1983,461~470.
    143. Radin J W, Ackerson R C. Water relation of cotton plant under nitrogen deficiency. III. Stomatal conductance, photosynthesis and ABA accumulation during drought[J].Plant Physiol.,1981,67:115~119.
    144. Radin J W, Parker L L. Water relation of cotton plants under nitrogen deficiency. I. Dependence upon leaf structure[J].Plant Physiol.,1979b,64:495~498.
    145. Rego T J. Comparison of the effects of continuous and relieved water stress on nitrogen nutrition of grain sorghum[J].Aust.J.Agric.Res.,1988,39:773~782.
    146. Schulze E D. Carbon dioxide and water vapor exchange in response to drought in the atmosphere and in the soil[J].Ann.Rev. Plant Physiol.,1986,37:247~274.
    147. Sheng Q, Hunt L A. Shoot and root dry weight and soil water in wheat Triticale and Rye[J].Can.J.Plant.Sci.,1991,71:41~49.
    148. Singh T N, et al. Proline accumulation and varietal adaptability to drought in barley: A potential measure of drought resistance[J].Nature New Biol.236:188~190.
    149. Stanford G, Epstein E. Nitrogen mineralization water relations in soils[J].Soil Sci.,1974,38:103~106.
    150. Strong W M, Barry G. The availability of soil and fertilizer phosphorus to wheat and rape at different water regimes[J].Aust.J.Soil Res.,1980,18:353~362.
    151. Taylor H M, Nguyen H T. Opportunities for manipulating root system to reduce drought stress in wheat[A].In: Srivastava J P(ed.).Drought tolerance in winter wheat cereals[C].John Wiley & Sons,1987:285~298.
    152. Terment A, Munns R. Use of concentrated macronutrient solutions to separate osmotic from NaCl specific effects on plant growth[J].Australia J. of Plant Physiol.,1986,13:509~522.
    153. Tully R E, Hanson A D, Nelsen C E. Proline accumulation in water stressed barley leaves in relation to translocation and the nitrogen budget[J].Plant Physiol.,1979,63:518~523.
    154. Turner N C, Schulze E D, et al. The response of stomata and leaf exchange to vapor pressure deficit and soil water content,II.In the mesophyll herbaceous species helianthus anrnus[J].Oecologia,1985,65:348~355.
    155. Turner N C.Plant water relation and irrigation management[J].Agric.Water Manage.,1990,17:5973.
    156. Veiira D, Silva J. In: Lange O L, et al(ed.).Water and plant life[C].Springer-Verlag,1976,207~224.
    157. Viets F G Jr. Water deficits and nutrient availability[A].In: Kozlowski T T(ed.). Water deficits and plant growth[C].Acad.Press.1972,Vol.3:217~247.
    158. Weaver J E. Root development of field crops[M]. New York-London: McGraw-Hill Book Co.,1926,291.
    159. Wenkert W, et al. Leaf elongation and turgor maintenance at low water potentials in the elongation region of maize leaves[J].Agron.J.,1978,70:761~764.
    160. Wong S C, Cowan I R, Farquhar G D. Stomatol conductance correlates with photosynthetic capacity[J]. Nature,1979,282:424~426.
    161. Zekri M, Parsons L R. Response of Split root sour orange seeding to NaCl and polyethylene glycol stress[J].Journal of Experimental Botany,1990,41:35~40.
    162. Zhang J, Zhang X, Liang J. Exudation rate and hydraulic conductivity of maize roots are enhanced by soil drying and abscisic acid treatment[J]. New Phytologist,1995,131(3):329~336.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700