用户名: 密码: 验证码:
基于符号计算的可积系统的若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于符号计算,本文分别从Bell多项式的角度、Riccati-型伪势的角度和非局域对称的角度对非线性数学物理中一些重要的非线性演化方程的可积性和对称性问题进行研究,并在符号计算平台Maple上开发了KdV-型方程可积性自动推演的程序包.另外,基于屠格式理论和源生成方法,研究了一类超可积方程族的自相容源和无穷守恒律.主要内容如下:
     第一章,介绍与本文研究内容有关的可积系统与符号计算的研究背景和发展现状,并阐述本文的主要研究工作.
     第二章,将Bell多项式方法推广到一些(1+1)-维、(2+1)-维和变系数的非线性演化方程可积性的研究.对于修正的广义Vakhnenko方程,系统地构造了其双线性形式、双线性Backlund变换、Lax对、N-孤子解和拟周期解,并通过图形对解进行了生动的刻画.进一步,通过引入辅助变量以及与之相关的辅助约束条件,研究了广义KdV-fKdV-型方程和变系数KdV-CBS-型方程的可积性,特别的,得到了它们相应的Darboux协变Lax对和无穷守恒律.
     第三章,基于Bell多项式方法,设计了一个构造KdV-型方程双线性形式、双线性Backlund变换、Lax对和无穷守恒律的系统算法.基于该算法,在符号计算平台Maple上编写了实现该算法的程序包PDEBellII特别的,程序包PDEBellII也适用于mKdV-型方程双线性形式的自动推演.
     第四章,基于Riccati-型伪势理论和非局域对称理论研究非线性演化方程的可积性和对称性.利用Riccati-型伪势方法,构造了变系数fKdV方程的Lax对、AKNS形式的Lax对、自-Backlund变换和奇异流形方程;利用五阶Lax方程的Riccati-型伪势和广义KP方程的Lax对,分别得到了它们相应的的非局域对称,通过对非局域对称进行局域化,进一步研究了它们相应的有限对称变换和对称约化.
     第五章,研究了一类超可积方程族的自相容源和无穷守恒律.从一个超可积方程族出发,利用源生成方法构造了其自相容源;同时,通过引入两个新的变量,将谱问题转化为Riccati-型方程,得到其无穷守恒律.
     第六章,对全文工作进行讨论和总结,并对下一步要进行的研究工作做了展望.
Based on symbolic computation, the integrablility and symmetry of some significant nonlinear evolution equations in nonlinear mathematical physics are investigated by Bell polynomial, by Riccati-typed pseudopotential and by nonlocal symmetry, respectively. Meanwhile, a software package which be used for investigating the integrablility of KdV-typed equation is developed. Furthermore, based on the Tu scheme and source generation procedure, the self-consistent sources and infinite conservation laws of a kind of super integrable equation hierarchy are obtained. The main work is carried out as follows:
     In chapter1, an introduction is devoted to review the research background and the current situation related to the dissertation, which including integrable systems and sym-bolic computation. The main works of this dissertation are also illustrated.
     In chapter2, the Bell polynomial approach is extended to investigate the integrablil-ity of some (1+1)-dimensional,(2+1)-dimensional and variable coefficient nonlinear evo-lution equations. For the modified generalised Vakhnenko equation, its corresponding bilinear representation, bilinear Backlund transformation, Lax pair, N-soliton solutions and quasiperiodic solution are systematically obtained. Meanwhile, relevant properties of the solutions are illustrated graphically. Moreover, the integrablility of the generalized KdV-fKdV-typed equation and variable coefficient KdV-CBS-typed equation are inves-tigated by introduce an auxiliary variable and impose a subsidiary constraint condition. In particular, the Darboux covariant Lax pairs and infinite conservation laws of the two equations are obtained.
     In chapter3, based on the Bell polynomial approach, a systematic algorithm is pro-posed to obtain the bilinear representation, bilinear Backlund transformation, Lax pair and infinite conservation laws of the KdV-typed equation. Based on this algorithm, a corresponding software package PDEBellll in Maple is developed. In particular, the software package PDEBellll is also suitable for the seeking of the bilinear form of the mKdV-typed equation.
     In chapter4, based on the Riccati-typed pseudopotential theory and nonlocal sym-metry theory, the integrablility and symmetry of some nonlinear evolution equations are investigated. The Lax pair, AKNS-typed Lax pair, auto-Backlund transformation and sin-gularity manifold equation of the variable coefficient fKdV equation are obtained by using the Riccati-typed pseudopotential theory. The nonlocal symmetries of the fifth order Lax equation and generalized KP equation are obtained by their Riccati-typed pseudopoten-tial and Lax pair. Meanwhile, their corresponding finite symmetry transformation and symmetry reduction are also investigated.
     In chapter5, The self-consistent sources and infinite conservation laws of a kind of super integrable equation hierarchy are obtained. For a kind of super integrable equa-tion hierarchy, its self-consistent sources are obtained by source generation procedure; Meanwhile, by introduce two new variable, its corresponding infinite conservation laws are obtained by change the spectral problem to a Riccati-typed equation.
     In chapter6, the summary and discussion of this dissertation are given, as well as the outlook of future work is discussed.
引文
[1]郭柏灵,非线性演化方程,上海科技教育出版社,1995.
    [2]孙义燧等,非线性科学若干前沿问题,中国科学技术大学出版社,2009.
    [3]Gardner C S, Greene J M, Kruskal M D and Miura R M, Method for solving the Korteweg-de Vries equation, Phys. Rev. Lett.,19 (1967) 1095-1097.
    [4]Darboux G, Sure line proposition relative aux equations lineaires, Compt. Rend. Acad. Sci. Paris,94 (1882) 1456-1459.
    [5]Matveev V B and Salle M A, Darboux Transformations and Solitons, Springer,1991.
    [6]谷超豪,胡和生,周子翔,孤立子理论中的Darboux变换及其集合应用,上海科技出版社,1999.
    [7]Miura R M, Backlund Transformations, the Inverse Scattering Method, Solitons, and Their Applications, Springer-Verlag,1974.
    [8]Rogers C and Shadwick W F, Backlund transformations and their applications, Aca-demic Press,1982.
    [9]Olver P J, Applications of Lie Groups to Differential Equations, Springer-Verlag, 1993.
    [10]Bluman G and Kumei S, Symmetries and Differential Equations, Springer-Verlag, 1989.
    [11]楼森岳,唐晓艳,非线性数学物理方法,科学出版社,2006.
    [12]Hirota R, Exact soliton of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett.,27 (1971) 1192-1194.
    [13]Hirota R, The direct method in soliton theory, Cambridge University Press, Cam-bridge,2004.
    [14]陈登远,孤子引论,科学出版社,2006.
    [15]王红艳,胡星标,带自相容源的孤立子方程,清华大学出版社,2008.
    [16]Ablowitz M J, Ramani A and Segur H, A connection between nonlinear evolution equations and ordinary differential equations of P-type II, J. Math. Phys.,21 (1980) 1006-1015.
    [17]Weiss J, Tabor M and Carnevale G, The Painleve property for partial differential equations, J. Math. Phys.,24 (1983) 522-526.
    [18]Conte R, Invariant Painleve analysis of partial differential equations, Phys. Lett. A, 140 (1989) 383-390.
    [19]Wang M L, Zhou Y B and Li Z B, Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics, Phys. Lett. A,216 (1996) 67-75.
    [20]李志斌,非线性数学物理方程的行波解,科学出版社,2007.
    [21]Liu S K, Fu Z T, Liu S D and Zhao Q, Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations, Phys. Lett. A,289 (2001) 69-74.
    [22]Fan E G, Extended tanh-function method and its applications to nonlinear equations, Phys. Lett. A,277 (2000) 212-218.
    [23]范恩贵,可积系统与计算机代数,科学出版社,2004.
    [24]闫振亚,非线性波与可积系统,博士学位论文,大连理工大学,2002.
    [25]陈勇,孤立子理论中的若干问题的研究及机械化实现,博士学位论文,大连理工大学,2003.
    [26]李彪,孤立子理论中若干精确求解方法的研究及应用,博士学位论文,大连理工大学,2004.
    [27]王琪,非线性微分方程求解和混沌同步,博士学位论文,大连理工大学,2006.
    [28]Hasegawa A and Tappert F, Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion, Appl. Phys. Lett.,23 (1973) 142-144.
    [29]Burger S, Bongs K, Dettmer S, Ertmer W, Sengstock K, Sanpera A, Shlyapnikov G V and Lewenstein M, Dark solitons in Bose-Einstein condensates, Phys. Rev. Lett., 83(25) (1999) 5198-5201.
    [30]Bongs K, Burger S, Birkl G, Sengstock K, Ertmer W, Rzazewski K, Sanpera A and Lewenstein M, Coherent evolution of bouncing Bose-Einstein Condensates, Phys. Rev. Lett,83(18) (1999) 3577-3580.
    [31]Yan Z Y and Hang C, Analytical three-dimensional bright solitons and soliton pairs in Bose-Einstein condensates with time-space modulation, Phys. Rev. A,80 (2009) 063626.
    [32]Yan Z Y, Konotop V V, Yulin A V and Liu W M, Two-dimensional superfluid flows in inhomogeneous Bose-Einstein condensates, Phys. Rev. E,85 (2012) 016601.
    [33]Yan Z Y and Jiang D M, Matter-wave solutions in Bose-Einstein condensates with harmonic and Gaussian potentials, Phys. Rev. E,85 (2012) 056608.
    [34]Rogers C and Shadwick W F, Backlund and Darboux transformations geometry and modern applications in soliton theorey, Cambridge University Press,2002.
    [35]闫振亚,复杂非线性波的构造性理论及其应用,科学出版社,2007.
    [36]Tu G Z, The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems, J. Math. Phys.,30 (1989) 330-338.
    [37]Tu G Z, A trace identity and its applications to the theory of discrete integrable systems, J. Phys. A:Math. Gen.,23 (1990) 3903-3922.
    [38]马文秀,一个新的Liouville可积的广义Hamilton方程族及其约化,数学年刊,18(A1)(1992)115-123.
    [39]胡星标,可积系统及其相关问题,博士学位论文,中国科学院计算中心,1990.
    [40]Hu X B, An approach to generate superextensions of integrable systems, J. Phys. A: Math. Gen.,30 (1997) 619-632.
    [41]Ma W X, He J S and Qin Z Y, A supertrace identity and its applications to superin-tegrable systems, J. Math. Phys.,49 (2008) 033511.
    [42]Zeng Y B, Ma W X and Lin R L, Integration of the soliton hierarchy with self-consistent sources, J. Math. Phys.,41 (2000) 5453-5489.
    [43]Wang Y H and Chen Y, Conservation laws and self-consistent sources for a super integrable equation hierarchy, Commun. Nonlinear Sci. Numer. Simulat.,17 (2012) 2292-2298.
    [44]Garder C S, Greene J M, Kruskal M D and Miura R M, Method for solving the Korteweg-de vries equation, Phys. Rev. Lett.,19 (1967) 1095-1097.
    [45]Lax P D, Integrals of nonlinear equations of evolution and solitary waves, Commun. Pure Appl. Math.,21 (1968) 467-490.
    [46]张大军,宁同科,可积系统的守恒律,上海大学学报,12(2006)19-25.
    [47]曹策问,AKNS族的Lax方程组的非线性化,中国科学A,32(7)(1989)701-707.
    [48]Cao C W and Geng X G, C Neumann and Bargmann systems associated with the coupled KdV soliton hierarchy, J. Phys. A:Math. Gen.,23 (1990) 4117-4125.
    [49]陈金兵,有维可积系统、无穷维孤子系统及其显式解的代数几何构造,博士学位论文,郑州大学,2006.
    [50]Hu X B and Clarkson P A, Rational solutions of an extended Lotka-Volterra equa-tion, J. Nonlinear Math. Phys.,9 (2002) 75-86.
    [51]Chen D Y, Zhang D J and Deng S F, The novel multi-soliton solutions of the MKdV-Sine Gordon equations, J. Phys. Soc. Jpn.,71(2) (2002) 658-659.
    [52]Zhang D J and Chen D Y, Negatons, positons, rational-like solutions and conserva-tion laws of the KdV equation with loss and nonuniformity terms, J. Phys. A:Gen.Math.,37(3)(2004)851-866.
    [53]张大军,邓淑芳,孤子解的Wronskian表示,上海大学学报,8(3)(2002)232-242.
    [54]Dai H H, Fan E G and Geng X G, Constructing periodic wave solutions of nonlinear equations by Hirota bilinear method, arXiv:nlin/0602015,2006.
    [55]Fan E G and Hou Y C, Quasiperiodic waves and asymptotic behavior for Bogoy-avlenskii's breaking soliton equation in (2+1) dimensions, Phys. Rev. E,78 (2008) 036607.
    [56]Hu X-B and Zhu Z-N, A Backlund transformation and nonlinear superposition for-mula for the Belov-Chaltikian lattice, J. Phys. A:Math. Gen.,31 (1998) 4755-4761.
    [57]Hu X B, Wu Y T and Geng X G, Hirota bilinear approach to a new integrable differential-difference system, J. Math. Phys.,40 (1999) 2001-2010.
    [58]Hu X B and Tam H W, Backlund transformationsand Lax pairs for two differential-difference equations, J. Phys. A:Math. Gen.,34 (2001) 10577-10584.
    [59]Hu X B and Springael J, A Backlund transformation and nonlinear superposition formula for the Lotka-Volterra hierarchy, ANZIAM J.,44 (2002) 121-128.
    [60]朱宏武,符号计算在非线性数学模型中的应用研究,博士学位论文,北京邮电大学,2008.
    [61]Bell E T, Exponential polynomials, Ann. Math.,35 (1934) 258-277.
    [62]Lambert F, Loris I, Springael J and Willox R, On a direct bilinearization method: Kaup's higher-order water wave equation as a modified nonlocal Boussinesq equa-tion, J. Phys. A:Math. Gen.,27 (1994) 5325-5334.
    [63]Gilson C, Lambert F, Nimmo J and Willox R, On the combinatorics of the Hirota D-operators, Proc. R. Soc. Lond. A,452 (1996) 223-234.
    [64]Lambert F, Loris I, Springael J and Willox R, On modified NLS, Kaup and NLBq equations:differential transformations and bilinearization, J. Phys. A:Math. Gen., 27 (1994) 8705-8717.
    [65]Lambert F and Springael J, Construction of Backlund transformations with binary Bell polynomials, J. Phys. Soc. Jpn.,66 (1997) 2211-2213.
    [66]Lambert F, Loris I and Springael J, Classical Darboux transformations and the KP hierarchy, Inverse Probl.,17 (2001) 1067-1074.
    [67]Lambert F, Leble S and Springael J, Binary Bell polynomials and Darboux covariant Lax pairs, Glasgow. Math. J.,43A (2001) 53-63.
    [68]Lambert F and Springael J, From soliton equations to their zero curvature formula-tion, Acta. Appl. Math.,102 (2008) 147-178.
    [69]Fan E G, The integrability of nonisospectral and variable-coefficient KdV equation with binary Bell polynomials, Phys. Lett. A,375 (2011) 493-497.
    [70]Hon Y C and Fan E G, Binary Bell polynomial approach to the non-isospectral and variable-coefficient KP equations, IMA J. Appl. Math.,77(2) (2012) 236-251.
    [71]Fan E G and Chow K W, Darboux covariant Lax pairs and infinite conservation laws of the (2+1)-dimensional breaking soliton equation, J. Math. Phys.,52 (2011) 023504.
    [72]Fan E G, New bilinear Backlund transformation and Lax pair for the supersymmet-ric Two-Boson equation, Stud. Appl. Math.,127 (2011) 284-301.
    [73]Fan E G and Hon Y C, Super extension of Bell polynomials with applications to supersymmetric equations, J. Math. Phys.,53 (2012) 013503.
    [74]Hu X R and Chen Y, Binary Bell polynomials approach to generalized Nizhnik-Novikov-Veselov equation, Commun. Theor. Phys.,56 (2011) 218-222.
    [75]Hu X R and Chen Y, A direct procedure on the integrability of nonisospectral and variable-coefficient MKdV equation, J. Nonlinear Math. Phys.,19(1) (2012) 1-11.
    [76]Wang Y H and Chen Y, Integrability of the modified generalised Vakhnenko equa-tion, J. Math. Phys.,53 (2012) 123504.
    [77]Wang Y H and Chen Y, Binary Bell polynomials manipulations on the integrabili-ty of a generalized (2+1)-dimensional Korteweg-de Vries equation, J. Math. Anal. Appl.,400 (2013) 624-634.
    [78]Wang Y H and Chen Y, Backlund transformations and solutions of a generalized Kadomtsev-Petviashvili equation, Commun. Theor. Phys.,57(2) (2012) 217-222.
    [79]Wang Y H and Chen Y, Binary bell polynomials, bilinear approach to exact peri-odic wave solutions of (2+1)-dimensional nonlinear evolution equations, Commun. Theor. Phys.,56(4) (2011) 672-678.
    [80]杨云青,可积系统与混沌系统中若干问题的符号计算研究,博士学位论文,华东师范大学,2011.
    [81]Ablowitz M J, Ramani A and Segur H, A connection between nonlinear evolution equations and ordinary differential equations of P-type I, J. Math. Phys.,21 (1980) 715-721.
    [82]Ablowitz M J, Ramani A and Segur H, A connection between nonlinear evolution equations and ordinary differential equations of P-type II, J. Math. Phys.,21 (1980) 1006-1015.
    [83]Weiss J, Taboe M and Carnevale G, The Painleve property for partial differential equations, J. Math. Phys.,24 (1983) 522-526.
    [84]Weiss J, The Painleve property for partial differential equations. II:Backlund trans-formation, Lax pairs, and the Schwarzian derivative, J. Math. Phys.,24 (1983) 1405-1413.
    [85]Conte R, Invariant Painleve analysis of partial differential equations, Phys. Lett. A., 140(1989)383-390.
    [86]Pickering A, A new truncation in Painleve analysis, J. Phys. A:Math. Gen.,26 (1993)4395-4405.
    [87]Lou S Y, Extended Painleve expansion, nonstandard truncation and special reduc-tions of nonlinear evolution equations, Z. Naturforsch,53a (1998) 251-258.
    [88]楼森岳,推广的Painleve展开及KdV方程的非标准截断解,物理学报,47(12)(1998)1937-1945.
    [89]Searching for higher dimensional integrable models from lower ones via Painleve analysis, Phys. Rev. Lett.,80 (1998) 5027-5031.
    [90]楼森岳,共形不变的Painleve分析法和高维可积模型,中国科学A,29(2)(1999)177-185.
    [91]Calogero F and Eckhaus W, Nonlinear evolution equations, rescalings, model PDES and their integrability:I, Inverse Probl.,3 (1987) 229-262.
    [92]Calogero F and Eckhaus W, Nonlinear evolution equations, rescalings, model PDEs and their integrability:II, Inverse Probl.,4 (1988) 11-33.
    [93]Calogero F and Ji X D, C-integrable nonlinear partial differentiation equations I, J. Math. Phys.,32 (1991) 875-887.
    [94]Calogero F and Ji X D, C-integrable nonlinear PDEs Ⅱ, J. Math. Phys.,32 (1991) 2703-2717.
    [95]Weiss J, On classes of integrable systems and the Painleve property, J. Math. Phys., 25 (1984) 13-24.
    [96]Weiss J, The sine-Gordon equations:Complete and partial integrability, J. Math. Phys.,25 (1984) 2226-2235.
    [97]吴文俊,吴文俊论数学机械化,山东教育出版社,1986.
    [98]吴文俊,数学机械化,科学出版社,1999.
    [99]王东明,杨路,李志斌,侯晓荣,陈发来,夏壁灿,支丽红,符号计算选讲,清华大学出版社,2003.
    [100]吴文俊,几何定理机械证明的基本原理,科学出版社,1984.
    [101]陶庆生,计算机代数及其应用,浙江大学出版社,1991.
    [102]张海强,基于计算机符号计算研究非线性模型的可积性质及其物理应用,博士学位论文,北京邮电大学,2010.
    [103]徐桂琼,非线性演化方程的精确解与可积性及其符号计算研究,博士学位论文,华东师范大学,2004.
    [104]兰慧彬,汪克林,一类非线性方程的函数级数解法,中国科学技术大学学报,20(1)199015-26.
    [105]Lou S Y, Huang G X and Ruan H Y, Exact solitary waves in a convecting fluid, J. Phys. A:Math. Gen.,24 (1991) L587-L590.
    [106]W. Malfliet, Solitary wave solutions of nonlinear wave equations, Am. J. Phys., 60(7) (1992) 650.
    [107]Fan E G, Extended tanh-function method and its applications to nonlinear equa-tions, Phys. Lett. A,277 (2000) 212-218.
    [108]刘式适,傅遵涛,刘式达,赵强,Jacobi椭圆函数展开法及其在求解非线性波动方程中的应用,物理学报,50(11)(2001)2065-2073.
    [109]Liu S K, Fu Z T, Liu S D and zhao Q, Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations, Phys. Lett. A,289 (2001) 69-74.
    [110]Fu Z T, Liu S K, Liu S D and zhao Q, New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations, Phys. Lett. A,290 (2001) 72-76.
    [111]Chen Y and Wang Q, A unified rational expansion method to construct a series of explicit exact solutions to nonlinear evolution equations, Appl. Math. Comput.,177 (2006) 396-409.
    [112]Parkes E J and Duffy B R, An automated tanh-function method for finding soli-tary wave solutions to nonlinear evolution equations, Comput. Phys. Commun.,98 (1996)288-300.
    [113]Li Z B and Liu Y P, RAEEM:A Maple package for finding a series of exact trav-elling wave solutions for nonlinear evolution equations, Comp. Phys. Comm.,163 (2004)191-201.
    [114]柳银萍,微分方程解析解及解析近似解的符号计算研究,博士学位论文,华东师范大学,2008.
    [115]Hereman W and Zhuang W, Symbolic computation of solitons with Macsyma, Comput. Appl. Math. II:Diff. Equa. IMACS., Amsterdam, (1992) 287-296.
    [116]Zhou Z J and Li Z B, A unified explicit construction of 2N-soliton solutions for evolution equations determined by 2 x 2 AKNS system, Commun. Theor. Phys., 39(3) (2003) 257-260.
    [117]周振江,可积系统孤子解的符号计算研究,博士学位论文,华东师范大学,2012.
    [118]Hajee G, The investigation of movable critical points of ordinary differential equa-tions and systems of ordinary equations using formula manipulation, Memorandem Nr.386 Department of Applied Mathematics Twentc University of Technology 7500 AEEnschede,1982.
    [119]Rand D W and Winternitz P, ODEPAINLEVE-A MACSYMA package for Painleve analysis of ordinary differential equations, Comput. Phys. Commun.,42 (1986) 359-383.
    [120]Renner F, A constructive REDUCE package based upon the Painleve analysis of nonlinear evolutions equations in Hamiltonian and/or normal form, Comput. Phys. Commun,70 (1992) 409-416.
    [121]Hereman W and Angenent S, The Painleve test for nonlinear ordinary and partial differential equations, Macsyma Newsletter,6 (1989) 11-18.
    [122]Hereman W et.al, Algorithmic integrability tests of nonlinear differential and lat-tice equations, Comput. Phys. Commun.,115 (1998) 428-446.
    [123]朱思铭,施齐焉,现代数学和力学(MMM-WII),上海大学出版社,1997.
    [124]谢福鼎,Wu-Rittr肖元法在偏微分代数方程中的应用,博士学位论文,大连理工大学,2002.
    [125]Lie S, Uber die Integration durch bestimmte Integrale von einer Klasse linear par-tieller Differentialgleichung, Arch, fur Math.,6 (1881) 328-368.
    [126]Bluman G W and Cole J D, Similarity methods for differential equations, Springer, 1974.
    [127]Bluman G W, Symmetries and Differential Equation, Springer,1989.
    [128]Olver P J, Applications of Lie groups to differential equations, Springer,1986.
    [129]Clarkson P A and Kruskal M D, New similarity reductions of the Boussinesq equa-tion, J. Math. Phys.,30 (1989) 2201-2213.
    [130]Lou S Y and Ma H C, Non-Lie symmetry groups of (2+1)-dimensional nonlinear systems obtained from a simple direct method, J. Phys. A:Math. Gen.,38 (2005) L129-L137.
    [131]Lou S Y, Tang X Y and Lin J, Similarity and conditional similarity reductions of a (2+1)-dimensional KdV equation via a direct method, J. Math. Phys.,41 (2000) 8286-8303.
    [132]Jiao X Y, Yao R X and Lou S Y, Approximate similarity reduction for singular-1y perturbed Boussinesq equation via symmetry perturbation and direct method, J. Math. Phys.,49 (2008) 093505.
    [133]焦小玉,高原,楼森岳,同伦近似对称法:六阶Boussinesq方程的同伦级数解,中国科学G,39(7)(2009)964-973.
    [134]贾曼,若干非线性方程的对称性研究及其应用,博士学位论文,上海交通大学,2010.
    [135]董仲周,若干非线性问题的对称约化及精确解,博士学位论文,华东师范大学,2010.
    [136]胡晓瑞,非线性系统的对称性与可积性,博士学位论文,华东师范大学,2012.
    [137]Hereman W, Review of Symbolic Software for the Computation of Lie Symmetries of Differential Equations, Euromath Bulletir,1993.
    [138]Schwarz F, The Package SPDE for determining symmetries of partial differential equations, http://www.reduce-algebra.com/docs/spde.pdf.
    [139]Nucci M C, Interactive REDUCE programs for calculating Lie point, non-classical, Lie-Backlund, and approximate symmetries of differential equations:manual and floppy disk, in CRC Handbook of Lie Group Analysis of Differential Equations, CRC Press, Boca Raton, (1996) 415-481.
    [140]Baumann G, Lie Symmetries of differential equations:A mathematica program to determine Lie symmetries, Wolfram Research Inc., Illinois, (1992) 202-622.
    [141]Rocha T W, Figueiredoa A and Brenig L, A maple package for the determination of quasi-polynomial symmetries and invariants, Comput. Phys. Commun.,117 (1999) 263-272.
    [142]朝鲁,吴-微分特征列法及其在微分方程对称和力学中的应用,博士学位论文,大连理工大学,1997.
    [143]Yao R X and Lou S Y, A maple package to compute lie symmetry groups and symmetry reductions of (1+1)-dimensional nonlinear systems, Chin. Phys. Lett.,25 (2008) 1927-1930.
    [144]姚若侠,基于符号计算的非线性微分方程精确解及其可积性研究,博士学位论文,华东师范大学,2005.
    [145]Qu C Z, Group classification and generalized conditional symmetry reduction of the nonlinear diffusion-convection equation with a nonlinear source, Stud. Appl. Math.,99(1997) 107-136.
    [146]Chou K S, Li G X and Qu C Z, A note on optimal systems for the heat equation, J. Math. Anal. Appl.,261(2) (2001) 741-751.
    [147]Huang Q, Qu C Z and Zhdanov R, Classification of local and nonlocal symmetries of fourth-order nonlinear evolution equations, Rep. Math. Phys.,65 (2010) 337-366.
    [148]Lou S Y, Facterization and inverse of the recursion operators for some integrable models, Proc. XXI Int. Conf. on diff. Geom. Meth. in Theor. Phys., Tianjin, China, 1992.
    [149]Lou S Y, Twelve sets of symmetries of the Caudrey-Dodd-Gibbon-Sawada-Kotera equation, Phys. Lett. A,175(1) (1993) 23-26.
    [150]Lou S Y, Non-local symmetries via Darboux transformations, J. Phys. A:Math. Gen.,30(1997)L95-L100.
    [151]Hu X B, Lou S Y and Qian X M, Nonlocal symmetries for bilinear equations and their applications, Stud. Appl. Math.,122 (2009) 305-324.
    [152]Tian K and Hu X B, Negative semi-discrete KP and BKP hierarchies via nonlocal symmetries, J. Phys. A:Math. Theor.,42 (2009) 454022.
    [153]Lou S Y, Hu X R and Chen Y, Nonlocal symmetries related to Backlund transfor-mation and their applications, J. Phys. A:Math. Theor.,45 (2012) 155209.
    [154]Hu X R, Lou S Y and Chen Y, Explicit solutions from eigenfunction symmetry of the Korteweg-de Vries equation, Phys. Rev. E,85 (2012) 056607.
    [155]Cheng X P, Chen C L and Lou S Y, Interactions among different types of nonlinear waves described by the Kadomtsev-Petviashvili equation, arXiv:1208.3259vl.
    [156]Xin X P and Chen Y, A systemic method to construct the high order nonlocal symmetries, arXiv:1212.6126,2012.
    [157]徐爱民,Faa di Bruno公式及其应用,博士学位论文,浙江大学,2008.
    [158]Eugene L, Applications of Faa di Bruno's formula in mathematical statistics, Am. Math. Mon.,62(1955)340-348.
    [159]Thomas H S, Some statistical applications of Faa di Bruno, J. Multivariate Anal., 97(10) (2006) 2131-2140.
    [160]Bernardini A and Ricci P E, Bell polynomials and differential equations of Freud-type polynomials, Math. Comput. Model,36(9-10) (2002) 1115-1119.
    [161]Bernardini A, Natalini P and Ricci P E, Multidimensional Bell polynomials of higher order, Comput. Math. Appl.,50(10-12) 20051697-1708.
    [162]Natalini P and Ricci P E, An extension of the Bell polynomials, Comput. Math. Appl.,47(4-5) (2004) 719-725.
    [163]Noschese S and Ricci P E, Differentiation of multivariable composite functions and Bell Polynomials, J. Comput. Anal. Appl.,5(3) (2003) 333-340.
    [164]Kolbig K S and Strampp W, Some infinite integrals with powers of logarithms and the complete Bell polynomials, J. Comput. Anal. Appl.,69(1) (1996) 39-47.
    [165]Collins C B, The role of Bell polynomials in integration, J. Comput. Anal. Appl.,131(1-2) (2001) 195-222.
    [166]Comtet L, Advanced Combinatorics:The Art of Finite and Infinite Expansions, Springer,1974.
    [167]Vakhnenko V A, Solitons in a nonlinear model medium, J. Phys. A:Math. Gen., 25(1992)4181-4187.
    [168]Fokas A and Fuchssteiner B, Symplectic structures, their Backlund transformation and hereditary symmetries, Physica D,4 (1981) 47-66.
    [169]Camassa R and Holm D, An integrable shallow water equation with peaked soli-tons, Phys. Rev. Lett.,71 (1993) 1661-1664.
    [170]Camassa R, Holm D and Hyman J, A new integrable shallow water equation, Adv. Appl. Mech.,31 (1994) 1-33.
    [171]Degasperis A and Procesi M, Asymptotic integrability. In:Degasperis, A., Gaeta, G. (eds.) Symmetry and Perturbation Theory, World Scientific,1999.
    [172]Ostrovsky L A, Nonlinear internal waves in a rotating ocean, Oceanology,18 (1978) 119-125.
    [173]Morrison A J and Parkes E J, The N-soliton solution of a generalised Vakhnenko equation, Glasgow. Math. J.,43A (2001) 65-90.
    [174]Morrison A J and Parkes E J, The N-soliton solution of the modified generalised Vakhnenko equation (a new nonlinear evolution equation), Chaos. Soliton. Fract.,16 (2003) 13-26.
    [175]Li B Q, Ma Y L and Sun J Z, The interaction processes of the N-soliton solutions for an extended generalization of Vakhnenko equation, Appl. Math. Comput.,216 (2010) 3522-3535.
    [176]Nakamura A, A direct method of calculating periodic wave solutions to nonlin-ear evolution equations. Ⅰ. exact two-periodic wave solution, J. Phys. Soc. Jpn.,47 (1979) 1701-1705.
    [177]Nakamura A, A direct method of calculating periodic wave solutions to nonlinear evolution equations. Ⅱ. exact one-and two-periodic wave solution of the coupled bilinear equations, J. Phys. Soc. Jpn.,48 (1980) 1365-1370.
    [178]Fan E G and Chow K W, On the periodic solutions for both nonlinear differential and difference equations:A unified approach, Phys. Lett. A,374 (2010) 3629-3634.
    [179]Ma W X, Zhou R G and Gao L, Exact one-periodic and two-periodic wave solu-tions to Hirota bilinear equations in (2+1) dimensions, Mod. Phys. Lett. A,24 (2009) 1677-1688.
    [180]Tian S F and Zhang H Q, Riemann theta functions periodic wave solutions and rational characteristics for the nonlinear equations, J. Math. Anal. Appl.,371 (2010) 585-608.
    [181]Wazwaz A M, Soliton solutions for the fifth-order KdV equation and the Kawahara equation with time-dependent coefficients, Phys. Scr.,82 (2010) 035009.
    [182]Sawada K and Kotera T, A method for finding N-soliton solutions of the KdV equation and the KdV-like equation, Progr. Theor. Phys.,51 (1974) 1355-1367.
    [183]Caudrey P J, Dodd R K and Gibbon J D, A new hierarchy of Korteweg-de Vries equations, Proc. Roy. Soc. Lond. A,351 (1976) 407-422.
    [184]Kaup D J, On the inverse scattering problem for cubic eigenvalue problems of the class φxxx+6Qφx+6Rφ= 6λφ, Stud. Appl. Math.,62 (1980) 189-216.
    [185]Kuperschmidt B A, A super KdV equation:an integrable system, Phys. Lett. A, 102 (1984) 213-215.
    [186]Ito M, An extension of nonlinear evolution equations of the KdV (mKdV) type to higher orders, J. Phys. Soc. Jpn.,49(2) (1980) 771-778.
    [187]Marchant T R, Solitary wave interaction for the extended BBM equation, Proc. R. Soc. Lond. A,456 (2000) 433-453.
    [188]Wang P, Tian B, Liu W J, Qu Q X, Li M and Sun K, Lax pair, conservation laws and N-soliton solutions for the extended Korteweg-de Vries equations in fluids, Eur. Phys.J. D,61 (2011)701-708.
    [189]Fokas A S, Symmetries and integrability, Stud. Appl. Math.,77 (1987) 253-299.
    [190]Miura R M, Gardner C S and Kruskal M D, Korteweg-de Vries and generalizations II. Existence of conservation laws and constants of motion, J. Math. Phys.,9 (1968) 1204-1209.
    [191]Wadati M, Sanuki H and Konno K, Relationships among inverse method, Backlund transformation and an infinite number of conservation laws, Prog. Theor. Phys.,53 (1975) 419-436.
    [192]Zakharov V and Shabat A, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Sov. Phys. Jetp.,34 (1972)62-69.
    [193]Konno K, Sanuki H and Ichikawa Y H, Conservation laws of nonlinear-evolution equations, Prog. Theor. Phys.,52 (1974) 886-889.
    [194]Tsuchida T and Wadati M, The coupled modified Korteweg-de Vries equations, J. Phys. Soc. Jpn.,67 (1998) 1175-1187.
    [195]Peng Y Z, A new (2+1)-dimensional KdV equation and its localized structures, Commun. Theor. Phys.,54 (2010) 863-865.
    [196]Toda K and Yu S J, The investigation into the Schwarz-Korteweg-de Vries equation and the Schwarz derivative in (2+1) dimensions, J. Math. Phys.,41 (2000) 4747-4751.
    [197]Hirota R and Satsuma J, N-soliton solutions of model equations for shallow water waves, J. Phys. Soc. Jpn.,40 (1976) 611-612.
    [198]Lu X, Geng T, Zhang C, Zhu H W, Meng X H and Tian B, Multi-soliton solutions and their interactions for the (2+1)-dimensional Sawada-Kotera model with trun-cated Painleve expansion, Hirota bilinear method and symbolic computation, Int. J. Mod. Phy. B,23(25) (2009) 5003-5015.
    [199]Senthilvelan M, On the extended applications of Homogenous Balance Method, Appl. Math. Comput,123 (2001) 381-388.
    [200]Zhou Z J, Fu J Z and Li Z B, An implementation for the algorithm of Hirota bilinear form of PDE in the Maple system, Appl. Math. Comput.,183 (2006) 872-877.
    [201]Yang X D and Ruan H Y, A Maple package on symbolic computation of Hirota bilinear form for nonlinear equations, Commun. Theor. Phys.,52 (2009) 801-807.
    [202]Wahlquist H D and Estabrook F B, Prolongation structures of nonlinear evolution equation, J. Math. Phys.,16 (1975) 1-7.
    [203]Nucci M C, Pseudopotentials, Lax equations and Backlund transformations for non-linear evolution equations, J. Phys. A: Math. Gen.,21 (1988) 73-79.
    [204]M. C. Nucci, Pseudopotentials for non-linear evolution equations in 2+1 dimen-sions, Int. J. Non-Linear Mech.,23 (1988) 361-367.
    [205]Lou S Y, Pseudopotentials, Lax pairs and Backlund transformations for some vari-able coefficient nonlinear equations, J. Phys. A:Math. Gen.,24 (1991) LS13-LS18.
    [206]Yu X, Gao Y T, Sun Z Y and Liu Y, N-soliton solutions, Backlund transformation and Lax pair for a generalized variable-coefficient fifth-order Korteweg-de Vries equation, Phys. Scr.,81 (2010) 045402.
    [207]Lou S Y, Conformal invariance and integrable models, J. Phys. A:Math. Gen.,30 (1997)4803-4813.
    [208]田畴,李群及其在微分方程中的应用,科学出版社,2001.
    [209]韩平,楼森岳,与一个非局域对称有关的Kaup-Kupershmidt方程新的精确解,物理学报,46(7)19971249-1253.
    [210]Tian S F and Zhang H Q, On the integrability of a generalized variable-coefficient Kadomtsev-Petviashvili equation, J. Phys. A:Math. Theor.,45 (2012) 055203.
    [211]Doktrov E V and Vlasov R A, Optical solitons in media with resnent and nonreso-nant self-focusing nonlinear waves, Opt. Acta.,30(2) (1983) 223-232.
    [212]Mel'nikov V K, Intersection of the nonlinear Schrodinger equation with a source, Inverse Probl.,8 (1992) 133-147.
    [213]Shi H and Tao S X, A super-integrable hierarchy and its super-Hamiltonian struc-ture, Int. J. Nonlinear Sci.,10(1) (2010) 12-16.
    [214]李翊神,孤子与可积系统,上海科技教育出版社,1999.
    [215]Liu Q P, Supersymmetric Harry Dym equation, J. Phys. A:Math. Gen.,28 (1995) L245-L248.
    [216]Liu Q P and Manas M, Darboux transformations for supersymmetric KP hierar-chies, Phys. Lett. B,485 (2000) 293-300.
    [217]Carpinteri A and Malnardi E, Fractals and Fractional Calculus in Continuum Me-chanics, Springer,1997.
    [218]Nigmatullin R R, The realization of the generalized transfer equation in a medium with fractal geometry, Phys. Stat. Sol. B,133 (1986) 425-430.
    [219]Yu F J, Integrable coupling system of fractional soliton equation hierarchy, Phys. Lett. A,373 (2009) 3730-3733.
    [220]Wu G C and Zhang S, A generalized Tu formula and Hamiltonian structures of fractional AKNS hierarchy, Phys. Lett. A,375 (2011) 3659-3663.
    [221]Wang H and Xia T C, The fractional supertrace identity and its application to the super Jaulent-Miodek hierarchy, Commun. Nonlinear Sci. Numer. Simulat.,18(10) (2013)2859-2867.
    [222]Wang H and Xia T C, The fractional supertrace identity and its application to the super AKNS hierarchy, J. Math. Phys.,54 (2013) 043505.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700