用户名: 密码: 验证码:
焊接H型钢部分包裹混凝土组合短柱偏心受力性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
H型钢部分包裹混凝土组合柱是在焊接H型钢的翼缘板之间加设横向系杆并内填混凝土组合成的一种结构构件。内填混凝土能有效提高板件的抗局部屈曲能力,规则间距的横向系杆对混凝土起到了约束作用,从而提高了构件的延性。本文中把这种H型钢部分包裹混凝土组合柱简称为PEC柱。
     本文在对焊接H型钢部分包裹混凝土组合短柱偏心受压的试验研究中,设计了以含钢率、翼缘宽厚比、高厚比为主要参数的6个试件,揭示在这几种参数变化的情况下,H型钢部分包裹混凝土组合短柱的破坏模式、破坏特点及极限承载力。
     该柱的极限承载力受含钢率和翼缘宽厚比的影响,随着含钢率的增大,部分包裹混凝土组合短柱的承载力不断提高,而翼缘宽厚比越小,其极限承载力越高。最后,基于叠加原理,建立了部分包裹混凝土组合短柱偏心受压承载力计算公式,同时编制了部分包裹混凝土组合短柱承载力数值计算程序,数值计算结果与试验结果吻合良好。
H steel partially encased concrete composite(PEC)column is a configuration consisting of welded H-shaped steel section with concrete cast between the flanges. Concrete cast betweenthe flanges can effectively improve the resistance to local buckling. Transverse links between the flanges at the regular intervals tend to provide some confinement to the concrete, thereby to improve the ductility of these columns. In this paper, H steel partially encased concrete composite columns are denominated for PEC columns.
     In this paper, An experimental result of H steel partially encased concrete composite short columns subjected to bias compression is presented. The experimental program includes 6 composite columns that are designed taking steel ratio、width-to-thickness ratio of the flange and high-thick ratio as the factors. Failure models、failure behavior and bearing capacity of the PECshort columns are explored.
     The main factors influencing ultimate load capacity of the PEC column are steel ratio and width-to-thickness ratio of the flange. It could be concluded that the bearing capacity of partially encased concrete composite short column for eccentrically load improves with increasing of the steel ratio. But the bearing capacity increases as width-to-thickness ratio ofthe flange decreases. The last,based on the test results,a numerical model for predicting the ultimate load capacity of the PEC column under eccentrically load compression is developed. The calculated results are in good agreement with the test data.
引文
[1]林宗凡.钢-混凝土组合结构[M].上海:同济大学出版社.2004.
    [2] Vincent, Richard B. Design and application of partially encased non-compact composite columns for high-rise buildings. In: Proceedings of the Conference: Composite Construction in Steel and Concrete IV, 2000, 854-864.
    [3]薛建阳.钢与混凝土组合结构[M].武汉:华中科技大学出版社.2007.
    [4]建设部人事教育司等部门.MB轻型钢结构住宅建筑体系[M].北京:中国建筑工业出版社.2005.
    [5]赵桥荣.外包钢混凝土梁性能研究[D].西安:西安建筑科技大学硕士学位论.2004.
    [6] Hunaiti, Y. M. and Fattah, B. Abdel. Design considerations of partially encased composite columns. In: Institute of Civil Engineers, Structures and Buildings, 1994, 106, 75-82.
    [7] Elnashai, A. S. and Broderick, B. M. Seismic resistance of composite beam-columns in multi-story structures. Part 1: Experimental studies. Journal of Constructional Steel Research, Elsevier, Oxford, UK, 1994, 30, 201-229.
    [8] Elnashai, A. S. , Takanashai, K. , Elghazouli, A. Y. , and Dowling, P, J. Experimental behaviour of partially encased composite columns with built up shaps. Journal of Structural Engineering, ASCE, 1991, 129(2), 141-150.
    [9] Plumier, A. , Abed, A. and Tilioune , B. Increase of bucking resistance and ductility of H-sections by encased concrete. Behaviour of Steel Structures in Seismic areas: STESSA, 4, ed. by F. M. Mazzolani and V. Gioncu, E&FN Spon, London, 1995, 211-220.
    [10] Bursi, Oreste S. , Zandonini, Riccardo, Salvatore, Walter, Caramelli, Stefano, Haller, Mike. Seismic Behavior of a 3D Full-Scale Steel-Concrete Composite Moment Resisting Frame Structure. In: Proceedings of the 5th International Conference on Composition in Steel and Concrete V, 2006, 641-652.
    [11] Walter Salcatore, Aurelio Braconi, and Oreste S. Bursi. Component-Based Model of Dissipative Partial-trength Beam-to-Column Composite Joints. Composite Construction in Steel and Concrete V, 2006, P455-466.
    [12] Tremblay, R. , Massicotte, B. , Filion, I. and Maranda, R. Experimental study on the behavior of partially encased composite columns made with light welded h steel shapes under compressive axial loads. In: 1998 Annual Technical Session, and Meeting, Structural Stability Research Council, 1998, 195-204.
    [13] Tremblay, R. , Chicoine, T. , Massicotte, B, Ricles, James M. and Lu, Le-Wu Compressive strength of large scale partially-encased composite stub columns. In: 2000 Annual Technical Session, and Meeting, Structural Stability Research Council, 2000, 262-271.
    [14] Chicoine, T. Tremblay, R. Massicotte, B. Ricles, J. Lu, Le-Wu Behavior and strength of partially encased composite columns with built-up shapes. Journal of Structural Engineering, ASCE, 2002, 128(3), 279-288.
    [15] Chicoine, T. , Massicotte, B. , and Tremblay, R. Finite element modeling and design of partially encased composite columns. Steel&Composite tructures, 2(3), 2002. 171-194.
    [16] Brent S. Prickett, Robert G. Driver. Behaviour of partially encased composite columns made with high performance concrete. Structure engineering report No. 262, department of civil& environ-mental engineering, University of Alberta January 2006.
    [17]叶列平,方鄂华.钢骨混凝土构件的受力性能研究综述[J].土木工程学报.2000(10) .
    [18]中华人民共和国行业标准.型钢混凝土组合结构技术规程JGJ138-2001[S].北京:中国建筑工业出版社.2001.
    [19]中华人民共和国国家标准.混凝土结构设计规范(GB50010-2002)[S].北京:中国建筑工业出版社.2002.
    [20]中华人民共和国国家标准[S].金属拉伸试验方法(GB228-2002).
    [21]中华人民共和国国家标准[S].金属拉伸试验试样(GB6397-86).
    [22]中华人民共和国国家标准[S].普通混凝土力学试验方法标准(GB/T50081-2002).
    [23]髙志军.外包钢混凝土轴压短柱受力性能分析[D].包头:内蒙古科技大学硕士学位论文.2007.
    [24]聂建国,刘明,叶列平.钢—混凝土组合结构[M].北京:中国建筑工业出版社. 2005.
    [25]王清湘,赵大洲,关萍.轴心受压钢骨-钢管高强混凝土组合柱承载力的研究[J]. 2003,20(6):195-201.
    [26]东南大学,天津大学,同济大学合编.混凝土结构[M].北京:中国建筑工业出版社.2001.
    [27]周文峰,黄宗明等.约束混凝土几种有代表性应力-应变模型及其比较[J].重庆建筑大学学报.2003,25(4):121-127.
    [28]徐超,赵文成等.受约束高强度混凝土应力-应变关系的探讨[J].沈阳建筑工程学院学报(自然科学版) .2002(4):258-260.
    [29]王连广.钢与混凝土组合结构理论与计算[M].北京.科学出版社.2005.
    [30]王连广,李立新.钢骨混凝土受弯构件非线性全过程分析[J].沈阳建筑工程学报.2001, 4(4): 31-36.
    [31]李四平,霍达.偏心受压方钢管混凝土柱极限承载力的计算[J].建筑结构学报.1998,19(1):41-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700