用户名: 密码: 验证码:
水岩作用下深部岩体的损伤演化与流变特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下深部岩体处于高地应力、高温和地下水的多场耦合复杂环境中,其岩体的变形破坏特征呈现出明显的流变性,岩体变形具有时间相依性,变形量随时间延长而不断增加,从而导致岩体抗破坏能力下降。同时,地下水通过物理化学作用和水压作用使岩体组分改变、微孔隙生成、微裂隙扩展,损伤程度加剧,粘聚力和摩擦系数变小,使其宏观上的强度和刚度等力学性能下降,岩体更易变形且变形量更大。深部岩体所处的特殊地质力学环境是造成深部岩体工程毁坏和人员财产损失自然原因。因此,开展水岩作用下深部岩体的损伤演化和流变特性研究,其成果能为地下深部井巷工程和硐室开挖、支护以及稳定性分析提供科学依据,对深部岩体工程的安全建设、营运及其长期稳定性具有重要的指导意义和良好的工程应用价值。
     本文研究内容依托国家自然科学基金资助项目(50774093:水岩作用下裂隙岩体流变—损伤—断裂耦合理论及应用)、中南大学研究生创新基金项目(134377237:高应力下极软弱岩体变形机理及巷道断面大规模收敛成因研究)和金川有色公司重大科技攻关课题:“金川矿山深部高强度采掘条件下的岩石力学研究”。采用流变力学与损伤力学理论,从现场调查、采样加工到室内试验、理论分析与计算机仿真模拟等多方面深入研究了水岩作用下深部岩体的损伤演化规律和流变特性。主要研究工作及成果包括以下几个方面:
     (1)通过资料整理、现场地质调查和现场监测等手段探明金川二矿区深部岩体的地质环境和节理裂隙的赋存情况;对金川二矿区深部850m、978m和1098m三个分段的典型岩性进行采样-加工-室内物理力学试验,得到了各岩性岩样的基本物理力学参数;对各岩性岩样的试验结果进行对比分析发现:二辉橄榄岩和含辉橄榄岩的力学强度指标较高,大理岩和斜长角闪岩的力学强度指标较低,且斜长角闪岩饱水后的力学性能下降最为明显,以此确定各岩性中岩石强度较低、饱水后力学指标下降最多的斜长角闪岩作为后阶段水损伤演化试验和流变试验的研究对象。
     (2)以斜长角闪岩为代表岩性,开展了水岩作用下岩样的膨胀损伤演化试验、离子浓度测定试验、电子显微镜微观结构成像试验、基于核磁共振技术的水岩作用下岩样内部结构的细观试验和水物理化学损伤下岩体节理表面形貌特征的细观试验。试验成果表明:岩样遇水发生水损伤的机理就是岩样中的亲水性矿物成分蒙脱石与水发生一系列的物理化学反应,改变岩体组分和内部结构,岩样的自由膨胀率、内部孔隙度、节理表面特征参数和宏观力学参数都随浸水时间的延长而呈指数衰减函数关系,并运用岩石损伤力学理论建立了分别以膨胀率、孔隙度和浸水时间为损伤变量的金川二矿区深部岩体—斜长角闪岩的水损伤演化方程和本构关系。
     (3)使用RYL-600岩石剪切流变仪在自然状态下和饱水状态下对含蒙脱石的斜长角闪岩开展了的室内单轴分级增量循环加卸载蠕变试验,得到了各应力水平下岩样的应变-时间曲线。试验结果分析表明:岩样同时具有瞬弹性、瞬塑性、粘弹性和粘塑性的非线性粘弹塑特性;岩石的变形量随时间的延长而不断增大,具有明显的流变性,地下水对深部岩体内部组构的改变与力学性能的损伤弱化降低了初始蠕变强度和岩石长期强度,增大了蠕变变形量和蠕变速率,加剧了深部岩体流变性。
     (4)采用无损高效的核磁共振技术,对蠕变试验过程中不同应力加卸载状态中的岩样进行了核磁共振成像和横向弛豫时间T2谱面积的反演分析,得到了对应蠕变试验阶段中岩样的核磁共振孔隙度。由试验结果可知:饱水状态下的岩样在相同的蠕变试验过程阶段中具有更大T2谱面积以及核磁共振孔隙度,反映出水与岩样发生水岩物理化学反应,岩样内部结构变松散,损伤程度加剧,蠕变变形量更大;自然状态下和饱水状态下岩样的T2谱面积和核磁共振孔隙度随着蠕变加载荷载的增加而减小,说明在岩样未破坏的衰减蠕变阶段,随着外载荷的增加,岩样内部的微裂隙和孔隙被压密闭合的程度越来越高;饱水状态下的岩样的相邻荷载等级的T2谱面积和孔隙度变化率更高,说明饱水状态下的岩样内部细小缺陷更多,压密闭合的空间更大,而且其抵抗压力的力学能力较弱,对于相同外荷载变化的情况内部响应更加明显。
     (5)根据室内蠕变试验所获得的试验数据,本文基于岩石流变力学理论引入非线性元件,建立了一个能同时模拟衰减蠕变、定常蠕变和加速蠕变特征的新的岩石非线性粘弹塑蠕变模型。通过对模型参数的辨识,对各应力水平下岩样单轴蠕变试验数据进行处理,确定了该模型本构方程各参数的量值。从试验曲线和模型曲线的高吻合程度可知,新建立的模型能很好的描述深部工程岩石的蠕变特性。
     (6)通过蒙特卡洛法建立随机分布的二维岩体裂隙网络,结合Visual C++的编程功能产生能够描述节理裂隙各种分布特征的随机数,在ANSYS平台上建立有限元模型,然后根据已建立的力学模型,利用FLAC3D的蠕变计算模块,应用fish语言完成本构模型的二次开发设计,对水岩损伤作用和岩石流变作用下金川二矿区深部岩体在不同支护条件下井巷围岩塑性屈服状态和围岩松动圈的动态扩展进行了FLAC3D数值仿真分析。围岩采用锚杆支护系统的巷道收敛变形量大幅降低;岩体中裂隙水的存在会进一步恶化围岩环境,使得相同条件下巷道收敛变形量更大;锚杆长度是影响支护效果的主因,而锚固力对锚杆支护系统的锚固效果作用有限,锚杆长度以自由端略大于松动圈厚度为最佳,这样既能保证锚固端处于稳定围岩内,又由于锚固端与松动区有一定的距离而减缓松动圈外扩速度,从锚固效果、施工难易程度和经济效益等三方面因素来综合分析比较,本文建议金川二矿区深部井巷围岩选择3.0米长的锚杆来进行支护。
Underground deep rock mass is in the complex environment of high in-situ stress, high temperature and underground water. Its deformation and failure characteristics have shown a significant rheological behavior. The deformation quantity of rock mass is increasing with time, causing the rock mass anti-destruction capability decline. At the same time, its components are changed by underground water through physical and chemical effects and hydraulic pressure. Besides, its microporosity generate, micro-crack propagating, damage aggravating, the cohesion and the friction coefficient smaller, macro-mechanical properties such as strength and stiffness declining and deform easier and the amount of deformation greater. The complex and specific environment resulted in the destruction of the rock engineering and personnel property damage.Therefore, the research of damage evolution and rheological behavior of the deep rock mass under water-rock interaction could provide scientific proof for the excavation,support and stability analysis of deep rock mass engineering, and had important guiding significance and good engineering value in the aspects of production safety, operation and engineering lond-term stability.
     This doctoral dissertation has been supported by National Natural Science Foundation of China (NO.50774093), Graduate Degree Thesis Innovation Fundation of Central South University (NO.134377237) and Jinchuan mining company significant science and technology project. Rock mass mechanics, rheology and damage mechanics theory has adopted to study damage evolution and rheological behavior of deep rock mass under the water-rock interaction from the field survey, the experimental research, the theoretical analysis and the computer simulation. The research work and achievement include the following aspects:
     (1) The geologic environment of deep rock mass at Jinchuan2#Mine had been known though the summary of data, the field work and on-the-spot measure. A mass of rock smples of different lithology were gained from850m、978m and1098m level of deep rock mass at Jinchuan2#Mine. A series of rock physical mechanics lab tests had been carried out in order to get fundamental physical mechanics parameter of rock samples. The result of tests showed that the mechanical property of the iherzolite and the clinopyroxene-peridotite exceeded in the Amphibolite's and the marble's, and the Amphibolite's declined most obviously with the increase of the moisture content. So the amphibolite had been determined as the research object of water damage tests and rheological behavior in the later stage.
     (2) Several tests aiming at the amphibolite were done for damage evolution research with soak time on deep rock mass under water-rock interaction, including swelling test,ionic concentration measure test, microcosmic test of rock mass internal structure damage by electron microscope(EMS), mesoscopic test of rock mass internal structure damage based on nuclear magnetic resonance (NMR) technology and mesoscopic test of rock mass joint surface topography using advanced TalysurfCLI20003d laser surface topography measure instrument. The results of tests showed that the montmorillonite of rock samples occurred a series of physical and chemical reaction with water and led to rock mass damage.Besides,the free swell ratio,the NMR porosity,the joint surface topography characteristic parameter and the macro mechanical parameter had exponential decay function relation with soak time. And then damage evolution equation and constitutive relation of the amphibolite under water-rock interaction were established respectively by different damage variable according to the rock damage mechanics theory
     (3) The uniaxial multi-step incremental cycling loading and unloading creep tests of the amphibolite had been conducted with using the RYL-600shear rheometer both in nature drying condition and saturated water phase. And the strain-time curves of the rock samples under different stress were got from the creep tests. The experiment results showed that the rock samples had nonlinear viscoelastoplastic characteristics, including instantaneous elasticity, instantaneous plasticity, viscoelasticity and visco-plasticity.The deformation amount of rock increased continually with loading level and loading time. The rock samples showed obvious rheology. The underground water by water-rock interaction changed rock composition and structure, resulted in rock damage and reduced rock mechanic property, which dropt the creep threshold,increased the creep deformation amount, the creep rate and the stability time and aggravated the rheology of deep rock mass.
     (4) The T2relaxation time spectrum area and NMR porosity of rock samples at creep test could obtain with high effective and non-damage NMR technology.The results of the NMR image analyzing system indicated that the rock sample at saturated state had greater T2relaxation time spectrum area and NMR porosity, proved that water-rock interaction resulted in rock mass internal structure looser,rock damage aggravation and creep amount geater.The micropores and microcracks were consolidated with the increase of the external loading when the samples were at decay creep stage both in the natural state and in the saturated state,and the more the external loading,the less the T2relaxation time spectrum area and NMR porosity. The change rate of the T2relaxation time spectrum area and NMR porosity at different external loading in the saturation state was bigger.Because the rock sample had more micro defects,greater consolidation space and respond more strongly on the change of the external loading.
     (5) On the base of the results from the creep test and rock rheological mechanics theory, a new rock creep model had been put forward in this paper. The new model adopted the series and parallels of different linear elements of elasticity, viscosity and plasticity and the introduced nonlinear elements. It could simulate the behavior of decay creep, steady creep and accelerating creep at the same time. The parameters of constitutive equation of the new model had been confirmed though recognizing model parameters and processing the uniaxial creep tests results of rock samples under different stress. From the high consistency between the test and model curves, it could be known that the new model was suitable to describe the creep characteristics of the deep engineering rock.
     (6) The joint cracks random distribution network of rock mass was established by the monte carlo method.The random number had been produced with Visual c++programming,which could describe all kinds of distribution characteristics of the joint cracks. The finite element model was established, using ANSYS.And then, based on the established rock rheological model, to use the FLAC3D creep calculation module completed constitutive model of secondary development design through the application of fish language.The computer numerical modeling was done by FLAC3D to simulate the plastic yield state and loose circle dynamic expansion of deep surrounding rock at Jinchuan2#Mine under the water rock damage effect and rock creep in different supporting conditions. The results showed that the bolting system could decrease the deformation amount of the surrounding rock obviously.The underground water had an adverse effect to the tunnel's long-term stability and increased its deformation amount.The length of the bolt had major influence on the supporting and was the best when the bolt's free end was slightly greater than the thickness of the loosen zone According to the computer simulation analysis,the paper advised that the length of th bolt was3.0meter.
引文
[1]王文星.岩体力学[M].长沙:中南大学出版社,2004.
    [2]夏才初,孙宗颀.工程岩体节理力学[M].上海:同济大学出版社,2002.
    [3]黄兴政.节理化岩体力学参数研究[D].硕士论文,长沙:中南大学,2008
    [4]谢和平.深部大型地下工程开采与利用中的几个关键岩石力学问题[M].北京:中国环境科学出版社,2002.
    [5]谢和平.深部高应力下的资源开采现状、基础科学问题与展望[A].见:香山科学会议编.科学前沿与未来(第六集)[C].北京:中国环境科学出版社,2002.179-191.
    [6]张有天,周建平.水电站大型地下工程建设的新进展[[J].水利发电,2004(12):64-68.
    [7]何满朝,景海河.深部工程围岩及非线性动态力学设计理念[J].岩石力学与工程学报,2002,24(12):1215-1224
    [8]何满潮.深部开采工程岩石力学的现状及其展望[A].中国岩石力学与工程学会编.第八次全国岩石力学与工程学术大会论文集[C].北京:科学出版社,2004:88-94.
    [9]何满潮,谢和平,彭苏萍等.深部开采岩体力学研究[J].岩石力学与工程学报,2005,24(16):2803-2813.
    [10]蒋斌松,韩立军,贺永年.深部岩体变形的混沌预测方法[[J].岩石力学与工程学报,2005,24(16):2934-2940
    [11]王永岩,魏佳齐,李剑光等.深部岩体非线性蠕变变形预测研究[[J].煤炭学报,2005,30(4):409-413.
    [12]Paterson M.S.. Experimental deformation and faulting in Wombeyan marble[J]. Bull. Geol. Soc.Am.,1958,69:465-467
    [13]Paterson M.S.. Experimental Rock Deformation--the Brittle Field[M]. Berlin:Springer,1978
    [14]Singh J.. Strength of rocks at depth[A]. In:Rock at Great Depth[C]. Rotterdam:A. A. Balkema,1989.37-44
    [15]Kwasniewski M. A. Laws of brittle failure and of B—D transition in sandstone[A]. In:Rock at Great Depth[C]. Rotterdam:A. A. Balkema, 1989.45-58
    [16]Cleary M.. Effects of depth on rock fracture [A]. In:Rock at Great Depth[C]. Rotterdam:A. A. Balkema,1989,1153-1163
    [17]林睦曾.岩石热物理及其工程应用[M].重庆:重庆大学出版社,1991
    [18]Werner Skrotzki, An Estimate of the Brittle to ductile transition in salt[C], The first Conference on the Mechanical Behavior of Salt, Traps Tech publications,1984, P.381-388
    [19]何满潮等.软岩工程力学[M].北京:科学出版社,2002,1-20
    [20]何满潮.深部的概念体系及工程评价指标[J].岩石力学与工程学报,2005,24(16):2854-2858
    [21]DUNNING J., DOUGLAS B, MILLER M, et al. The role of the chemical environment in frictional deformation:stress corrosion cracking and comminution[J]. Pure and Applied Geophysics,1994,143(1/3):151-178.
    [22]FEUCHT L. J., LOGAN J M. Effects of chemically active solutions on shearing behavior of a sandstone[J]. Tectonophysics,1990,175(1/3):159-176.
    [23]LOGAN J.M., BLACKWELL M I. The influence of chemically active fluids on frictional behavior of sandstone[J]. EOS, Trans. Am.Geophys. Union, 1983,64(2):835-837
    [24]仵彦卿.地下水与地质灾害[J].地下空间,1999,19(4):303-316
    [25]KACZMAREK M.. Chemically induced deformation of a porous layer coupled with advective-dispersive transport:analytical solutions[J].Int. J. Numer. Anal. Meth. Geomech.,2001,25(8):757-770.
    [26]LORET B., HUECHEL T., GAJO A.. Chemo-mechanical coupling in saturated porous media:elastic-plastic behaviour of homoionic expansive clays [J]. International Journal of Solids and Structures,2002,39(10):2773-2806.
    [27]冯夏庭,赖户政宏.化学环境侵蚀下的岩石破裂特性——第一部分:试验研究[J].岩石力学与工程学报,2000,19(4):403-407.
    [28]冯夏庭,王川婴,陈四利.受环境侵蚀的岩石细观破裂过程与实时观测[J].岩石力学与工程学报,2002,21(7):935-939.
    [29]汤连生,王思敬.水-岩化学作用对岩体变形破坏力学效应研究进展[J].地球科学进展,1999,14(5):433-439.
    [30]汤连生,王思敬.岩石水化学损伤的机制及量化方法探讨[J].岩石力学与工程学报,2002,21(3):314-319.
    [31]汤连生,张鹏程,王思敬.水-岩化学作用的岩石宏观力学效应的试验研 究[J].岩石力学与工程学报,2002,21(4):526-531.
    [32]汤连生,张鹏程,王思敬.水-岩化学作用之岩石断裂力学效应的试验研究[J].岩石力学与工程学报,2002,21(6):822-827.
    [33]周翠英,邓毅梅,谭祥韶,等.饱水软岩力学性质软化的试验研究与应用[J].岩石力学与工程学报,2005,24(1):33-38
    [34]LIN,ZHU Y.M.,SU B.,et al. A chemical damage model of sandstone in acid solution[J]. Int. J. Rock Mech. Min. Sci.,2003,40(2):243-249.
    [35]乔丽苹,刘建,冯夏庭.砂岩水物理化学损伤机制研究[J].岩石力学与工程学报,2007,26(10):2117-2124
    [36]杨彩红.水对深部工程软岩蠕变规律的影响[D].硕士学位论文,阜新:辽宁工程技术大学,2005
    [37]王丽娟.金川二矿区地下采场和采准工程力学稳定性研究[D].博士学位论文,兰州:兰州大学,2008
    [38]李宏业.金川二矿区深部巷道支护机理研究以及围岩稳定的数值模拟[D].硕士论文,长沙:中南大学,2003
    [39]金川有色金属公司,中国地质科学院地质力学研究所.金川集团有限公司技术开发项目实施方案《金川矿区应力场与岩石力学研究》.内部资料,2004
    [40]蔡美峰,乔兰,于波等.金川二矿区深部地应力测量及其分布规律研究[J],岩石力学与工程学报,1999,18(4):414-418
    [41]北京科技大学,金川公司二矿区,金川镍钻研究设计院.金川二矿区深部地应力测量报告[R].内部资料,1996
    [42]刘同有等.中国镍钴矿山现代化开采技术[M],北京,冶金工业出版社,1995
    [43]金川有色金属公司,中科院地质与地球物理研究所.金川铜镍矿采掘工程地质力学研究[M],2000
    [44]郭立,吴爱祥等,深部硬岩开采的围岩稳定性分析[C].中国第七届岩石力学与工程大会会议论文.北京:科学出版社,2002
    [45]宋恒.金川二矿区深部软岩巷道变形及支护研究[D].硕士论文,长沙:中南大学,2009
    [46]张向阳.金川二矿区深部岩石力学性及岩石流变损伤分析[D].硕士论文,长沙:中南大学,2010
    [47]张忠.金川二矿区中深部巷道变形破坏方式研究[D].硕士论文,昆明:昆明理工大学,2005
    [48]李莉,高谦,王正辉.金川二矿区深部1178中段采场巷道支护设计与稳定 性分析[J].有色金属(矿山部分),2005,57(1):19-22
    [49]穆玉生,吉险峰,侯克鹏等.金川二矿区1178分段工程巷道变形规律研究[J].昆明冶金高等专科学校学报,2005,21(3):36-40
    [50]骆玉琦,李峰,高建科.金川二矿区1178m分段巷道底鼓分析与防治[J].中国矿业,2005,14(6):73-77
    [51]黄祖强.金川二矿区深部巷道围岩变形特征与支护技术[J].中国矿山工程,2005,34(4):4-8
    [52]郭树高.金川镍矿岩石力学特性与井巷工程稳定性对策[M].甘肃岩石力学与工程进展.兰州大学出版社,1996
    [53]宋恕夏,包四根.金川地下工程地压特征及维护[J]岩石力学与工程学报,1991,10(2):138-148
    [54]金川有色金属公司,中国岩石力学与工程学会金川分会.金川镍矿开采的工程地质与岩石力学问题(上下册)[M].1996
    [55]赵金宝.石膏矿矿井合理开采深度及范围的经济模型[D].硕士论文,徐州:中国矿业大学,2008.
    [56]李晓静.深埋洞室劈裂破坏形成机理的试验和理论研究[D].博士论文,济南:山东大学,2007
    [57]Sellers E.J., Klerck P. Modeling of the effect of discontinuities on the extent of the fracture zone surrounding deep tunnels[J]. Tunneling and Underground Space Technology,2000,15(4):463-469.
    [58]Kidybinski A. Strata Control in Deep Mines[M]. Rotterdam:A. A. Balkema, 1990.
    [59]Fairhurst C. Deformation, yield, rupture and stability of excavations at great depth[A]. In:Faorhurst C. ed. Rock at Great Depth[C]. Rotterdam: A. A. Balkema,1990.1103-1114.
    [60]Malan D.F., Spottiswoode S.M.. Time—dependent fracture zone behavior and seismicity surrounding deep level stopping operations[A]. In:Gibowicz S.J., Lasocki S. ed. Rockbursts and Seismicity in Mines[C]. Rotterdam: A. A. Balkema,1997.173-177.
    [61]钱七虎.非线性岩石力学的新进展——深部岩体力学的若干问题[A].见:中国岩石力学与工程学会编.第八次全国岩石力学与工程学术大会论文集[c].北京:科学出版社,2004,10-17.
    [62]何满潮,钱七虎.深部岩体力学研究进展[C].第九届全国岩石力学与工程学术大会论文集.北京:科学出版社,2006.
    [63]李占金.鹤矿五矿深部岩巷变形机理及控制对策研究[D].博士论文,北京:中国矿业大学,2009.
    [64]胡云华.高应力下花岗岩力学特性试验及本构模型研究[D].博士论文,武汉:中国科学院研究生院(武汉岩土力学研究所),2008.
    [65]隋斌.深部岩体脆性机理及相关问题研究[D].博士论文,济南:山东大学,2009.
    [66]Kannan T. von.Festigkeitsversuche unter allseitigem Druck.Zeit d ver Deutscher Ing,1911,55:1749-1757.
    [67]Mogi K..Deformation and fracture of rocks under confining pressure:elasticity and plasticity of some rocks[J].Bull Earthquake Res Inst Tokyo Univ,1965, 43:349-379.
    [68]Mogi K..Pressure dependence of rock strength and transition from brittle fracture to ductile flow[J].Bull Earthquake Res Inst Tokyo Univ,1966, 44:216-232.
    [69]Heard H.C.. Transition from brittle fracture to duetile flow in Solenhofen limestone as a function of temperature, confining pressure, and interstitial fluid pressure[J].In:Griggs D., Handin J eds. Rock Deformation,1960, 193-226.
    [70]Sibson R.H.. Fault rock sand fault mechanism [J]. J Geol Soc London,1977, 133:191-213.
    [71]Meissner R., Kusznir N. J.. Crystal viscosity and the reflectivity of the lower crust[J]. Annuals Geophysics,1987,58:365-373.
    [72]Ranalli G, Murphy D.C. Rheological stratification of the lithosphere [J]. Tectonophysics,1987,132:281-295.
    [73]谢和平.矿山岩体力学及工程的研究进展与展望[J].中国工程学报,2003,5(3):31-38.
    [74]孟召平,彭苏萍,张慎河.不同成岩作用程度砂岩物理力学性质三轴试验研究[[J].岩土工程学报,2003,25(2):140-143.
    [75]黄润秋.中国西部岩石高边坡应力场特征及其卸荷破裂机理[J].工程地质学报,2004,12(S1):7-15.
    [76]王明洋,周泽平,钱七虎.深部岩体的构造和变形与破坏问题[J].岩石力学与工程学报,2006,25(3):0448-0455.
    [77]蒋斌松,程学报,蔡美峰等.深部岩体非线性Kelvin蠕变变形的混沌行为[J].岩石力学与工程学报,2006,25(9):1862-1867.
    [78]李天斌,王兰生.卸荷应力状态下玄武岩变形破坏特征的试验研究[J].岩石力学与工程学报,1993,12(4):321-327.
    [79]吴刚.复杂应力状态下岩体卸荷破坏的激励及其应用研究[D].博士论文,上海:同济大学,1995.
    [80]华安增,孔园波,李世平等.岩块降压破碎的能量分析[[J].煤炭学报,1995,20(4):389-392.
    [81]尤明庆,华安增.岩石试样的三轴卸围压试验[J].岩石力学与工程学报,1998,17(1):24-29.
    [82]王贤能,黄润秋.岩石卸荷破坏特征与岩爆效应[J].山地研究,1998,16(4):281-285.
    [83]徐松林,吴文,王广印等.大理岩等围压三轴压缩试验全过程研究(Ⅰ):三轴压缩全过程和峰前、峰后卸围压全过程试验[J].岩石力学与工程学报,2001,20(6):763-767.
    [84]徐林生,王兰生.岩爆形成机理研究[J].重庆大学学报(自然科学版),2001,24(2):115-117.
    [85]Haimson B.C., Chang C.. True triaxial strength of KTB amphibolite under borehole wall conditions and its use to estimate the maximum horizontal in-situ stress [J]. Journal of Geophysical Research,2002,107(B10):2225-2271.
    [86]许东俊,章光,李廷芥等.岩爆应力状态研究[J].岩石力学与工程学报,2003,19(2):169-172.
    [87]陈景涛,冯夏庭.高地应力下岩石的真三轴试验研究[J].岩石力学与工程学报,2006,25(8):1537-1543.
    [88]蔡美蜂.岩石力学与工程[M].北京:科学出版社,2002.
    [89]Zhou X.P.,Ha Q.L.. Analysis of deformation localization and the complete stress-strain relation for brittle rock subjected to dynamic compressive loads [J]. International Journal of Rock Mechanics and Mining Sciences,2004, 41(2):311-319.
    [90]Shao J.F., Jia Y, Kondo D.. et al.A coupled elastoplastic damage model for semi-brittle materials and extension to unsaturated conditions [J]. Mechanics of Materials,2006,38:218-232.
    [91]Baisita M., Gross, D.. The sliding crack model of brittle deformation:an internal variable approach[J]. Int. J. solids Struct.1998,35(3):487-509.
    [92]卓家寿,章青.不连续介质力学的界面元法[M].北京:科学出版社,2000.
    [93]陈景涛,冯夏庭.高地应力下硬岩的本构模型研究[J].岩土力 学,2007,28(11):2711-2718.
    [94]HOEK E., BROWN E.T..Empirical strength criterion for rock masses[J]. Journal of Geotechnical Engineering Division, ASCE,1980,106(GT9):1013-1035.
    [95]Ramamurtby T. Stability of rock mass[J]. Indian Geotechnical Journal,1986, 16:1-73.
    [96]Dems K.,Norz Z..Stablility conditions for brittle-plastic structures with propagating damage surfaces[J] Journal of structural Mechanics,1985,13(1).
    [97]沈为.弹脆性材料的损伤本构关系及应用[J].力学学报,1991,23(5):74-378.
    [98]蒋明镜,沈珠江,考虑剪涨的弹脆塑性软化柱形孔扩张问题[J].河海大学学报,1996,24(4):65-70.
    [99]Hajiabdolmajid V., Kaiser P.K., Martin C.D.. Modeling brittle failure of rock [J]. Int J Rock Mech Mining Sci,2002,39(6):739-741.
    [100]朱焕春,李浩,Conner C..脆性岩体的高应力破坏与数值模拟[P].第九届全国岩石力学与工程学术大会论文集,北京:科学出版社,2006.
    [101]江权,冯夏庭,陈国庆.考虑高地应力下围岩劣化的弹脆塑性模型研究[J].岩石力学与工程学报,2008,29(1):144-152.
    [102]Martin C.D., Chanlder N.A. The progressive fracture of Lac du Bonnet granite [J]. International Journal of Rock Mechanics and Mining Sciences, 1994,31:643-659.
    [103]Martin C.D.. Seventeenth Canadian Geotechnical Colloquium:The effect of cohesion loss and stress path on brittle strength [J]. Canadian Geotechnical Journal,1997,34:698-725.
    [104]周小平,钱七虎,杨海清.深部岩体强度准则[J].岩石力学与工程学报,2008,27(1):117-123
    [105]汪斌,朱杰兵,邬爱清等.高应力下岩石非线性强度特性的试验验证[J].岩石力学与工程学报,2010,29(3):542-548
    [106]蒋斌松,杨乐,时林坡.基于Hoek-Brown准则的破裂围岩应力分析[J].固体力学学报,2011,32:300-305
    [107]张雪颖,阮怀宁.新非线性强度准则在岩石材料中的应用[J].煤炭学报,2011,36(8):1264-1269
    [108]仵彦卿,张倬元.岩体水力学导论[M].成都:西南交通大学出版社.1995.
    [109]汪亦显.含水及初始损失岩体损伤断裂机理与试验研究[D].博士论文,长沙:中南大学,2012.
    [110]李鹏.水—岩作用的岩体剪切特性试验与M-H-C耦合数值模拟[D].博士论文,武汉:中国科学院研究生院(武汉岩土力学研究所),2010.
    [111]李炳乾.地下流体对岩石化学作用研究的某些进展[J]..地震地质译丛,1995(5):32-37
    [112]李尤嘉.膏溶角砾岩水损伤特性和机理的细观力学试验研究[D].博士论文,上海:上海交通大学,2011.
    [113]沈照理.应该重视水-岩相互作用的研究[J].水文地质工程地质.1991,18(2):1-4.
    [114]沈照理,王焰新.水—岩相互作用研究的回顾与展望[J].中国地质大学学报,2002,27(2):820-826.
    [115]中国地质学会工程地质专业委员会.膨胀岩学术讨论会会议总结[C].膨胀岩学术讨论会,大连,1986.
    [116]朱效嘉.软岩的水理性质[J].矿业科学技术,1996,4(3):46-50.
    [117]曲永新,张双喜,杨俊峰,等.中国膨胀性岩、土一体化工程地质分类理论与实践[M].北京:地震出版社,2000.
    [118]Holtz W. G, Gibbs J. J.. Engineering Properties of Expansive Clays[J]. Proc.Am. Soc. Civ. Eng.,1956,121:641-677.
    [119]陈宗基.地下巷道长期稳定性的力学问题[J].岩石力学与工程学报,1982,1(1):2-19.
    [120]朱珍德,邢福东,刘汉龙,等.红砂岩膨胀力学特性试验研究[J].岩石力学与工程学报,2005,24(4):596-600.
    [121]朱珍德,张爱军,邢福东.红山窑膨胀岩的膨胀和软化特性及模型研究[J].岩石力学与工程学报,2005,24(3):389-393.
    [122]王军,何淼,汪中卫.膨胀砂岩的抗剪强度与含水量的关系[J].土木工程学报,2006,39(1):98-102.
    [123]李杭州,廖红建,孔令伟,等.膨胀性泥岩应力—应变关系的试验研究[J].岩土力学,2007,28(1):107-109.
    [124]Amorima C.L.G., Lopesa R.T., Barrosob R.C., et al. Effect of clay-water interactions on clay swelling by X-ray diffraction[J]. Nuclear Instruments and Methods in Physics Research A,2007,580:768-770.
    [125]朱训国,杨庆.膨胀岩的判别与分类标准[J].岩土力学,2009,30(增2):174-177.
    [126]张向阳,曹平,赵延林,等.金川深部超基性岩水化作用及对力学性能影响[J].矿业工程研究,2009,24(3):14-18
    [127]张雯,曹平,张向阳,等.金川矿区岩石的膨胀和软化特性试验及分析[J].中南大学学报(自然科学版),2010,41(5):1913-1917
    [128]陈瑜,曹平,蒲成志,等.水-岩作用对岩石表面微观形貌影响的试验研究[J].岩土力学,2010,31(11):3452-3458
    [129]Rebinder P.A., Shreiner L.A., Zhigach K.F..Hardness reducers in drilling:a physico-chemical method of facilitating the mechanical destruction of rocks during drilling[M].Council for Scientific and IndustrialResearch,1948.
    [130]Logan J.M., Blackwell M.I..The influence of chemically active fluids on the frictional behavior of sandstone[J].EOS. Transactions, American Geophysical Union,1983,64(2):835-837.
    [131]Colback P.S.B., Wild B.L.. Influence of moisture content on the compress strength of rock. Proc.3rd Canadian Rock Mech symp[C]. University of Toronto,1965,385-391.
    [132]Burshtein L.S..Effect of moisture on the strength and deformability of sandstone[J].Journal of Mining Science,1969,5(5):573-576.
    [133]Bischoff J.L., Dickson F.W.. Seawater-basalt interaction at 2000℃and 500 bars:Implication for origin of sea floor heavy-metal deposits and regulation chemistry[J]. Earth Planet Sci. Lett,1975,25:385-397.
    [134]Hajash A., Archer P.. An experimental seawater/basalt interaction:effects of cooling[J]. Contrib Miner Petro,1980,75:1-13.
    [135]Mottle M.J., Holland L.D., Cotr R.F.. Chemical exchange during hydrothermal alteration of basalt by seawater-II[J]. Geochim Cosmochim Acta, 1979,43:869-884.
    [136]Seyfried W.E., Bischoff J.L. Low temperature basalt by seawater:An experimental study at 700℃ and 1500℃[J]. Geochim Cosmochim Acta, 1979,43:1937-1947.
    [137]Heggheim T., Madland M.V., Risnes R.,et al.A chemical induced enhanced weakening of chalk by seawater[J] Journal of Petroleum Science andEngineering,2005,46(3):171-184.
    [138]Atkinson B..Stress corrosion cracking of quartz:a note on the influence of chemical environment[J].Tectonophysics,1981,77(1-2):T1-T11.
    [139]Lajtai E.Z., Schmidtke R.H., Bielus L.P.. The effect of water on the time-dependent deformation and fracture of a granite[J]. International Journal of Rock Mechanics and Mining Sciences.1987,24(4):247-255.
    [140]Seedsman R.. The behaviour of clay shales in water[J]. Canadian Geotechnical Journal,1986,23(1):18-22.
    [141]Ojo O.. The effect of moisture on some mechanical properties of rock[J].Mining Science and Technology,1990,10(1):45-157.
    [142]Dunning J., Miller M..Effects of pore fluid chemistry on stable sliding of Berea sandstone[J].Pure and Applied Geophysics,1984,122(2):447-462.
    [143]Dunning J., Douglas B., Miller M., et al. The role of the chemical environment in frictional deformation:stress corrosion cracking and comminution[J]. Pageoph.,1994,143(1/2/3):151-178.
    [144]Feueht L.J., Logan J.M..Effects of chemically active solutions on shearing behavior of a sandstone[J].Tectonophysics,1990,175(1-3):159-176.
    [145]Dyke C.G.,Dobereiner L..Evaluating the strength and deformability of sandstones[J].Quarterly Journal of Engineering Geology and Hydrogeology, 1991,24(1):123-134.
    [146]Karfakis M.G, Akram M..Effects of chemical solutions on rock fracturing[J].International Journal of Rock Mechanics and Mining sciences, 1993,30(7):1253-1259.
    [147]Hawkins A.B., McConnell B.J..Sensitivity of sandstone strength and deformability to changes in moisture content[J].Quarterly Journal of Engineering Geology and Hydrogeology,1992,25(2):115-130.
    [148]Hutchinson A.J., Johnson J.B., Thompson G.E.,et al.Stone degradation due to wet deposition of pollutants[J].Corrosion science,1993,34(11):1881-1898.
    [150]Sausse J., Jacquot E., Fritz B., et al. Evolution of crack permeability during fluid-rock interaction. Example of the Brezouard granite(Vosges, France)[J].Tectonophysics,2001,336(1-4):199-214.
    [151]Su K., Hoteit N., Ozanam O..Desiccation and rehumidification effects on the thermohydromechanical behaviour of the callovo-oxfordian argillaceous rock[C].Elsevier Geo-Engineering Book Series, Elsevier, Stoekholm, Sweden,419-424.2004.
    [152]耿乃光,郝晋异,李纪汉,等.断层泥力学性质与含水量关系初探[J].地震地质,1986,3:58-62.
    [153]许东俊,耿乃光.含水粘土断层泥的现场大尺度剪切实验[J].地震研究, 1991,14(3):293-300.
    [154]陈钢林,周仁德.水对受力岩石变形破坏宏观力学效应的实验研究[J].地球物理学报,1991,34(3):335-342.
    [155]康红普.水对岩石的损伤[J].水文地质工程地质,1994,3:39-41.
    [156]李炳乾.地下水对岩石的物理作用[J].地震地质译丛,1995,(5):32-37.
    [157]汤连生.水-岩土反应的力学与环境效应研究[J].岩石力学与工程学报,2000,19(5):681-682.
    [158]汤连生.水-岩土化学作用的环境效应[J].中山大学学报(自然科学版),2001,40(5):103-107.
    [159]汤连生,张鹏程.水化学损伤对岩石弹性模量的影响[J].中山大学学报(自然科学版),2000,39(5):126-128.
    [160]汤连生,王思敬.工程地质地球化学的发展前景及研究内容和思维方法[J]大自然探索,1999,18(2):35-40.
    [161]谭卓英,刘文静,闭历平,等.岩石强度损伤及其环境效应实验模拟研究[J].中国矿业,2001,10(4):50-53.
    [162]谭卓英,柴红保,刘文静,等.岩石在酸化环境下的强度损伤及其静态加速模拟[J].岩石力学与工程学报,2005,24(14):2439-2448.
    [163]朱运明.酸性环境中砂岩强度、变形性质的实验研究[D].硕士论文,西安:西安理工大学,2001.
    [164]L.Ning, Z.Yunming, S.Bo,et al.A chemicaldamage model of sandstone in acid solution[J].International Journal of Rock Mechanics and MiningSciences, 2003,40(2):243-249.
    [165]霍润科,李宁,张浩博.酸性环境下类砂岩材料物理性质的试验研究[J].岩土力学,2006,27(9):1541-1544.
    [166]霍润科.酸性环境下砂浆-砂岩材料的受酸腐蚀过程及其基本特性劣化规律的试验研究[D].博士论文,西安:西安理工大学,2006.
    [167]周翠英,彭泽英,尚伟,等.论岩土工程中水岩相互作用研究的焦点问题-特殊软岩的力学变异性[J].岩土力学,2002,23(1):124-125.
    [168]朱珍德,邢福东,王思敬,等.地下水对泥板岩强度软化的损伤力学分析[J].岩石力学与工程学报,2004,23(52):4739-4743.
    [169]姜立春,陈嘉生.AMD蚀化砂岩的性征及其机理研究[J].矿业研究与开发,2006,26(6):27-31.
    [170]冯夏庭,丁梧秀.应力-水流-化学耦合下岩石破裂全过程的细观力学试验[J].岩石力学与工程学报,2005,24(9):1465-1473.
    [180]冯夏庭,潘鹏志,丁梧秀,等.结晶岩开挖损伤区的温度-水流-应力-化学耦合研究[J].岩石力学与工程学报,2008,27(4):656-663.
    [181]崔强,冯夏庭,程昌炳,等.化学腐蚀下岩土体力学特性变化的定量描述[J].东北大学学报(自然科学版),2008,29(12):1778-2781.
    [182]崔强,冯夏庭,薛强,等.化学腐蚀下砂岩孔隙结构变化的机制研究[J].岩石力学与工程学报,2008,27(6):1209-1216.
    [183]丁梧秀,冯夏庭.化学腐蚀下灰岩力学效应的试验研究[J].岩石力学与工程学报,2004,23(21):3571-3576.
    [184]丁梧秀,冯夏庭.灰岩细观结构的化学损伤效应及化学损伤定量化研究方法探讨[J].岩石力学与工程学报,2005,24(8):1283-285.
    [185]丁梧秀,冯夏庭.化学腐蚀下裂隙岩石的损伤效应及断裂准则研究[J].岩土工程学报,2009,31(6):899-904.
    [186]丁梧秀.水化学作用下岩石变形破裂全过程实验与理论分析[D].博士论文,武汉:中国科学院研究生院(武汉岩土力学研究所),2005.
    [187]崔强.化学溶液流动-应力耦合作用下砂岩的孔隙结构演化与蠕变特征研究[D].博士论文,沈阳:东北大学,2009.
    [188]X.T.Feng, S.L.Chen, S.J.Li.Effects of water chemistry on microcracking and compressive strength of granite[J].International Journal of Rock Mechanics and Mining Sciences,2001,38(4):557-568.
    [189]X.T.Feng, W.X.Ding.Experimental study of limestone micro-fracturing under a coupled stress,fluid flow and changing chemical environment[J]. International Journal of Rock Mechanics and Mining Sciences,2007, 44(3):437-448.
    [190]X.T.Feng,W.X.Ding, D.X.Zhang.Multi-crack interaction in limestone subject to stress and flow of chemical solutions[J].International Journal of Rock Mechanics and Mining Sciences,2009,46(1):159-171.
    [191]X.T.Feng, S.Li, S.Chen.Effect of water chemical corrosion on strength and cracking characteristics of rocks-a review[J].Key Engineering Materials, 2004,1355-1360.
    [192]陈四利,冯夏庭,李邵军.化学腐蚀对黄河小浪底砂岩力学特性的影响[J].岩土力学,2002,23(3):284-287.
    [193]陈四利,冯夏庭,李邵军.化学腐蚀下三峡花岗岩的破裂特征[J].岩土力学、2003,24(5):817-821.
    [194]陈四利,冯夏庭,周辉.化学腐蚀下砂岩三轴压缩力学效应的试验[J].东北 大学学报(自然科学版),2003,24(3):292-295.
    [195]陈四利,冯夏庭,周辉.化学腐蚀下砂岩三轴细观损伤机理及损伤变量分析[J].岩土力学,2004,25(9):1363-1367.
    [196]鲁祖德,丁梧秀,冯夏庭,等.裂隙岩石的应力-水流-化学耦合作用试验研究[J].岩石力学与工程学报,2008,27(4):796-804.
    [197]姚华彦,冯夏庭,崔强,等.化学溶液及其水压作用下单裂纹灰岩破裂的细观试验[J].岩土力学,2009,30(1):59-66.
    [198]姚华彦,冯夏庭,崔强,等.化学侵蚀下硬脆性灰岩变形和强度特性的试验研究[J].岩土力学,2009,30(2):338-344.
    [199]姚华彦.化学溶液及其水压作用下灰岩破裂过程宏细观力学试验与理论分析[D].博士论文,中国科学院研究生院(武汉岩土力学研究所),2008.
    [200]陈炳瑞,冯夏庭,姚华彦,等.水化学溶液下灰岩力学特性及神经网络模拟研究[J].岩土力学,2010,31(4):1173-1180
    [201]乔丽苹.砂岩弹塑性及蠕变特性的水物理化学作用效应试验与本构研究[D].博士论文,中国科学院研究生院(武汉岩土力学研究所),2008.
    [202]刘建,李鹏,乔丽苹,等.砂岩蠕变特性的水物理化学作用效应试验研究[J].岩石力学与工程学报,2008,27(12):2540-2550.
    [203]刘建,乔丽苹,李鹏.砂岩弹塑性力学特性的水物理化学作用效应-试验研究与本构模型[J].岩石力学与工程学报,2009,28(1):20-29.
    [204]李鹏,刘建,李国和,等.水化作用对砂岩抗剪强度特性影响效应研究[J].岩土力学,2011,32(2):380-386
    [205]汪亦显,曹平,黄永恒,等.水作用下软岩软化与损伤断裂效应的时间相依性[J].四川大学学报(工程科学版),2010,42(4):55-62
    [206]Snow D.T.. Rock Fracture Spacing, Openings and Porosities[J].J.Soil Mech. Found. Div., Proc. ASCE,1968,94(SM1):73-91.
    [207]Jones F.O.. A Laboratory Study of the Effects of Confining Pressure Flow and Storage Capacity in Carbonate Rocks[M].J. Petrol. Technol.1975.
    [208]Walsh J.B..New Model for Analyzing the Effect of Fracture on Compressibility[J]. J. Geophs. Resear.,1979,84(B7):3532-3536.
    [209]Walsh J.B..Effect of Pore Pressure and Confining Pressure on Fracture Premeability[J].Int:J. Rock Mech. Min Sci&Geomech. Abstr.1981,18(5): 429-435.
    [210]Barton N.. Strength Deformationed Conductivity Coupling of Rock Joints[J]. Int. J. Rock Mech. Min.Sci.&Geomech., Abstr.,1985,22(3):121-140.
    [211]Tsang Y.W., Witherspoon P.A.. Hydromechanical Behavior of a Deformable Rock Fracture Subject to Normal Stress[J]. J. Geophys. Resear.1981,86(b10): 9187-9198.
    [212]刘继山.单裂隙受正应力作用时的渗流公式[J].水文地质工程地质.1987,4:22-28.
    [213]Esaki J.. Shear-Flow Coupling Test on Rock Joints[J]. In:Proc.7th. Int. Conf. ISRM,1992.
    [214]陈祖安,伍向阳等.岩渗透率随静水压力变化的关系研究[J].岩石力学与工程学报.1995,6:155-159.
    [215]仵彦卿.裂隙岩体应力与渗流关系研究[J].水文地质工程地质.1995,12(2):30-35.
    [216]王媛,徐志英等.复杂裂隙岩体渗流与应力弹塑性全耦合分析[J].岩石力学与工程学报.2000,18(3):177-181.
    [217]赵延林.裂隙岩体渗流—损伤—断裂耦合的理论研究和工程应用研究[D].博士论文,长沙:中南大学,2009.
    [218]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997
    [219]曾国伟.含周期性分布缺陷压电材料的力电损伤分析[D].硕士论文,武汉:华中科技大学,2006.
    [220]徐剑.层状裂隙岩体弹塑性损伤特性的分析与研究[D].硕士论文,武汉:武汉理工大学,2008.
    [221]李传利.弹性损伤理论的几何—拓扑模型[D].硕士论文,西安:西安建筑科技大学,2008.
    [222]曾志兴.钢纤维轻骨料混凝土力学性能的试验研究及损伤断裂分析[D].博士论文,天津:天津大学,2002.
    [223]邓建华.膏溶角砾岩力学特性及水损伤模型研究[D].博士论文,上海:上海交通大学,2010.
    [224]Kachanov, L. M., On the creep fracture time[J]. Izv. AN SSR, Otd. Tekhn. Nauk,1958, (8):23-31.
    [225]Rabotnov Y.N. On the equation of state for creep[J]. Progress in Applied Mechanics.1963,307-315
    [226]Lemaitre J. and Chaboche J. L.. Aspect phenomen-ologique dela Ruptrue par endommagement[J]. demec. Appl..1978,2(3).
    [227]Murakami S.. Anisotropic aspects of material damage and application of continuum damage mechanics, continuum damage mechanics. Theory and Applications (Eds:Krajcinovc D./Lemaitre J. L.), Springer-Verlay Wien-New York. (1987):91-134.
    [228]Murakami S.. Mechanical modeling of material damage[J]. Journal of Applied Mechanics, Transactions ASME.1988,55(2):280-286.
    [229]Hult J.. Effect of voids on creep rate and strength, damage mechanics and continuum model[J] (Eds.:N.stubbs and Krajcinovc D.). ASCE, New York,1985,13-24.
    [230]Leckie, E A.. The micro- and macromechanics of creep rupture[J].Engineering Fracture Mechanics 1986,25(5-6):505-521.
    [231]韦立德.岩石力学损伤和流变本构模型研究[D].博士论文,南京:河海大学,2003
    [232]Dougill J.W., Lau J.C., Burt N.J.. Toward a theoretical model for progressive failure and softening in rock, concrete and similar materials [J].Mech in Engng.,ASCE-END.1976,335-355.
    [233]Dragon A., Mroz Z.. A Continuum model for plastic-brittle behaviour of rock and concrete[J]. International Journal of Engineering Science.1979, 17(2):121-137.
    [234]徐小敏.裂隙岩体损伤本构模型研究及应用[D].硕士论文,重庆:重庆大学,2007.
    [235]Loland K.E.. Concrete damage model for load-response estimation of Concrete[J]. Cement and Concrete Research,1980(10):392-492.
    [236]Mazars J.. A model of unilateral elastic damagible material and its application to concrete [C]. Proceedings of the RILEM, International Conference on Fracture Mechanics of Concrete, Lausanne, Switzerland,1985.
    [237]Rousselier G. Finite deformation constitutive relations including ductile fracture damage. Three-dimensional Constitutive relations and Ductile Fracture (Eds:S. Nemat-nasser), North-Holland Publishing Company,1981.
    [238]Krajcinovc D., Fonseka G U.. Continuous damage theory of brittle materials, part Ⅰ and part Ⅱ[J]. ASMEJ. Appl. Mech..1981,48(4):809-824.
    [239]Lemaitre J.. Continuous damage mechanics model for ductile fracture [J] Journal of Engineering Materials and Technology, Transactions of the ASME.1985,107(1):83-89.
    [240]Shen W., Peng. L. H. Yue, Shen Z., Tang X. D.. Elastic damage and energy dissipation in anisotropic solid material [J]. Engineering Fracture Mechanics. 1987,33(2):273-281.
    [241]Marigo J. J.. Modelling of brittle and fatigue damage for elastic material by growth of microvoids[J]. Eengineering Fracture Mechanics,1985, 21(4):861-874.
    [242]Ju J. W.. On energy-based coupled elastoplastic damage theories:constitutive modeling and computational aspects[J]. International Journal of Solids and Structures.1989,25(7):803-833.
    [243]Halm D., Dragon A.. A model of anisotropic damage by mesocrack growth; unilateral effect[J]. International Journal of Damage Mechanics.1996,5(4): 384-402.
    [244]Shao J. F.. Poroelastic behaviour of brittle rock materials with anisotropic damage[J]. Mechanics of Materials,1998,30(1):41-53.
    [245]Shao J. F, et al. Model of induced anisotropic damage in granites[J]. International Journal of Rock Mechanics and Mining Sciences.1999, 36(8):1001-1012.
    [246]Costin L. S..Time-dependent damage and creep of brittle rock[J]. Damage Mechanics and Continuum Modeling (Eds:N. Stubbs and D. Krajcinovic),ASCE.New York,1985:25-38.
    [247]Simo J. C., Ju J. W.. Strain-and stress-based continuous damage models,part I. formulation, part Ⅱ.Computational aspects. International Journal of Solids and Structures.1987,23(7):821-869.
    [248]王金龙,林卓英,吴玉山等.脆性岩石的损伤与裂隙扩展[J].岩土力学,1990,11(3):1-8.
    [249]李长春,付文生,袁建新等.考虑温度效应的岩石损伤内时本构关系[J].岩土力学,1991,12(3):1-10.
    [250]陶振宇,曾亚武,赵震英.节理岩体损伤模型及验证[J].水利学报,1991,6:52-58.
    [251]周光泉,陈德华,席道瑛.岩石连续损伤本构方程[J].岩石力学与工程学报,1995,14(3):229-235.
    [252]沈新普,泽农,慕容子,徐秉业.岩土材料弹塑性正交异性损伤耦合本构理论[J].应用数学和力学.2001,22(9):927-933.
    [253]张盛东.混凝土本构理论研究进展与评述[J].南京建筑工程学院学报,2002(3):44-53.
    [254]Budiansky, B., O'connell, R. J.. Elastic moduli of a cracked solid[J].International Journal of Solids and Structures.1976,12(2):81-97.
    [255]Gurson A. L.. Theory of ductile rupture by void nucleation and growth:Part I yield criteria and flow rules for porous ductile media[J]. Journal of Engineering Materials and Technology, Transactions of the ASME. 1977,99(H1):2-15.
    [256]Horii H., Nemat-Nasser S. Overall moduli of solids with microcracks:load-induced anisotropy[J]. Journal of the Mechanics and Physics of Solids.1983,31(2):155-171
    [257]Nemat-Nasser S., Obata M.. Microcrack model of dilatancy in brittle materials[J]. Journal of Applied Mechanics, Transactions ASME.1988, 55(1):24-35.
    [258]Bazant, Z. P., Prat, P. C.. Microplane model for brittle plastic material:part I Theory[J]. Journal of Engineering Mechanics.1988,114(10):1672-1688.
    [259]Bazant Z. P., Prat, P. C.. Microplane model for brittle plastic material:part Ⅱ.Verification[J]. Journal of Engineering Mechanics.1988, 114(10):1689-1702.
    [260]Bazant, Zdenek P., Ozbolt, Josko.. Nonlocal microplane model for fracture, damage, and size effect in structure s[J]. Journal of Engineering Mechanics. 1990,116(11):2485-2505.
    [261]卢应发,葛修润.岩石损伤本构理论[J].岩土力学,1990,11(2):67-71.
    [262]Ju J. W., Lee X.. Micromechanical damage models for brittle solids,part Ⅰ: tensile loadings [J]. Journal of Engineering Mechanics.1991, 117(7):1495-1514.
    [263]Lee X., Ju J. W.. Micromechanical damage models for brittle solids,part Ⅱ: compressive loadings[J]. Journal of Engineering Mechanics.1991,117(7): 1515-1536.
    [264]凌建明,孙钧.脆性岩石的细观裂纹损伤及其时效特征[J].岩石力学与工程学报.1993,12(4):8-15.
    [265]李广平,陶振宇.真三轴条件下的岩石细观损伤力学模型[J].岩土工程学报,1995,17(1):24-30.
    [266]杨更社,谢定义,张长庆等.岩石损伤特性的CT识别[J].岩石力学与工程学报,1996,15(1):48-54.
    [267]杨更社,谢定义,张长庆等.岩石单轴受力CT识别损伤本构关系的探讨[J].岩土力学,1997,18(2):29-34.
    [268]杨更社,谢定义,张长庆等.岩石损伤CT数分布规律的定量分析[J].岩石力学与工程学报,1998,17(3):279-285.
    [269]杨更社.岩石细观损伤力学特性及本构关系的CT识别[J].2000,25(增刊):102-106.
    [270]葛修润,任建喜,蒲毅彬等.煤岩三轴细观损伤演化规律的CT动态试验[J].岩石力学与工程学报,1999,18(5):497-502.
    [271]任建喜,葛修润,杨更社.单轴压缩岩石损伤扩展细观机理CT实时试验[J].岩土力学,2001,22(2):130-133.
    [272]任建喜,葛修润,杨更社.单轴压缩岩石损伤演化细观机理及其本构模型研究[J].岩石力学与工程学报,2001,20(4):425-431.
    [273]肖洪天,周维垣.脆性岩石变形与破坏的细观力学模型研究[J].岩石力学与工程学报,2001,20(2):151-155.
    [274]刘立,朱文喜,路军富等.层状岩体损伤演化与应变关系的研究[J].岩石力学与工程学报,2006,25(2):350-354.
    [275]Weibull W. Kg. Svenska Vetanskapsakad Handl.,151,Stockholm(1939).
    [276]Sahimi M., Arbabi S.. Mechanics of disordered solids. I. Percolation on elastic networks with central forces, Ⅱ. Percolation on elastic networks with bond-bending forces, Ⅲ. Fracture properties[J]. Physical Review B. 1993,47(2):695-722
    [277]吴政,张承娟.单向荷载作用下岩石损伤模型及其力学特性研究[J].岩石力学与工程学报,1996,15(1):55-61.
    [278]Khoroshun L. P., Nazarenk L. V. A model of the short-term damageability of transversally isotropic material[J]. International Applied Mechanics.2001, 37(1):66-74.
    [279]陈剑文,杨春和,高小平,等.盐岩温度与应力耦合损伤研究[J].岩石力学与工程学报,2005,24(11):1986-1991.
    [280]龚囱,曲文峰,行鹏飞,赵奎.岩石损伤理论研究进展[J].铜业工程,2011,1:7-11.
    [281]谢和平.岩石,混凝土损伤力学[M].徐州:中国矿业大学出版社,1990.
    [282]唐春安.岩石破裂过程中的灾变[M].北京:煤炭工业出版社,1993.
    [283]Curran D.R., Shockey D.A., Seaman L. Dynamic fracture criteria for a polycarbonate[J]. Journal of Applied Physics.1973,44(9):4025-4038.
    [284]柯孚久,白以龙,夏蒙芬.理想微裂纹系统演化的特征[J].中国科学(A辑),1990(6):621-631
    [285]柯孚久,白以龙,夏蒙芬.固体中微裂纹系统统计演化的基本描述[J].力学学报,1991,23(3):290-298.
    [286]Han W.S., Xia M.F., Bai Y.L.. Statistical formulation and experimental determination of growth rate of micrometer cracks under impact loading[J].International Journal of Solids and Structures.1997,34(22): 2905-2925.
    [287]夏蒙芬,韩闻生,柯孚久,白以龙.统计细观损伤力学和损伤演化诱致突变(Ⅰ)[J].力学进展,1995,25(1):1-40
    [288]徐卫亚,韦立德.岩石损伤统计本构模型的研究[J].岩石力学与工程学报,2002,21(6):787-791.
    [289]杨圣奇,徐卫亚,韦立德,等.单轴压缩下岩石损伤统计本构模型与试验究[J].河海大学学报,(自然科学版),2004,32(40):200-203.
    [290]李树春,许江,李克钢,等.基于Weibull分布的岩石损伤本构模型研究[J].湖南科技大学学报(自然科学版),2007,22(4):65-68.
    [291]曹文贵,方祖烈,唐学军.岩石损伤软化统计本构模型之研究[J].岩石力学与工程学报,1998,17(6):628-633.
    [292]曹文贵,赵明华,刘成学.基于Weibull分布的岩石损伤软化模型及其修正方法研究[J].岩石力学与工程学报,2004,23(19):3226-3231.
    [293]曹文贵,赵明华,刘成学.基于统计损伤理论的莫尔-库仑岩石强度判据修正方法之研究[J].岩石力学与工程学报,2005,24(14):2403-2408.
    [294]曹文贵,张升.基于Mohr-Coulomb准则的岩石损伤统计分析方法研究[J].湖南大学学报(自然科学版),2005,32(1):4347.
    [295]曹文贵,张升,赵明华.软化与硬化特性转化的岩石损伤统计本构模型之研究[J].工程力学,2006,23(11):110-115.
    [296]曹文贵,张升,赵明华.基于新型损伤定义的岩石损伤统计本构模型探讨[J].岩土力学,2006,27(1):41-46.
    [297]曹文贵,莫瑞,李翔.基于正态分布的岩石软硬化损伤统计本构模型及其参数确定方法探讨[J].岩土工程学报,2007,29(5),671-675.
    [298]曹文贵,赵衡,张玲,张永杰,考虑损伤阀值影响的岩石损伤统计软化本构模型及其参数确定方法[J].岩石力学与工程学报,2008,27(6):1148-1154.
    [299]岳洋.基于不同分布的岩石损伤本构模型的比较[J].山西建筑,2010,36(24):137-138
    [300]游强,游猛.岩石统计损伤本构模型及对比分析[J].兰州理工大学学报, 2011,37(3):119-123
    [301]范广勤.岩土工程流变力学[M].北京:煤炭工业出版社,1993.
    [302]赵延林,曹平,文有道,汪亦显,柴红保.岩石弹黏塑性流变试验和非线性流变模型研究[J].岩石力学与工程学报,2008,27(3):477-486
    [303]Griggs, D. T. Creep of rocks [J]. Journal of Geology,1939,47:225-251
    [304]G.Vouille, S.M.Tijani and F.de Grenier, Experimental determination of the reological behvalour of Tersanne rock salt, Proc.of the lth Conference on the Mechanical Behvalour of salt,1981,408-420
    [305]Ito H,Creep of rock based on long-term experimentes.Proc.of 4th Cong of ISRM,1983
    [306]Ito H.and Sasshima S.,A ten year creep experiment on small rock specimens[j].Int.J.Rock Mech. Min.Sci.Geomech. Abstr.1987,24(2):113-121
    [307]Ito H.,The phenomenon and examples of rock creep.In:Hudson,J.A.,et al. (Eds.), Comprehensive Rock Engineering,vol.3.Pergamon Press.osford,1993, pp:693-708
    [308]陈宗基,康文法,黄杰藩.岩石的封闭应力、蠕变和扩容及本构方程[J].岩石力学与工程学报.1991,10(4):299-312
    [309]Okubo S, Nishimatsu Y, Fukui K. Complete creep curves under uniaxial compression [J]. Int. J. Rock Mech. Min Sci.Geomech. Abstr.1991,28 (1): 77-82
    [310]季明.湿度场下灰质泥岩的力学性质演化与蠕变特征研究[D].博士论文,徐州:中国矿业大学,2009.
    [311]杨建辉.砂岩单轴受压蠕变试验现象研究[J].石家庄铁道学院学报.1995,8(2):70-80
    [312]李永盛.单轴压缩条件下四种岩石的蠕变和松弛试验研究[J].岩石力学与工程学报.1995,14(1):39-47
    [313]邱贤德,庄乾城.岩盐流变特性的研究[J].重庆大学学报(自然科学版),1995,18(4):96-103
    [314]杨淑碧,徐进,董孝璧.红层地区砂泥岩互层状斜坡岩体流变特性研究[J].1996,7(2):12-24
    [315]Maranini E, Brignoli M. Creep behavior of a weak rock:experimental characterization[J]. International Journal of Rock Mechanics and Mining Sciences,1999,36(1):127-138
    [316]赵永辉,何之民,沈明荣.润扬大桥北锚碇岩石流变特性的试验研究[J].岩 土力学,2003,24(4):583-586
    [317]李化敏,李振华,苏承东.大理岩蠕变特性试验研究[J].岩石力学与工程学报,2004,23(22):3745-3749
    [318]胡玉银.黏脆性岩石长期力学性质试验研究及时效强度理论[D].博士论文,上海:同济大学,1996
    [319]朱合华,叶斌.饱水状态下隧道围岩蠕变力学性质的试验研究[J].岩石力学与工程学报,2002,21(12):1791-1796
    [320]赵法锁,张伯友,彭建兵等.仁义河特大桥南桥台边坡软岩流变形研究[J].岩石力学与工程学报,2002,21(10):1527-1532
    [321]李铀,朱维申,白世伟,等.风干与饱水状态下花岗岩单轴流变特性试验研究[J].岩石力学与工程学报,2003,22(10):1673-1677
    [322]刘光廷,胡昱,陈凤岐等.软岩多轴流变特性及其对拱坝的影响[J].岩石力学与工程学报,2004,23(8):1237-1241
    [323]杨彩红,王永岩,李剑光,等.含水率对岩石蠕变规律影响的试验研究[J].煤炭学报,2007,32(7):695-699
    [324]徐辉,胡斌,唐辉明等.饱水砂岩的剪切流变特性试验及模型研究[J].岩石力学与工程学报,2010,29(增1):2775-2781
    [325]邓雨天.岩石力学的弹塑粘性理论基础[M].北京:煤炭工业出版社,1988
    [326]刘雄.岩石流变学概论[M].北京:地质出版社,1994.
    [327]刘宝琛.矿山岩体力学概论[M].长沙:湖南科学技术出版社,1982
    [328]张清,杜静.岩石力学基础[M].北京:中国铁道出版社,1997
    [329]孙均,张德兴,张玉生.深层隧道围岩的粘弹-粘塑性有限元分析[J].同济大学学报,1981(1):10-25
    [330]马明军.岩石流变性的试验研究和理论分析[D].硕士论文,长沙:中南工业大学,1986
    [331]龚晓南,袁静,益德清.岩土流变模型研究的现状与展望[J].工程力学,2000.增刊:145-155
    [332]肖树芳.泥化夹层蠕变全过程的模型及微结构的变化[[J]。岩石力学与工程学报,1987,6(2):113-124
    [333]邓荣贵,周德培,张悼元等.一种新的岩石流变模型[J].岩石力学与工程学报,2001,20(6):780-784
    [334]陈沅江,潘长良,曹平等.软岩流变的一种新力学模型[J].岩土力学,2003,24(2):209-214
    [335]陈沅江,潘长良,曹平等.基于内时理论的软岩流变本构模型[J].中国 有色金属学报,2003,13(3):735-742
    [336]陈沅江.岩石流变的本构模型及其智能辨识研究[D].博士论文,长沙:中南大学,2003
    [337]曹树刚,边金,李鹏.软岩蠕变试验与理论模型分析的对比[J].重庆大学学报,2002,25(7):96-98
    [338]曹树刚,边金,李鹏.岩石蠕变本构关系及改进的西原正夫模型[J].岩石力学与工程学报,2002,21(5):632-634
    [339]韦立德,徐卫亚,朱珍德,等.岩石黏弹塑性模型的研究[J].岩土力学,2002,23(5):583-586
    [340]杨圣奇,徐卫亚,杨松林,等.龙滩水电站泥板岩剪切流变力学特性研究[J].岩土力学,2007,28(5):898-902
    [341]徐卫亚,周家文,杨圣奇,等.绿片岩蠕变损伤本构关系研究[J].岩石力学与工程学报,2006,25(增):3093-3097
    [342]徐卫亚,杨圣奇,杨松林,等.绿片岩三轴流变力学特性的研究(Ⅰ):试验结果[J].岩土力学,2005,26(4):531-537
    [343]徐卫亚,杨圣奇,谢守益,等.绿片岩三轴流变力学特性的研究(Ⅱ):模型分析[J].岩土力学,2005,26(5):593-598
    [344]吴立新,王金庄,孟胜利.煤岩流变模型与地表二次沉陷研究[J].地质力学学报,1997,3(3):29-35
    [345]丁秀丽,刘建,刘雄贞.三峡船闸区硬性结构面蠕变特性试验研究[J].长江科学院院报,2000,17(4):30-33
    [346]孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社,1999.
    [347]Gnirk P F, Johnson R E. The deformational behavior of a circular mine shaft situated in a viscoelastic medium under hydrostatic stress//Proceedings of the 6th symposium on rock mechanics, Rolla, Missouri,1964:231-259
    [348]Serata S. Theory and model of underground opening and support system.// Proceedings of the 6th symposium on rock mechanics, Rolla, Missouri,1964: 260-292
    [349]于学馥,郑颖人,刘怀恒,等.地下工程围岩稳定性分析[M].北京:煤炭工业出版社,1983
    [350]朱维申.黏弹塑性介质中围岩与衬砌的应力状态[J].力学学报,1981,13(1):35-46
    [351]于青春,薛果夫,陈德基.裂隙岩体一般块体理论[M],北京:中国水利水电出版社,2007
    [352]徐卫亚,杨圣奇.节理岩石剪切流变特性试验与模型研究[J].岩石力学与工程学报,2005,24(S2):5536-5542.
    [353]朱珍德,李志敬,朱明礼,等.岩体结构面剪切流变试验及模型参数反演分析[J].岩土力学,2009,30(1):99-104.
    [354]李志敬,朱珍德,朱明礼,等.大理岩硬性结构面剪切蠕变及粗糙度效应研究[J].岩石力学与工程学报,2009,28(S1):2605-2611.
    [355]朱维申,郑文华,王文涛.新型节理岩体损伤流变模型数值模拟研究[J].岩土工程学报,2010,32(7):1011-1016.
    [356]郑少河.裂隙岩体渗流场-损伤场藕合理论研究及应用[D].武汉:中国科学院武汉岩土力学研究所,2000:56-74.
    [357]易顺民,朱海珍.裂隙岩体损伤力学导论[M].北京:科学出版社,2005:21-24.
    [358]唐春安,杨天鸿,李连崇,等.孔隙水压力对岩石裂纹扩展影响的数值模拟[J].岩土力学,2003,24(增):17-20.
    [359]江涛.基于细观力学的脆性岩石损伤-渗流藕合本构模型研究[D].南京:河海大学,2006:88-96
    [360]庄宁.裂隙岩体渗流应力藕合状态下裂纹扩展机制及其模型研究[0].上海:同济大学,2006:56-86.
    [361]李丽娟.金川矿山深部岩石岩爆倾向性研究[D].硕士论文,长沙:中南大学,2009
    [362]汪亦显.节理岩体力学参数测定及处理方法研究[D].硕士论文,长沙:中南大学,2007
    [363]张雯.金川软岩岩石工程力学性质及巷道锚固参数优化[D].硕士论文,长沙:中南大学,2009
    [364]张宁.岩体初始地应力场发育规律研究[D].硕士论文,杭州:浙江大学大学,2002
    [365]张耀平.矿山空区诱发的岩移特征及覆盖层冒落效应研究[D].博士论文,长沙:中南大学,2010
    [366]田涛.长城窝堡井田开采引起地应力变化及对科尔康油田的影响研究[D].硕士论文,阜新:辽宁工程技术大学,2004
    [367]马宇.金川二矿区地应力场研究与地下工程稳定性[D].博士论文,北京:中国地质科学院,2006
    [368]张小飞.露天矿岩质边坡稳定性分析及开挖边坡角的确定[D].硕士论文,长沙:中南大学,2008
    [369]秀文.蒙脱石的性能和应用[J].精细化工原料及中间体,2004,11:9-11
    [370]汪亦显,曹平.水化学腐蚀下岩石损伤力学效应研究[J].南华大学学报(自然科学版),2009,23(1):27-30
    [371]杨兴华.低渗透油藏注水开发中粘土矿物的变化及作用分析[D].硕士论文,大庆:大庆石油学院,2008
    [372]鲍晨炜.长弛豫LF-NMR仪器系统构建与应用方法研究[D].硕士论文,杭州:浙江工商大学,2010
    [373]陈瑜.水—岩作用下裂隙岩体力学性质及应力场—渗流场耦合作用分析[D].硕士论文,长沙:中南大学,2010
    [374]李娜.自然与饱水状态下金川二矿区深部岩石流变特性分析[D].硕士论文,长沙:中南大学,2011
    [375]李娜,曹平,衣永亮,等.分级加卸载下深部岩石流变实验及模型[J].中南大学学报(自然科学版),2011,42(11):3465-3471
    [376]杨圣奇.岩石流变力学特性的研究及其工程应用[D].博士论文,南京:河海大学,2006
    [377]Priest,S.D. and J.Hudson, Discontinuity spacing in rock. International Journal of Rock Mechanics and Mining Sciences,13:135-148,1976
    [378]张有天.岩石水力学与工程[M].北京:中国水利水电出版社2005:68-99.
    [379]Call R.D. Estimation of jointed set characteristicas from surface mappings [C] //Proe.17th U.S.Symp Rock Mec,1976(ZB):21-29.
    [380]Cruden D.E. Describing the size of discontinuities [J]. Int.J.RockMech.Min.Sci.& Geomech.Abstr.,1977,14(3):133-137.
    [381]Priest S.D., J.A. Hudson. Estimation of discontinuity spacing and trace length using scanline survey [J].Int.J.Rock Mech.Min.Sci.and Gromech.Abstr.,1981, 18(3):183-197.
    [382]刘波,韩彦辉.FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005
    [383]梁海波,张明,李仲奎,谷兆祺.快速拉格朗日差分法及其应用[J].红水河,1997,16(2):20-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700