用户名: 密码: 验证码:
潮流能直驱式海水淡化装置技术及仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用海洋中可再生能源进行海水淡化是目前的研究热点,现有方案大都是先把可再生能源转换成电能,存储在电池里,然后再利用电能进行海水淡化。使用电池会增加很多投资,废弃电池处理不好还会带来严重的环境问题,针对上述弊病,本文提出了一种海水淡化新方案,此种方法利用透平把海洋中的潮流能转化成机械能,然后利用机械能直接驱动反渗透海水淡化装置制造淡水,不需要经过中间电能转化。这种方案能否可行涉及一系列关键问题。本文通过计算机仿真及水槽缩比实验对这些问题展开了研究,研究内容如下:
     1)对我国海岛及潮流资源情况进行了分析,在此基础上提出有针对性的设计。提出了潮流能直驱式海水淡化新方案的整体设计以及海洋环境下投放、工作方式的设计。装置主体主要包括三个部分:透平部分、动力传输部分、反渗透部分。
     2)为适应低流速的海洋潮流条件,进行低流速高效透平的结构参数的设计,参数包含如透平叶片翼型、透平半径、叶片数、攻角、实度等,通过合理的设计使之能产生足够的扭矩驱动反渗透设备的高压泵。面对海洋强电解质腐蚀性的恶劣环境,探索经济有效的密封及防腐的解决办法。设计采用磁力耦合为动力传输方式,解决动力传输时的动密封问题,并采用非金属材料设计耐海水轴承及主轴。整体流线型设计,采用非金属材料作为外壳,具有足够的强度,可以抵御海水的腐蚀及风浪的破坏,确保长时间在海洋环境下运行。对相对成熟的反渗透系统进行了能量回收的改进。
     3)根据工程流体力学相似原理及相似关系对所设计的方案进行了缩比计算机仿真,获取透平相关数据,验证透平设计的合理性,确定关键参数的选取,纠正设计的偏颇;通过真实水槽的缩比实验验证整体设计的可行性、合理性;最后对设计的方案进行了产水量估算。
     采用机械能直驱方式最大的优势在于不需要电能转化,减少设备投资,避免电池废弃污染,更利于环境保护,节能减排,同时可以使得整个系统的效率得到提高,难点在于如何解决动力传输时的密封和低流速能量获取。仿真和实验的研究结果表明在流速0.6m/s潮流条件下进行机械能直驱式海水淡化是完全可行的。
Using renewable energy to provide energy for the desalination is currently theresearch hotspot. Approach taken by most existing programs is that renewable energyis first converted into electrical energy stored in the battery, and then use electricenergy for desalination. Use of battery will increase investment, waste batteries cancause serious environmental problems. Response to these shortcomings, this paperproposes a new desalination program, this method is that the turbines convert the tidalcurrent energy into rotational mechanical energy, mechanical energy is then used todirectly drive a reverse osmosis desalination device manufacturing fresh water, doesnot require electrical energy conversion. Program involves a series of key issues.Through computer simulation and experimental flume scaled carried out research onthese issues, as follows:
     1). According to the analysis of island resource and the tidal currents resourceproposed the overall design scheme. Apparatus comprises three main parts: theturbine section, the power transmission portion, the reverse osmosis section.
     2). In order to meet the low flow of tidal currents, low flow efficient turbinestructural parameters are designed, such as turbine blade airfoil, turbine radius, thenumber of blades, angle of attack, etc. Through rational design so that it can generateenough torque to drive the high-pressure pump of reverse osmosis equipment. Theface of strong electrolyte corrosive marine harsh environment, to explorecost-effective sealing and corrosion protection solutions. Using magnetic coupling ofthe power transmission to solve the problem of dynamic sealing power transmission,and the use of non-metallic materials to solve the problem of seawater corrosionbearings and spindles. Streamlined design, the use of non-metallic material as thehousing, with sufficient strength, to resist seawater corrosion and damage of thewaves, ensuring the long life in the marine environment. Improved the relativematurity of the reverse osmosis system through energy recovery.
     3). According to similar principles of fluid mechanics and similar relationships,The design of the program was scaled computer simulation to get the turbine-relateddata to verify the reasonableness of turbine design, sure to select the key parametersto correct design biased, Verify the feasibility and rationality of the overall design byScaled tank experiments,finally estimate the water production.
     The biggest advantage of direct drive mode using mechanical energy is that noelectric energy transformation, reducing equipment investment and avoid batterywaste pollution, more conducive to environmental protection, low-carbon emissions,while making the overall system efficiency is improved, the difficulty lies in how to solve the power transmission sealing and low flow energy harvesting. Simulation andexperimental results show that the flow rate of0.6m/s tide conditions direct-drivemechanical energy desalination is entirely feasible.
引文
[1]王国强,初喜章,吴水波等,小型海岛海水淡化解决方案[J].天津化工,2012,26(1):32-35
    [2]Kay Paulsen,Frank Hensel.Introduction of a new energy recoverysystem optimized for thecombination with renewable energy[J].Desalination,2005,184:211-215.
    [3]Loupasis S.Technical analysis of existing RES desalination schemes(Commission of theEuropean Communities Directorate-Generalfor Energy and Transport[A].Altener Programme,Renewable34Energy Driven Desalination Systems REDDES,Contract number411030/Z/01-081/2001)[C].2002
    [4]Mathioulakis E,Belessiotis V,Delyannis E.Desalination by using-alternative energy.Review andstate-of-the-art[J].1Desalination,2007,203:346-365.
    [5]Carta J A,Gonzdez J,Subiela V.The SDAWES Project:an ambitious R&D prototype for windpowered desalination[J].1Desalination,2004,161:33-48.
    [6]MohamedAEltawil,Zhao ZM,Yuan LQ.Renewable energy powered desalination systems:technologies and econnmics state of theart[A].Twelfth International Water TechnologyConference[C].Alexandria, Egypt,2008.
    [7]Plantikow U1Wind Powered MVC SeawaterDesalination2Operational Results[J].1Desalination,1999,122:29122991.
    [8]I de la Nuez Pestana et al,Optimization of RO desalination systemspowered by renewableenergies. Part I: Wind energy[J].1Desalination,2004,160:293-299.
    [9]郑宏飞,何开岩,陈子乾.太阳能海水淡化技术[M].北京:北京理工大学出版社,2005.
    [10]Farwali M.A.Theoretical study of multi-stage-flash distillation using solar energy[J]. Energy,1997,22(1):1-5.
    [11]任建莉,钟英杰,张雪梅等.海洋波能发电的现状与前景[J].浙江工业大学学报,2006,31(1):69-73.
    [12]郑章靖,徐青,李军等,海洋能海水淡化研究进展[J].水处理技术,2011,37(9):24-27
    [13]PADavies. Wave-powered desalination:resource assessment and review of technology[J].Desalination,2005,168:97-109.
    [14]AJ Crerara,C LPritchard.Wavepowered desalination:experimentaland mathematicalmodelling[J]. Desalination,1991,81:391-398.
    [15]AJ Crerara,R E Lowa,C LPritchard.Wave powered desalination[J]. Desalination,1987,67:127-137.
    [16]N SHARM,PURNIMAJALIHAL.Wave powered desalination system[J].Energy,2003,29:1659-1672.
    [17]Lourdes Garcia Rodriguez.Renewable energy applications in desalination:state of the art[J].Solar Energy,2003,75:381-393.
    [18]Douglas C Hicks,George R Mitcheson,Charles M Pleass,et al.Delbouy:ocean wave-poweredseawater reverse osmosis desalinationsystems[J]. Desalination,1989,73:81-94.
    [19]孙业山,游亚戈.波浪能海水淡化的应用研究[J].水利水电技术,2009,40(9):8-11.
    [20]N Sharmila,Purnima Jalihal,AK Swamy,M Ravindran.Wavepoweredd esalination system[J].Energy,2004,29:1659-1672.
    [21]孙业山,游亚戈,马玉久,等.波浪能海水淡化的应用研究[J].可再生能源,2007,25(2):76-78.
    [22]ECOS Magazine2007(Issue137).
    [23]http://www.popularmechanics.com/science/earth/4334777.html Wave Power DesalinationPlant Coming Soon to Texas
    [24]Denver Cheddie,Aatma Maharajh,Aneil Ramkhalawan,et al.Transient modeling of wavepowered reverse osmosis[J].Desalination,2010,260:153-160.
    [25]Matt Folley,Baltasar Peate Suarez,Trevor Whittaker.An autonomous wave-powereddesalination system[J]. Desalination,2008,220:412-421.
    [26]Matt Folley, Trevor Whittaker.The cost of water fro m a n autonomous wave-powereddesalination plant[J]. Renewable Energy,2009,34:75-81.
    [27]王越,苏保卫,徐世昌等.反渗透海水淡化技术最新研究动态[J].膜科学与技术,2004,24(2):49-52.
    [28]C Charcosset,C Falconet,M Combe.Hydrostatic pressure plantsfor desalination via reverseosmosis[J].Renewable Energy,2009,34:2878-2882.
    [29]James W chenoweth.Reverse osmosis desalination apparatus andmethod: US,4125463[P].1978-11-14.
    [30]Roger J Raether,Twin Brooks,S Dak.Apparatus for desalinatingsalt water: US,5916441[P].1999-06-29.
    [31]顾志龙.深井水柱压差淡净化方法及设备:中国,1324768A[P].2001-12-05.
    [32]PICCARI,Francesco,Maria.Method and plant for desalting seawaterexploiting hydrostaticpressure: WO,006323[P].1999-11-02.
    [33]吴光夏,王维娜,钟慧.在海水深处进行海水淡化的装置:中国,1654342A[P].2005-08-17.
    [34]SAl Kharabsheh.An innovative reverse osmosis desalination system using hydrostaticpressure[J]. Desalination,2006,196:210-214.
    [35]叶晓琰,许国乐,胡敬宁.反渗透海水淡化高压泵的优化选择[J].水处理技术,2008,34(9):79-91.
    [36]Fergal O Rourke,Fergal Boyle,Anthony Reynolds.Tidal energyupdate2009[J].Applied Energy,2010,87:398-409.
    [37]V Belessiotis,E Delyannis.The history of renewable energies forwater desalination[J].Desalination,2000,128:147-159.
    [38]李书恒,郭伟,朱大奎.潮汐发电技术的现状与前景[J].海洋科学,2006,30(12):82-86.
    [39]刘业凤,赵奎文.潮汐能太阳能多效蒸馏海水淡化装置的研究[J].太阳能学报,2009,30(3):311-315.
    [40]Kuiwen Zhao,Yefeng Liu.Theoretical study on multi-effect solardistillation system driven bytidal energy[J].Desalination,2009,249:566-570.
    [41]游亚戈,李伟,刘伟民,等.海洋温差能发电技术的现状与前景[J].电力系统自动化,2010,34(14):1-12.
    [42]M Reya,F Lauro.Ocean thermal energy and desalination[J].Desali-nation,1981,39:159-168.
    [43]金志江,张素娟,黄国根,等.基于海洋温差能的海水淡化小试系统的建立及试验研究[J].能源与环境,2008(4):41-45.
    [44]黄国根.新型海水淡化工艺及装置的研究[D].杭州:浙江大学,2006.
    [45]王迅,李赫,谷琳.海水温差能发电的经济和环保效益[J].海洋科学,2008,32(11):84-87.
    [46]南海问题实质:联合国海洋法公约200海里-和平中国[EB/OL].-《网络(http://forum.china.com.cn/thread-1077241-1-1.html)》-2013-04-05-
    [47]张德山.我国海岛开发现状与发展[J].海洋信息,1998.610-11
    [48]Robin Pelc,Rod M Fujita.Renewable energy from the ocean[J].Marine Policy,2002,26:471-479.
    [49]王传崑.海洋能的特点[J].太阳能,2008,10:20-21.
    [50]王传崑,卢苇.海洋能资源分析方法及存储评估.北京:海洋出版社,2009.
    [51]国家海洋局2011年中国海洋环境状况公报2012.6
    [52]王传崑.海洋能及其分类[J].太阳能,2008,9:17-18.
    [53]郭成涛.建议研究开发我国东南沿海丰富的潮汐能源.海洋技术,2002,21(3):19-21.
    [54]FRAENKEL P L. Power from marine currents. Proceedings of the Institution of MechanicalEngineers: PartA Journal of Power and Energy,2002,216(1):1-14.
    [55]BAHAJ A S, MYERS L E. Fundamentals applicable to the utilisation of marine currentturbines for energy production. Renewable Energy,2003,28(14):2205-2211.
    [56]CHARLIER R H. A“sleeper”awakes: tidal current power. Renewable and Sustainable EnergyReviews,2003,7(6):515-529.
    [57]王传崑,施伟勇.中国海洋能资源的储量及其评价//中国可再生能源学会海洋能专业委员会第一届学术讨论会文集,2008年3月27-28日,杭州:175-177.
    [58]高从堦,陈国华.海水淡化技术与工程手册[M].北京:化学工业出版社,2004.
    [59]反渗透法_百度百科[EB/OL].《网络(http://baike.baidu.com/view/1168456.htm)》
    [60]反渗透法_互动百科[EB/OL].-《网络(http://www.hudong.com/wiki/%e5%8f%8d%e6%b8%97%e9%80%8f%e6%b3%95)》
    [61]海水淡化-百度百科[EB/OL].-《网络(http://baike.baidu.com/link?url=pd34dNSMk8haLl12Zxh4czhycEMfkYXEoPGpTIw7JgXcpO7XV5SruykYDnt9BcCg)》-
    [62]渗透压-A+医学百科[EB/OL].-《网络(http://baike.a-hospital.com/w/%e6%b8%97%e9%80%8f%e5%8e%8b)》-2011-03-27
    [63]王越,苏保卫,徐世昌,等.反渗透海水淡化技术最新研究动态[J].膜科学与技术,2004,24(2):49-52.
    [64]解利昕,阮国岭,张耀江.反渗透海水淡化技术现状与展望[J].中国给排水,2000(3):24-27.
    [65]AGnmdisch, BPSchneider. Optimising energy consumption in SWRO systems withbrineconcentrators[J]. Desalination,2001,138:223-229.
    [66]Ghazi AI-Enezi.Design consideration of RO units:case studies[J]. Desalination,2002,153:281-286.
    [67]JIMarriott. Detailed mathematical modeling of membrane modules[J]. Comp ChemEng.,2001,25:693-700.
    [68]谭永文,张希建,陈文松,等.荣成万吨级反渗透海水淡化示范工程[J].水处理技术,2004,30(3):157-161.
    [69] GB/T13307-1991.离心泵效率[S].北京:中国标准出版社,1991.
    [70]谈明高,刘厚林,袁寿其.离心泵水力损失的计算[J].江苏大学学报:自然科学版,2007,28(5):405-408.
    [71]赵进平.发展海洋监测技术的思考与实践[M].北京:海洋出版社,2005.
    [72]玻璃钢[EB/OL].《网络(http://houtai.ggsgg.com.cn/chtml/3163.shtml)》-2012-02-22
    [73]聚四氟乙烯_百度百科[EB/OL].《网络(http://baike.baidu.com/view/33744.html?wtp=tt)》-2010-05-23
    [74]聚四氟乙烯的物理力学研究[EB/OL].-《网络(http://blog.china.alibaba.com/article/i30763008.html?domainid=mybmc)》-2013-02-23
    [75]ABS塑料-百度百科[EB/OL].http://baike.baidu.com/link?url=y1Dd3cPh1iNCzRySTa6ZNtvGBM7sCyswGaOWfW6_JQZcd5LrAg0kS8QPXpeDuSVc
    [76]流线型-百度百科-[EB/OL].《网络(http://baike.baidu.com/link?url=H3UCnndPjW5rYnqtIh-5ml9hZ9uqFix-XxpdwWWyWkp911QxVJvt7-I3IsZ3pG6l)》
    [77]透平机械-汽机技术-电力百科-中国电力联盟-www.cnpou.com-[EB/OL].《网络(http://bk.cnpou.com/index.php?doc-view-122.html)》-
    [78]杨琳,陈乃祥.水力机械转轮三维反问题研究及其新进展[J].水力发电学,2004,23(1):97-101.
    [79]张富钦.国内外水轮机技术发展动态[J].东方电机,1998,(1):1-12.
    [80]廖伟丽,林汝长,陈乃祥.流体机械叶轮设计的研究与发展[M].力学进展,1997,27(3):372-388.
    [81]Keek H, Cuenod R, Grunder R. Recent developments in runner replacement [J]. Hydropowerand Dams,1996,(3):21-24.
    [82]齐学义.三维湍流流动计算方法在中小混流式转轮增容改造中的应用[J].甘肃工业大学学报,2001,27(1):53-55.
    [83]成明.垂直轴潮流水轮机水动力性能与数值模拟研究[D].华北电力大学,2012
    [84]王传崑,卢苇.海洋能资源分析方法及储量评估编著[M].北京:海洋出版社,2009,130-154.
    [85]贝茨理论-百度文库[EB/OL].《网络(http://wenku.baidu.com/view/1d7257c5aa00b52acfc7cac5.html)》
    [86]廖伟强,张斌,曾德长.磁力耦合及其应用设计[J].起重运输机械,2007,4:44-48.
    [87]历建刚.泵用磁力驱动器的设计[J].延边大学农学学报,2008,30(4)
    [88]赵家文.磁力耦合联轴器及其应用[J].机械设计与制造工程,2002,(31)2:74-77.
    [89]李志鹏.磁力耦合联轴器优化设计数学模型[J].农业机械学报,1996,(27)1:125-128.
    [90]李国坤,贾汝正,姬全胜.磁力传动和磁力泵[J].中国稀土学报,1994,12,534-537.
    [91]赵克中,徐成海,窦淑萍,等.磁力驱动器涡流损失的研究[J].化工机械,2003,30(6),326-328,346
    [92]赵克中.磁力驱动技术与设备[M].北京:化学工业出版社,2003.
    [93]冯忠明,陈存东.磁力泵涡流损失的计算分析与应用[J].通用机械,2005(4),81-84.
    [94]袁建生,宗伟.计算三维涡流场的三分量边界元法[J].中国电机工程学报,1999,19(5),27-29.
    [95]陈存东,薛宽容,屠可可.磁力传动泵的涡流问题[J].石油化工设备技术,2003,24(2),33-36,46.
    [96]胡才定. CNH-M磁力泵碳化硅轴承的改进[J].广东化纤,2001(1),53-55.
    [97]赵克中,杨昆元.防腐轴承的试验研究[J].甘肃科学学报,2001,13(4),70-73.
    [98]施卫东,魏东.磁力泵中磁力驱动装置的设计[J].四川工业学院学报.1999,(18)4:6-9.24(2),
    [99]谭庆昌,李为,辛镝,等.平面永磁联轴器传递力矩的研究[J].机械工程学报,1993,29(3),86-90.
    [100]王玉良,王新煜.永磁联轴器传动力矩的一种新算法[J].机械传动,2004,28(3),16-17,5.
    [101]梅顺齐,杜雄星.磁性传动器传递力矩计算的探讨.机械设计与制造,1999(3),18-19.
    [102]窦新生,赵克中.驱动技术的磁路分析及磁转矩计算[J].化工机械,2004,(31)6:357-360.
    [103]卢彦越,胡仰栋,徐冬梅,等.反渗透海水淡化系统的优化设计[J].水处理技术,2005,31(3):9-14.
    [104]周光炯,严宗毅,许世雄,等.流体力学[M].北京:高等教育出版社,2000.
    [105]刘玉莹.水力透平转轮的水力设计方法研究及其内部流动的模拟[D].兰州:兰州理工大学,2011.
    [106]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004:2.
    [107]刘顺隆,郑群.计算流体力学[M].哈尔滨:哈尔滨工程大学出版社,1998:294-297.
    [108]贾雪松.基于CFD的热油管道数值模拟[D].大庆石油学院,2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700