用户名: 密码: 验证码:
晶体中d~(1,2)离子低对称的自旋哈密顿参量的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
功能材料中的缺陷结构对材料光学和磁学等性质具有显著影响,而过渡金属离子杂质在基质晶体中的电子结构和局部结构信息对于深入了解材料性能至关重要,可借助电子顺磁共振(EPR)谱进行研究,并可用自旋哈密顿参量(包含零场分裂、各向异性的g因子g//和g以及超精细结构常数等)描述。本工作基于晶体场和电子顺磁共振(EPR)理论,利用离子簇模型对掺杂d~(1,2)过渡离子的晶体的电子顺磁共振谱和自旋哈密顿参量进行系统的理论研究。d~(1,2)离子是过渡族中具有代表性且非常重要的体系之一,因其较简单的能级结构而备受关注,已有大量关于d~(1,2)离子的EPR实验研究工作。但是这些实验结果大多尚未得到满意的理论解释,主要存在以下不足:(i)前人的理论分析大多采用传统晶场模型,未考虑配体轨道和旋轨耦合作用的贡献;(ii)未能建立合适的理论模型把杂质局部结构和自旋哈密顿参量联系起来,因而在描述低对称畸变时通常引入较多调节参量;(iii)对Jahn-Teller效应的处理未能建立统一的理论模型和公式,通过引入较多的调节参量对组态相互作用和低对称畸变贡献进行讨论,因而未能获得杂质局部结构信息。
     为了克服上述不足,本文对d1和d2体系的自旋哈密顿参量进行系统深入的理论研究,主要包括以下内容:(1)针对四面体中d~(1,2)离子,考虑了前人通常忽略的配体轨道和旋轨耦合贡献,并进一步分析了电荷转移机制对半导体等强共价体系中3d2离子自旋哈密顿参量的贡献;(2)对于三角和四角畸变八面体中的d~(1,2)离子,根据离子簇模型,考虑了配体轨道和旋轨耦合作用以及组态相互作用等因素的贡献,建立了基于Jahn-Teller效应的自旋哈密顿参量改进的微扰公式,获得了杂质局部结构与上述参量的定量关系,减少了调节参量个数。将以上理论模型和公式应用于如下体系:
     (1)针对BaTiO3块体和薄膜中的四角Ti~(3+)-VO中心,基于离子簇模型,考虑配体轨道和旋轨耦合作用的贡献。对于BaTiO3块体中的[TiO5]7–基团,研究发现电荷补偿导致的C4轴方向上最近邻的氧离子空位使杂质Ti~(3+)沿C4轴方向远离VO大约0.15。对于BaTiO3薄膜中的[TiO4]5–基团,发现Jahn-Teller效应使局部杂质-配体键角增大到55.88°。对于MO2(M=Sn, Ti和Ge)中的斜方Nb4+(4d1)中心,由于Jahn-Teller效应和掺杂引起的尺寸失配的影响,[NbO6]8基团二次轴方向的键长相对压缩约0.01-0.02,平面键角增加约3°,并形成斜方压缩的八面体中心。基于上述局部结构的自旋哈密顿参量理论值与实验符合很好。
     (2)对于三角和四角八面体中的3d2离子,基于离子簇模型,考虑配体轨道和旋轨耦合作用以及组态相互作用这两方面因素的影响,建立了基于Jahn-Teller效应的自旋哈密顿参量改进的微扰公式,并将杂质局部结构与EPR分析相联系,从而有效地减少了调节参量个数。结果表明,受动态Jahn-Teller效应影响,α-Al_2O_3:V~(3+), Cr4+体系中局部键角相对C3轴变化约1.5-1.9°(更趋近于理想八面体),因而满意地解释了零场分裂、各向异性g因子和自旋晶格耦合系数的实验结果。另外,研究发现MgO:V~(3+), CaO:V~(3+)和CaO:Ti2+中配体八面体沿四次轴相对伸长约1.5%,4.4%和4.6%。
     (3)对于四面体中3d2离子的自旋哈密顿参量和局部结构进行了理论研究。针对ZnO:V~(3+),利用三角畸变四面体中3d2离子自旋哈密顿参量的高阶微扰公式进行计算,表明杂质V~(3+)离子并非恰好占据母体Zn2+位置,而是沿C3轴向远离配体三角形的方向位移约0.08。对于Si: Cr4+, Mn5+,由于杂质离子的高价态和基质晶体的强共价性,配体轨道和电荷转移机制的贡献不能忽略,同时包含晶场和电荷转移机制贡献的g因子和超精细结构常数计算值与实验符合较好。
     (4)对于Bi4GeO12(BGO)中的V4+和Cr4+,研究发现,局部的杂质-配体键角分别较母体减小约4.91°和5.64°,表明掺杂使原来母体时的四角压缩四面体变为杂质中心的四角伸长四面体。该变化主要源于杂质与母体Ge4+离子半径差异导致的局部应力和Jahn-Teller效应(对V4+中心)的影响。
     (5)本工作还对硅量子点的表面结构及其制成的光纤气敏传感器的特性进行了研究,具体观测了传感器对不同分析物的响应和可逆性。当探测端暴露在不同的蒸汽下,硅量子点的荧光强度会随时间发生变化,但是对大气中蒸汽浓度的量化检测问题尚需进一步的研究。硅量子点材料在蓝光或紫外光辐照下具有荧光效应,初步分析其机制如下:纳米颗粒表面Si-H键破裂,留下非辐射中心(如Pb中心),此时荧光强度下降,荧光寿命缩短;表面形成氧化物或者氢化物,从而导致室温下几小时内荧光强度增加。
Defect structures in functional materials play an important role in optical andmagnetical properties of these systems. Information about electronic states and localstructures of transition-metal dopants are usually vital to understand properties of thesematerials. The above information can be conveniently revealed by electronparamagnetic resonance (EPR) technique, whose experimental results are normallydescribed by the spin Hamiltonian parameters (e.g., zero-field splitting, anisotropic gfactors and hyperfine structure constants). In this work, the systematic theoreticalstudies on the EPR spectra and spin Hamiltonian parameters were carried out for d~(1,2)impurities in crystals from the cluster approach based on the crystal-field and EPRtheories. d~(1,2)ions are representative and important systems in the transition-metalgroup and have attract extensive interest of researchers due to relatively simpler energylevels. So abundant EPR experimental results have been reported for crystals andcompounds with d~(1,2)dopants. However, the theoretical explanations to the aboveexperimental findings are largely unsatisfactory. There are following imperfections inthe previous theoretical studies.(i) The conventional crystal-field model was usuallyadopted in the previous works, and the contributions from the ligand orbital andspin-orbit coupling interactions were not taken into acount.(ii) The previous studiesdid not correlate the local structures of impurity centers with the spin Hamiltonianparameters. Instead, various adjustable parameters were introduced to describe lowsymmetrical distortions, and it was difficult to acquire information about defectstructures in the previous analysis.(iii) As for the treatments of the Jahn-Teller effect,the previous works failed to establish unified theoretical models and formulas, andadoption of the relevant model parameters was somewhat arbitrary. In addition, thetreatments of the configuration interactions and the low symmetrical distortions werealso oversimplified.
     In order to overcome the above shortcomings, the systematic theoreticalinvestigations of the spin Hamiltonian parameters of d~(1,2)ions are performed in thiswork, including the following aspects.(1) For d~(1,2)ions under tetrahedra, the contributions from the ligand orbitals and spin-orbit coupling interactions which wereusually ignored in the previous treatments are taken into account here. Further, thecontributions to the spin Hamiltonian parameters from the charge transfer mechanismare included for3d2ions in such covalent systems.as semiconductors.(2) For d~(1,2)ionsunder triangonally and tetragonally distorted octahedra, the improved perturbationformulas of the spin Hamiltonian parameters are established on the basis of theJahn-Teller effect and the cluster approach, by considering the contributions from theligand orbitals and spin-orbit coupling interactions and the configuration interactions.The quantitative relationships between the local structures of impurities and therelevant model parameters are constructed, and the number of adjusted parameters isconsiderably decreased as compared with the previous treatments. Then the abovetheoretical models and formulas are applied to the following systems:
     (1) For the tetragonal Ti~(3+)-VOcenters in BaTiO3bulks and thin films, thecontributions from the ligand orbital and spin-orbit coupling interactions areconsidered on the basis of the cluster approach. As for the [TiO5]7–cluster in BaTiO3bulks, the impurity Ti~(3+)is found to suffer the displacement of about0.15away fromthe nearest neighbour oxygen vacancy VO(arising from charge compesation) along theC4axis due to the electrostatic repulsion. As for the [TiO4]5–cluster in BaTiO3thinfilms, the local impurity-ligand bond angle is found to increase to55.88o due to theJahn-Teller effect. For the rhombic Nb4+centers in MO2(M=Sn, Ti and Ge), the[NbO6]8clusters are found to experience the relative compressions (≈0.01-0.02)along C2axis and the planar (perpendicular to C2axis) angular increases (≈3°) due tothe Jahn-Teller effect and size mismatch. As a result, the ligand octahedra aretransformed from original elongation on host tetravalent cation sites to rhombicallycompressed octahedra in the impurity centers. The theoretical spin Hamiltonianparameters based on the above local structures show good agreement with theexpetimental data.
     (2) The unified perturbation formulas of the spin Hamiltonian parameters basedon the Jahn-Teller effect for octahedral3d2clusters are applied to α-Al_2O_3:V~(3+),Cr4+, bycorrelating the EPR analysis to the local structures of the systems. It is found that thelocal impurity-ligand bond angles exhibit variations of about1.5-1.9o related to thehost values due to the dynamical Jahn-Teller effect, yielding more regular octahedra around the impurities. So, the experimental zero-field splitting, anisotropic g factorsand spin-lattice coupling coefficients are satisfactorily interpreted for α-Al_2O_3:V~(3+),Cr4+here. As for the tetragonal3d2impurity centers in alkaline earth oxides, the ligandoctahedra are found to suffer the relative elongations of about1.5%,4.4%and4.6%for MgO:V~(3+), CaO:V~(3+)and CaO:Ti2+, respectively, due to the dynamical Jahn-Tellereffect.
     (3) The spin Hamiltonian parameters and local structures are theoretically studiedfor3d2ions under tetrahedral envornments. For ZnO:V~(3+), the analysis based on thehigh order perturbational formulas of the spin Hamiltonian parameters for a trigonallydistorted tetrahedral3d2cluster indicates that the impurity V~(3+)may not occupy theideal Zn2+site but suffer an outward displacement of about0.08away from theoxygen triangle along the C3axis. As for the studies on Si:Cr4+, Mn5+with highvalence state of impurities and strong covalence of the host, the contributions from thecharge transfer mechanism and the ligand orbitals are found to be important and shouldbe taken into account. The calculated g factors and hyperfine structure constantscontaining the contributions from both the crystal-field and charge transfermechamisms show good agreement with the observed values.
     (4) The studies on the tetragonal V4+and Cr4+centers in Bi4GeO12(BGO) revealthat the local impurity-ligand bond angles are found to be about4.91and5.64for V4+and Cr4+, respectively, smaller than the angle of the host Ge4+site. And the ligandtetrahedra transform from original compression at the host Ge4+site into elongation inthe impurity centers due to size mismatching substitution of the smaller Ge4+by thelarger impurities. Meanwhile, the Jahn-Teller effect can also bring forward someinflucence on the local structure of the V4+center.
     (5) The surface structures of silicon quantum dots (Si-QDs) and performance offiber gas senors made of Si-QDs are investigated in this work. The response and itsreversibility of the sensors to different analytes are measured. When exposed todifferent vapors, the Si-QDs show variations of luminescence intensity over timescalesof a few seconds to hours. However, quantification of the vapor concentration in theatmosphere is worthy of further study. The microscopic mechanism of luminescence ofSi-QDs under irradiation of blue or ultraviolet light can be illustrated as follows. First,surfacial Si-H bonds of the nanoparticles break, leaving behind non-radiative traps (possibly the neutral P_bcenters), resulting in decreases of the strength and the lifetimeof luminescence. Then oxidation or hydration of the dangling bonds leads to a gradualincrease in luminescence intensity over a period of hours at room air.
引文
[1] S. Karakalos, T. Skala, O. Plekan et al. Investigation of the Ti/MgCl2interface on a Si (111)7×7substrate[J]. J. Chem. Phys.,2012,136(22):1-10
    [2] M. E. Feder, T. Mitchell-Olds. Evolutionary and ecological functional genomics[J]. Nature Rev.Genetics,2003,4(1):649-655
    [3] B. Tatar, A. E. Bulgurcuo lu, P. G kdemir, et al. Electrical and photovoltaic properties of Cr/SiSchottky diodes[J]. Int. J. Hydrogen Energy,2009,34(12):5208-5212
    [4] T. T. Lan Anh, S. S. Yu, Y. E. Ihm, et al. Electrical and magnetic properties of Mn-doped Si thinfilms[J]. Physica B,2009,404(12-13):1686-1688
    [5] M. D. Bao, L. Yu, X. B. Xu, et al. Microstructure and wear behaviour of silicon doped Cr–Nnanocomposite coatings[J]. Thin Sol. Films,517(17),4938-4941
    [6]徐光宪,王祥云.物质结构[M].北京:高等教育出版社,1987,280-325
    [7]赵敏光.晶体场和电子顺磁共振理论[M].北京:科学出版社,1991,99-215
    [8] A. B. P. Lever. Inorganic Electronic Spectroscopy[M]. Amsterdam: Elsevier,1984,315-316
    [9] J. S. Griffith. The Theory of Transition Metal Ions[M]. London: Cambridge University press,1961,258-287
    [10] J. R. Pilbrow. Transition Ion Electron Paramagnetic Resonance[M]. Clarendon Press, Oxford,1990,3-90
    [11] P. McGeehin, B. Henderson. Magnetic-resonance studies of Gd3+ions in CaO[J]. J.Phys.C:Solid State Phys.,1974,7(21):3988-3996
    [12] A. J. Shuskus. Electron Spin Resonance of Fe3+and Mn2+in Single Crystals of CaO[J].Phys.Rev.,1962,127(5):1529-1531
    [13] G. L. McPherson, W. M. Heung. Electron paramagnetic resonance spectrum of exchange-coupled pairs of Cr3+ions in single crystals of CsMgCl3[J]. Solid State Commun.,1976,19(1):53-56
    [14] S. Geschwind, P. Kisliuk, M. P. Klein, et al. Sharp-Line Fluorescence, Electron ParamagneticResonance, and Thermoluminescence of Mn4+in α-Al2O3[J]. Phys. Rev.,1962,126(5):1684-1686
    [15] M. D. Sturge. Optical spectrum of divalent vanadium in octahedral coordination[J]. Phys.Rev.,1963,130(2):639-646
    [16] N. R. S. Farley, C. R. Staddon, L. Zhao, et al. Sol-gel formation of ordered nanostructureddoped ZnO films[J]. J. Mater. Chem.,2004,14(7):1087-1092
    [17] V. Avrutin, ü. zgür, S. Chevtchenko, et al. Optical and magnetic properties of ZnO:V preparedby ion implantation[J]. J. Electron. Mater.,2007,36(4):483-487
    [18] S. Ramachandran, A. Tiwari, J. Narayan. Epitaxial growth and properties of Zn1xVxO dilutedmagnetic semiconductor thin films[J]. Appl. Phys. Lett.,2005,87(17):1-3
    [19] A. M. Ferrari, G. Pacchioni. Electronic Structure of F and V Centers on the MgO Surface[J]. J.Phys. Chem.,1995,99(46):17010-17018
    [20] O. Mryasov, S. Faleev. Complex Band Structure of MgO, CaO, SrO, BaO insulators: DFT-LDAvs. QSGW theory[C]. Bulletin of the American Physical Society, APS March Meeting, Portland,2010,2-90
    [21] L. Ramajo, R. Parra, M. Reboredo, et al. Heating rate and temperature effects on the BaTiO3formation by thermal decomposition of (Ba,Ti) organic precursors during the Pechini process[J].Mater. Chem. Phys.,2008,107(1):110-114
    [22] M. Schrader, D. Mienert, T. S. Oh, et al. An optical, EPR and electrical conductivity study ofblue barium titanate, BaTiO3δ[J]. Solid State Sci.,2008,10(6):768-775
    [23] S. H. Lee, T. Mizoguchi, T. Yamamoto, et al. First-principles calculation of defect energetics incubic-BaTiO3and a comparison with SrTiO3[J]. Acta Mater.,2007,55(19):6535-6540
    [24] Y. L. Zhu, S. J. Zheng, D. Chen, et al. Microstructure tuning of epitaxial BaTiO3xthin filmsgrown using laser molecular-beam epitaxy by varying the oxygen pressure[J]. Thin Solid Films,2010,518(14):3669-3673
    [25] J. M. Oh, S. M. Nam. Thickness limit of BaTiO3thin film capacitors grown on SUS substratesusing aerosol deposition method[J]. Thin Solid Films,2010,518(22):6531-6536
    [26] B. J. Babu, G. Madeswaran, X. L. Chen, et al. Effect of oxygen vacancies on ferroelectricbehavior of Na1/2Bi1/2TiO3–BaTiO3single crystals[J]. Mater. Sci. Eng. B,2009,156(1-3):36-41
    [27] E. F. Kamel, P. Gonon, F. Jomni, et al. Dielectric properties of amorphous BaTiO3filmsdeposited by RF magnetron sputtering[J]. J. Eur. Ceram. Soc.,2007,27(13-15):3807-3809
    [28] C. R. Pullar, J. S. Penn, X. Wang, et al. Dielectric loss caused by oxygen vacancies in titaniaceramics[J]. J. Eur. Ceram. Soc.,2009,29(3):419-424
    [29] Z. roubek, K. dánsky. The paramagnetic resonance of an F-centre in non-stoichiometricBaTiO3[J]. Czech. J. Phys. B,1963,13(4):309-310
    [30] J. Zítková, K. dánsky, Z. roubek. The electron paramagnetic resonance in reduced BaTiO3crystals. Czech[J]. J. Phys. B,1967,17(1):636-641
    [31] V. V. Laguta, A. M. Slipenyuk, I. P. Bykov, et al. Electron spin resonance investigation ofoxygen-vacancy-related defects in BaTiO3thin films[J]. Appl. Phys. Lett.,200587(2):1-3
    [32] Z. M. Li, M. L. Du. g factor of Cu2+with2A1gground state[J]. Physica B,1997,233(1):89-92
    [33] L. Kovács, R. Capelletti, M. Gospodinov. Vibrational frequencies of the impurity-centredoxygen tetrahedra in sillenites[J]. Vibrational Spectroscopy,2008,46(1):69-75
    [34] E. Moya, C. Zaldo, B. Briat, et al. Optical, magneto-optical and EPR study of chromiumimpurities in Bi4Ge3O12single crystal[J]. J.Phys. Chem. Solids.,1993,54(7):809-816
    [35] J. F. Carvalho, R. W. A. Franco, C. J. Magon, et al. Optical and magnetic characterization ofpure and vanadium-doped Bi12TiO20sillenite crystals[J]. Optical Materials,1999,13(3):333-338
    [36] H. Marquet, M. Tapiero, J. C. Merle, et al. Determination of the factors controlling the opticalbackground absorption in nominally undoped and doped sillenites[J]. Optical Materials,1998,11(1):53-65
    [37] V. Tassev, G. Diankov, M Gospodinov. Optical activity of doped sillenite crystals[J]. Mater. Res.Bull.,1995,30(10):1263-1267
    [38] C. A. Bertulani, A. Gade. Nuclear astrophysics with radioactive beams[J]. Physics Reports,2010,485(6):195-259
    [39] S. Stepanov. Handbook of Advanced Electronic and Photonic Materials and Devices[M].Elsevier Inc.,2001,205-272
    [40] A. V. G. Mangnus, L. J. van Ijzendoorn, J. J. M. de Goeij, et al. A BGO detector for PositronEmission Profiling in catalysts[J]. Nucl. Instr. Meth. Phys. Res. B,1995,99(1-4):649-652
    [41] B. Briat, A. Watterich, F. L. Ramaz, et al. Charge states and optical transitions of vanadium inBi4Ge3O12identified by MCD and ODMR[J]. Optical Materials,2002,20(4):253-262
    [42] D. Bravo, F. J. López. The EPR technique as a tool for the understanding of laser systems.: Thecase of Cr3+and Cr4+ions in Bi4Ge3O12[J]. Optical Materials,1999,13(1):141-145
    [43] B. N. Figgis, M. A. Hitchman. Ligand Field Theory[M]. John Wiley&Sons, Incorporated.,1999,3-90
    [44] H. A. Bethe. Splitting of Terms in Crystals[J]. Ann. Physik,1929,3(1):133-206
    [45] l. Zumdah, S. Steven. Chemical Principles, Fifth Edition[M]. Boston: Houghton MifflinCompany,2005,550-551,957-964
    [46] D. F. Shriver, P. W. Atkins. Inorganic Chemistry,3rd edition[M]. Oxford University Press,2001,227-236
    [47] P. Koidl. Optical absorption of Co2+in ZnO[J]. Phys. Rev. B,1977,15(5),2493-2499
    [48] L. E. Orgel. Spectra of Transition-Metal Complexes[J]. J. Chem. Phys.,1955,23(6):1004-1014
    [49] C. J. Ballhausen. Introduction to Ligand Field theory[M]. NewYork: McGrawHill,1962,88-97
    [50] J. H. Warren. Ab initio molecular orbital theory[J]. Acc. Chem. Res.,1976,9(11):399-406
    [51] A. L. Bail, H. Duroy, J. L. Fourquet. Ab-initio structure determination of LiSbWO6by X-raypowder diffraction[J]. Materials Research Bulletin,1988,23(3):447-450
    [52] R. G. Burns. Mineralogical. Applications of Crystal Field Theory[M]. London: CambridgeUniversity Press,1993,234-236
    [53] S. Rombouts, K. Heyde. When can an A-particle fermion wavefunction be written as a slaterdeterminant[J]? J. Phys. A: General Physics.,1994,27(9):3293-3298
    [54]赵敏光.晶体场理论-不可约张量算符[M].成都:四川教育出版社,1988,229-241
    [55]张国营,杨桂林. LCAO-晶场轨道理论[M].南京大学学报(自然科学),1997,3(33):351-356
    [56] A. Abragam, B. Bleanely. Electron Paramagnetic Resonance of Transition Ions[M]. London:Oxford University Press,1970,89-96
    [57]裘祖文.电子自旋共振波谱[M].北京:科学出版社,1980,12-46
    [58] M. Damnjanovi, I. Milo evi, T. Vukovi, et al. Wigner–Eckart theorem in the inductivespaces and applications to optical transitions in nanotubes[J]. Phys. A: Math. Gen.,2004,37(13):4059-4068
    [59] E. Konig, R. Schnakig. Zero-field splitting of S(d5)ions tetrahonal and rhombic symmetry[J].Phys. Status Solidi,1976,77(2):657-663
    [60] G. Racah. Theory of Complex Spectra I[J]. Phys. Rev.,1942,61(3-4):186-197
    [61] G. Racah. Theory of Complex Spectra. II[J]. Phys. Rev.,1942,62(9-10):438-462
    [62] D. J. Newman, B. Ng. The superposition model of crystal field[J]. Rep. Prog. Phys.,1989,52(3):699-763
    [63] W. C. Zheng, S. Y. Wu. Calculations of the spin-lattice coupling coeffients Fijand ZijforMgO: Co2+crystal[J]. Commun. Theor. Phys.,2001,36(4):487-490
    [64] S. Sugano,Y. Tanabe,H. Kamimura. Multiplets of Transition-Metal Ions in Crystal[M]. NewYork: Academic Press,1970,53-186
    [65] S. Y. Wu, X. Y. Gao, H. N. Dong. Investigations on the angular distortions around V2+inCsMgX3(X=Cl, Br, I)[J]. J. Magn. Magn. Mater.,2006,301(1):67-73
    [66] W. C. Zheng. Local tetragonal distortions of the octahedral environment for substituting Cr3+,Mn2+and Fe3+ions in Rb2ZnF4crystals[J]. Phys. B: Condens. Matter,1997,233(2-3):125-129
    [67] M. L. Du, M. G. Zhao. Gyromagnetic Factor and Spin–Orbit Coupling of Ligands in CsVX3(X=Cl, Br, I)[J]. Phys. Status Solidi (b),1989,153(1):249-255
    [68] P. Huang, P. Hu, M G Zhao. Theoretical examination of optical and EPR spectra for Cu2+ion inK2PdCl4crystal[J]. J. Phys. Chem. Solids,2003,64(3):523-525
    [69]唐晟,董会宁. YAG:V2+晶体电子顺磁共振参量和V2+杂质中心缺陷结构的理论研究[J].四大学学报(自然科学版),2003,40(3):600-602
    [70] J. M. Radcliffe. Some properties of coherent spin states[J]. J. Phys. A: Gen. Phys.,1971,4(3):313-323
    [71] P. H. Richard, J. Yguerabide, S. Lubert. Dependence of the kinetics of singlet-singlet energytransfer on spectral overlap[J]. Proceedings of the National Academy of Sciences of the UnitedStates of America,1969,63(1):23-30
    [72] G. Anupam. Topologically quenched tunnel splitting in spin systems without Kramers'degeneracy[J]. Eur. Lett.,1993,22(3):205-210
    [73] A. A. Misetich, T. Bush. Gyromagnetic Factors and Spin—Orbit Coupling in Ligand FieldTheory[J]. J. Chem. Phys.,1964,41(8):2524-2529
    [74] J. R. Pilbrow. Transition Ion Electron Paramagnetic Resonance[M]. Oxford: Clarendon Press,1990,102-108
    [75]李福珍,李兆明,杜懋陆. ZnS:Co2+和CdTe:Co2+中配体对g因子的贡献[J].波谱学杂志,1998,15(2):145-150
    [76] D. J. Newman. Theory of lanthanide crystal fields[M]. Adv. phys.,1971,20(84):197-256
    [77] R. Gallay, J. J. Klink, J. Moser. EPR study of vanadium (4+) in the anatase and rutile phases ofTiO2[J]. Phys. Rev. B.,1986,34(5):3060–3068
    [78] M. Yamaga, T. Yosida, B. Henderson, et al. Electro paramagnetic resonance and optical spectraof Ti3+-doped YAlO3[J]. J. Phys.: Condens. Matter,1992,4(35):7285-7294
    [79] S. Y. Wu, H. M. Zhang, P. Xu, et al. Studies on the defect structure for Cu2+in CdSenanocrystals[J]. Spectrochim. Acta Part A: Molecular and Biomolecular Spectroscopy,2010,75(1):230-234
    [80] M. D. D. Galinin. Luminescence Centers of Rare Earth Ions in Crystal Phosphors[M]. London:Nova Science Publishers,1998,234-275
    [81] R. M. Macfarlane. Zero Field Splittings of t3/2Cubic Terms[J]. J. Chem. Phys.,1967,47(6):2066-2073
    [82] R. S. Mulliken. Electronic Population Analysis on LCAO-MO Molecular Wave Functions. IV.Bonding and Antibonding in LCAO and Valence-Bond Theories[J]. J. Chem. Phys.,1955,23(12):2343-2346
    [83] M. L. Du. Theoretical investigation of the g factor in RX:V2+(R=Na, K, Rb; X=Cl, Br)[J]. Phys.Rev. B.,1992,46(9):5274-5279
    [84]董会宁,邬劭轶,郑文琛. Co2+离子在MgF2和ZnF2晶体中的各向异性g因子的理论研究[J].波谱学杂志,2002,3(19):275-280
    [85] W. C. Zheng. Local tetragonal distortions of the octahedral environment for substituting Cr3+,Mn2+and Fe3+ions in Rb2ZnF4crystals[J]. Phys. B: Condens. Matter,1997,233(2-3):125-129
    [86] R. S. Mulliken. Self-Consistent Field Atomic and Molecular Orbitals and Their Approximationsas Linear Combinations of Slater-Type Orbitals[J]. Rev. Mod. Phys,1960,32(2):232-238
    [87] S. Y. Wu, W. C. Zheng. Theoretical studies of the g factors for Co2+in MgO and CaO crystals[J].Z. Naturforsch. A,2001,56(3):249-252
    [88] A. Abragam, B. Bleneay. Electron Paramagnetic Resonance of Transition Ions[M]. Oxford:Clarendon,1970,20-45
    [89] W. C. Zheng, S. Y. Wu. Explanations of the g-Factors and Hyperfine Structure Constants forCuAlS32:Ti+[J]. Phys. Status Solidi B,1999,214(2):381-386
    [90] L. H. Wei, S. Y. Wu, Z. H. Zhang, et al. Investigations on the Local Structure and the EPRParameters for Cu2+-Doped GaN[J]. Mod. Phys. Lett. B,2008,22(18):1739-1747
    [91] Z. M. Li, M. L. Du. g factor of Cu2+with2A1gground state[J]. Physica B,1997,233(1):89-92
    [92] H. Hikita, K. Takeda, Y. Kimura. Analytical determination of the local oxygen structure aroundCr3+in SnO2rutile-type crystals by use of electron paramagnetic resonance[J]. Phys. Rev. B,1992,46(22):14381-14386
    [93] T. W. Kool, M. Glasbeek. V4+in SrTiO3: A Jahn-Teller impurity[J]. Solid State Commun.,1979,32(11):1099-1101
    [94] Y. V. Yablokov, T. A. Ivanova. The labile magnetic structure of JT copper and nickel complexesin the layered oxides[J]. Coordination Chem. Rev.,1999,190(192):1255-1267
    [95] D. Gourier, L. Colle, A. M. Lejus, et al. Electron‐spin resonance and fluorescenceinvestigation of LaMgAl311O19:Ti+, a potential tunable laser material[J]. J. Appl. Phys.,1988,63(4):1144-1151
    [96] F. Kubec, Z. roubek. Paramagnetic Resonance of Interstitial V4+in TiO2[J]. J. Chem. Phys.,1972,57(4):1660-1663
    [97] W. L. Yu, X. M. Zhang, L. X. Yang, et al. Spectroscopic properties of Cr3+ions at the defectsites in cubic fluoroperovskite crystals[J]. Phys. Rev. B,1994,50(10):6756-6764
    [98] M. E. Lines, A. M. Glass. Principles and Applications of Ferroelectrics and RelatedMaterials[M]. Oxford: London,1977,3-45
    [99] E. Clementi, D. L. Raimondi. Atomic Screening Constants from SCF Functions[J]. J. Chem.Phys.,1963,38(11):2686-2689
    [100] E. Clementi, D. L. Raimondi, W. P. Reinhardt. Atomic Screening Constants from SCFFunctions. II. Atoms with37to86Electrons[J]. J. Chem. Phys.1967,47(4):1300-1307
    [101] E. K. Hodgson, I. Fridovich. Reversal of the superoxide dismutase reaction[J]. Biochem.Biophys. Res. Commun.,1973,54(1):270-274
    [102] B. R. McGarvey, The isotropic hyperfine interaction[J]. J. Phys. Chem.,1967,71(1):51-56
    [103] Y. T. Lam, T. Thirunamachandran. Direct current‐induced second harmonic generation bychiral molecules[J]. J. Chem. Phys.,1982,77(8):3810-3814
    [104] P. H. Zimmerman. Temperature Dependence of the EPR Spectra of Niobium-Doped TiO2[J].Phys. Rev. B,1973,8(8):3917-3927
    [105] D. P. Madacsi, M. Stapelbroek, R. B. Bossoli, et al. Superhyperfine interactions and theirorigins for nd1ions in rutile‐structure oxides[J]. J. Chem. Phys.,1982,77(8):3803-3909
    [106] Z. H. Zhang, S. Y. Wu, L. L. Li. Investigations of the local structures and the EPR g factors forV4+and Cr4+in Bi4Ge3O12crystals[J]. J. Mol. Struc.-TheoChem.,2010,959(1-3):113-116
    [107] T. W. Kool, M. Glasbeek. Electric field effects in EPR of the SrTiO43:V+Jahn-Teller system[J].J. Phys.: Condens. Matter,1991,3(48):9747-9755
    [108] H. J. Jong, M. Glasbeek. Electric field effects in EPR of the SrTiO3:Cr5+Jahn-Teller system[J].Solid State Commun.,1978,28(8):683-687
    [109] W. Koechner. Solid State Laser Engineering, sixth ed.[M]. New York: Springer,2006,7-89
    [110] L. Xiao, X. J. Cheng, J. Q. Xu. High-power Nd:YAG planar waveguide laser with YAG andAl2O3claddings[J]. Opt. Commun.,2008,281(14):3781-3785
    [111] J. E.. Kannatey-Asibu. Principles of Laser Materials Processing[M]. Hoboken: John-Wiley&Sons,2009,6-34
    [112] S. Kammoun, H. Souissi, R. Maalej, et al. Crystal-field hamiltonian and spin–orbit interactionfor d2and d8ions at low C3symmetry sites: V3+:Al2O3and Ni2+:LiNbO3[J]. J. Lumin.,2009,129(5):411-415
    [113] B. Frank, A. Dinse, O. Ovsitser, et al. Mass and heat transfer effects on the oxidativedehydrogenation of propane (ODP) over a low loaded VOx/Al2O3catalyst[J]. Appl. Catal. A,2007,323(1):66-76
    [114] J. Biener, M. B umer, R. J. Madix, et al. Growth and electronic structure of vanadium onα-Al2O3(0001)[J]. Surf. Sci.,2000,449(1-3):50-60
    [115] Z. Jin, L. B. Lin, L Z Lin, et al. Electron and neutron irradiation effects of Al2O3:V[J]. Nucl.Instrum. Methods Phys. Res. B,1998,141(1-4):446-449
    [116] E. Tkalcěc, B. Grzěta, Popovic J, et al. Structural studies of Cr-doped mullite derived fromsingle-phase precursors[J]. J. Phys. Chem. Solids,2006,67(4):828-835
    [117] C. Pan, S. Y. Chen, P. Shen. Photoluminescence and transformation of dense Al2O3:Cr3+condensates synthesized by laser-ablation route[J]. J. Cryst. Growth,2008,310(3):699-705
    [118] M. D. Sturge. Optical Spectrum of Divalent Vanadium in Octahedral Coordination[J]. Phys.Rev.,1963,130(2):639-646
    [119] A. Abragam, B. Bleaney. Electron Paramagnetic Resonance of Transition Ions[M]. New York:Clarendon Press,1986,8-56
    [120] M. Abou-Ghantous, C. A. Bates, L. C. Goodfellow, et al. Jahn-teller effects in (3d)2ions inAl2O3[J]. J. Phys. Chem. Solids,1976,37(11):1059-1068
    [121] H. U. Rahman, W. A. Runciman. Energy levels and g values of vanadium corundum[J]. J. Phys.C,1971,4(12):1576-1590
    [122] M. N. Wybourne, C. L. J. hallis, A. A. Ghazi. The hyperfine spectrum of V3+in Al2O3at166GHz observed by phonon spectroscopy[J]. J. Phys. C,1980,13(35):6495-6507
    [123] C. Rudowicz, Z. Y. Yang, Y. Y. Yeung, et al. Crystal field and microscopic spin Hamiltoniansapproach including spin–spin and spin–other-orbit interactions for d2and d8ions at lowsymmetry C3symmetry sites: V3+in Al2O3[J]. J. Phys. Chem. Solids,2003,64(8):1419-1428
    [124] Z. Y. Yang. Local structure distortion and spin Hamiltonian parameters for Cr4+ions in Cr4+:α-Al2O3crystals Spectrochim[J]. Acta A,2010,75(1):277-280
    [125] S. Y. Wu, X. Y. Gao, H. N. Dong. Investigations on the angular distortions around V2+inCsMgX3(X=Cl, Br, I)[J]. J. Magn. Magn. Mater.,2006,301(1):67-73
    [126] D. S. McClure. Comparison of the crystal fields and optical spectra of Cr2O3and ruby[J]. J.Chem. Phys.,1963,38(9):2289-2294
    [127] T. Ray. Dynamical Jahn-Teller effects for a V3+Ion in a MgO crystal[J]. Phys. Rev. B,1972,5(5):1758-1772.
    [128] R. J. Stephens. Dynamic Jahn–Teller effect in trigonally distorted cubic systems[J]. J. Chem.Phys.1969,51(5):1995-2005
    [129] D. J. Arnold, A. R. Smith, R. W. Wires. Low-temperature magnetic susceptibilities of Al2O3:V3+[J]. Phys. Rev. B,1970,1(5):2355-2356
    [130] G. D. Liu, S. L. Ji, L. L. Yin, et al. An investigation of the electronic properties of MgO dopedwit group III, IV, and V elements: trends with varying dopant atomic number[J]. J. Phys.:Condens. Matter,2010,22(4):1-6
    [131] W. A. Wall, B. D. Bartolo, J. Collins, et al. Vibrationally assisted transitions and phononspectra in crystalline solids[J]. J. Lumin.,2009,129(12):1782-1785
    [132] A. M. Ferrari, G. Pacchioni. Electronic structure of F and V centers on the MgO surface[J]. J.Phys. Chem.,1995,99(46):17010-17018
    [133] Y. Huttel, E. Navarro, A. Cebollada. Epitaxy and lattice distortion of V in MgO/V/MgO(001)heterostructures[J]. J. Cryst. Growth,2005,273(3-4):474-480
    [134] N. Tanaka, K. Iida. Atomic structures and magnetic transport properties of V and Co-MgOsingle crystalline composite films[J]. Scripta Mater.,2001,44(8-9):1365-1370
    [135] R. G. Brabin-Smith, V. W. Rampton. The acoustic paramagnetic resonance of vanadium dopedmagnesium oxide[J]. J. Phys. C,1969,2(10):1759-1763
    [136] A. Nahmani, R. Buisson. Intermediate Jahn-Teller effect within an orbital triplet-II-Application to the acoustic paramagnetic resonance of V3+in CaO[J]. J. Physique,1980,41(1):67–74
    [137] A. S. Chakravarty. Introduction to the magnetic properties of solids[M]. New York:Wiley-Interscience Publication,1980,5-78
    [138] C. A. Bates, L. C. Goodfellow, K. W. H. Stevens. The theory of acoustic paramagneticresonance of V3+in MgO[J]. J. Phys. C,1970,3(8):1831-1838
    [139] K. Asakura, Y. Iwasawa. A structure model as the origin of catalytic properties of metal-dopedMgO systems[J]. Mater. Chem. Phys.,1988,18(5-6):499-512
    [140] A. Abragam, B. Bleaney. Electron paramagnetic resonance of transition Ions[M]. London:Oxford University Press,1986,7-34
    [141] W. C. Zheng, S. Y. Wu. Theoretical investigations of the zero-field splitting and g factors forCdS: Ti2+and CdSe: Ti2+crystals[J]. Physica B,1999,269(3-4):314-318
    [142] R. W. Wyckoff. Crystal Structures[M]. NewYork: Interscience,1951,9-67
    [143] A. Fazzio, M. J. Caldas, A. Zunger. Separation of one-and many-electron effects in theexcitation spectra of3d impurities in semiconductors[J]. Phys. Rev. B,1984,29(10):5999-6002
    [144] R. M. Macfarlane. Perturbation methods in the calculation of zeeman interactions andmagnetic dipole line strengths for d3trigonal-crystal spectra[J]. Phys. Rev. B,1970,1(3):989-1004
    [145] R. Heitz, A. Hoffmann, B. Hausmann, et al. Zeeman spectroscopy of V3+-luminescence inZnO[J]. J. Lumin.,1991,48(49):689-692
    [146] R. D. Shannon. Revised effective ionic radii and systematic studies of interatomic distances inhalides and chalcogenides[J]. Acta Crystallogr. Sect. A: Cryst. Phys., Diffract., Theoretical andGeneral Crystallography,1976,32(5):751-767
    [147] H. N. Dong, X. X. Wu, S. Y. Wu. Condensed matter: structural, mechanical, and thermalproperties[J]. Acta Phys. Sin.,2002,51(3):616-619.
    [148] G. Gagliardi, M. Salza, S. Avino, et al. Probing the ultimate limit of fiber-optic strainsensing[J]. Science,2010,330(6007):1081-1084
    [149] M. McSherry. Review of luminescent based fibre optic temperature sensors[J]. Sensor Review,2005,25(1):56–62.
    [150] V. I. Ruiz-Pérez, M. A. Basurto-Pensado, P. LiKamWa, et al. Fiber optic pressure sensor usingmultimode interference[J]. J. Phys.: Conf. Ser.,2011,274(1):1-7
    [151] W. G. Lee, D. H. Kim, C. G. Kim. Transmissive grating-reflective mirror-based fiber opticaccelerometer for stable signal acquisition in industrial applications[J]. Optical Engineering,2012,51(5):1-8
    [152] B. Schmau, M. M rz, J. Ernst. A fiber‐optic sensor for microwave field measurements[J]. Rev.Sci. Instrum,1995,66(8):4031-4033
    [153] P. Bianucci, J. R. Rodriguez, F. Lenz, et al. Silicon nanocrystal luminescence coupled towhispering gallery modes in optical fibers[J]. J. Appl. Phys.,2009,105(2):1-5
    [154] B. R. Soller, S. O. Heard, N. A. Cingo, et al. Application of fiberoptic sensors for the study ofhepatic dysoxia in swine hemorrhagic shock[J]. Crit. Care Med.2001,29(7):1438-1444
    [155] B. Lee. Review of the present status of optical fiber sensors[J]. Optical Fiber Technology,20039(1):57–79
    [156] F. Baldini, A. Giannetti, A. A. Mencaglia, et al. Fiber optic sensors for biomedicalapplications[J]. Curr. Anal. Chem.,2008,4(4):378-3902
    [157] C. Elosua., I. Matias, C.Bariain, et al. Volatile organic compound optical fiber sensors: areview[J]. Sensors,2006,6(11):1440-1465
    [158] M. El-Sherif, L. Bansal, J. Yuan. Fiber optic sensors for detection of toxic and biologicalthreats[J]. Sensors,2007,7(12):3100-3118
    [159] Y. Z. Liao, V. Strong, Y. Wang, et al. Oligotriphenylene nanofiber sensors for detection ofnitro-based explosives[J]. Advanced Functional Materials,2012,22(4):726-735
    [160] H. Steiner, M. Jakusch, M. Kraft, et al. In situ sensing of volatile organic compounds ingroundwater: first field tests of a mid-infrared fiber-optic sensing system[J]. AppliedSpectroscopy,2003,57(6):607-613
    [161] M. Morisawa, S. Muto. Plastic Optical fiber sensing of alcohol concentration inliquors[J].Journal of Sensors,2012,2012(1):1-5
    [162] G. Possetti, M. Muller, J. L. Fabris. Refractometric optical fiber sensor for measurement ofethanol concentrationin ethanol-gasoline blend[C]. Microwave and OptoelectronicsConference (IMOC), SBMO/IEEE MTT-S International, Curitiba,2009,616-620
    [163] N.A.Yebo, P. Lommens, Z. Hens, et al. An integrated optic ethanol vapor sensor based on asilicon-on-insulator microring resonator coated with a porous ZnO film[J]. Optics Express,2010,18(11):11859-11866
    [164] F. Pang, X. Hana, F. Chua, et al. Sensitivity to alcohols of a planar waveguide ring resonatorfabricated by a sol–gel method[J]. Sensors and Actuators B,2007,120(2):610-614
    [165] M. Konstantaki, A. Klini, D. Anglos, et al. An ethanol vapor detection probe based on a ZnOnanorod coated optical fiber long period[J]. Optics Express,2012,20(8):8472-8484
    [166] B. Renganathan, D. Sastikumar, G. Gobi, et al. Nanocrystalline ZnO coated fiber optic sensorfor ammonia gas detection[J]. Optics&Laser Technology,2011,43(8):1398-1404
    [167] W. Ma, H. Yang, W. Wang, et al. Ethanol vapor sensing properties of triangular silvernanostructures based on localized surface plasmon resonance[J]. Sensors,2011,11(9):8643-8653
    [168] E. J. Anglin, L. Cheng, W. R. Freeman, et al. Porous silicon in drug delivery devices andmaterials[J]. Advanced Drug Delivery Reviews,2008,60(11):1266–1277
    [169] R. Lockwood, S. McFarlane, J. R. Rodriguez-Nunez, et al. Photoactivation of silicon quantumdots[J]. Journal of Luminescence,2011,131(7):1530-1535
    [170] Y. D. Jeong, Y. H. Won, S. O. Choi, et al. Tunable single-mode Fabry-Perot laser diode using abuilt-in external cavity and its modulation characteristics[J]. Optics Letters,2006,31(17):2586-2588
    [171] Z. H. Zhang, R. Lockwood, J. G. C. Veinot, et al. Detection of ethanol and water vapor withsilicon quantum dots coupled to an optical fiber[J]. Sensors&Actuators: B. Chemical,2013,181(1):523-528

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700