用户名: 密码: 验证码:
振荡浮子式波浪能发电装置水动力性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的发展,全球化石燃料日益枯竭,能源供给日益紧张,推动了海洋波浪能转换技术的发展。振荡浮子技术以其结构简单、抗风浪能力强、能量转化效率相对较高和频率响应范围宽等优点,极具开发前景。在国外,一些振荡浮子式波浪能装置已接近商业化,而国内发展相对滞后,仍在起步阶段。由于国内外海况条件差异巨大,结合我国近海波浪周期短,能量密度相对较低的特点,对振荡浮子式波浪能转换装置进行系统的自主研发是必由之路,而水动力性能研究是其中的基础性工作。本论文通过理论分析、数值计算和模型试验等研究手段,研究了振荡浮子式波浪能转换装置的水动力性能及其波浪能俘获特性。
     本文首先综述了波浪能发电装置的国内外研究现状和发展趋势,重点总结了振荡浮子式波浪发电装置国内外研究进展,分析和评述了现有水动力分析模型存在的主要问题,并在此基础上提出了本文的研究内容。
     根据振荡浮子式波浪发电装置的特点,分别应用一阶绕射理论和Froude-Krylov理论对浮子和浮筒进行波浪载荷分析;采用特征函数法和渐进匹配系数法求解一阶绕射速度势,得到了浮体垂荡和纵荡的波浪激励力、纵摇的波浪激励力矩的半解析表达式,并进行了编程求解;基于一阶辐射理论推导了等直径垂直圆柱浮体的垂荡、纵荡的附加质量系数和附加阻尼系数及纵摇的附加惯性矩系数和附加阻尼力矩系数的半解析表达式,并进行了编程求解。研究表明:在高频段,可应用于波浪能发电装置的水动力性能分析;同频率下充分考虑波浪绕射作用后浮子受到的垂向波浪力比不考虑波浪绕射时的计算结果偏低,更符合实际情况;同频率下浮筒受到的垂向波浪力仅有浮子受力的5%,浮筒的垂荡幅值是浮子垂荡幅值的1/9~1/7,揭示了振荡浮子式波浪能装置的发电机理。
     以水动力分析为基础,建立了浮子与浮筒的频域耦合运动方程,获得了振荡浮子式波浪能转换装置系统的频率响应函数,推导了波浪能转换系统在规则波下的俘获功率和能量俘获宽度表达式;通过频域模型研究了浮子质量、浮筒质量、浮子吃水深度、外部阻尼系数等因素对能量俘获宽度的影响。研究表明:浮子与浮筒的质量比为0.14时,装置的能量输出最大;相同结构尺寸的浮子,吃水浅的浮子俘获功率和能量俘获宽度更大;液压系统阻尼对能量输出系统的影响最大,同一装置在低频段,系统阻尼越大俘获能量越多,在高频段系统阻尼对俘获功率的影响相对较小。
     基于上述理论与分析,利用相似准则,按照10:1的缩尺比设计了物理模型,并在航模拖曳水池开展了模型试验研究,揭示了发电系统的阻尼、波浪的波高、周期、浮子与浮筒质量比例关系、浮体的直径等因素对装置水动力性能影响规律;模型试验结果与理论分析结果一致,进一步验证了理论分析的正确性。
With the development of our society, the fossil fuels crisis turns out to be an irreversible stimulant for the development of ocean wave energy conversion technology. The technology of oscillation floater has a bright development prospect for the advantage of simple construct, strong wave resistance, higher energy conversion efficiency and wide frequency response range. Some oscillation floater wave energy devices are nearing commercialization abroad, while they are still in the initial stage with lagging development at home. Due to the huge difference in wave conditions at home and abroad, it's the only way to develop the oscillation floater wave energy conversion device independently and systematically combined with the character of short offshore wave period and relatively low energy density of our country, and the study of the hydrodynamic performance is the basic work. This paper studies the hydrodynamic performance and the characteristics of wave energy trapping of the floating wave energy convertor via theoretical analysis, numerical calculation and model test.
     This paper gives an overview about the international research situation and the development tendency of the wave energy generation devices, in which the research progress of the floater wave energy generation device home and aboard is especially introduced. Then the content of this paper is pointed out based on the analysis and comments of the main problems of the existing devices.
     According to the features of the floater wave energy generation device, the first order diffraction theory and Froude-Krylov theory are used to analyze the wave load on the floater and pontoon. Then the solution of the first order diffraction velocity potential is found with the characteristic function method and matching asymptotic coefficient method and the semi-analytical expressions of floater's heaving and surging wave exciting force and pitching wave excitation torque are obtained. After that, the programming solution is accomplished. Finally the equal-diameter floater's heaving and surging added mass coefficient, added damping coefficient, pitching additional rotational inertia coefficient and additional rotational damping moment coefficient are deduced by using first-order radiation theory and the programming solution is accomplished. Studies have shown that the calculation results of the two programs are the same to that of the SESAM software at high frequency so that it can be used in the hydrodynamic performance analysis of the wave energy generation device. It is more in line with the actual situation that the vertical wave force on the floater with the full consideration of the wave diffraction effect is20%lower than that without the wave diffraction effect under the same frequency. The vertical wave force on the floater is5%of the force on the floater under the same frequency, which reveals the working mechanism of the oscillation floater wave energy device.
     On the basis of hydrodynamic analysis, the coupled equations of the motion of floater and pontoon in the frequency domain are established separately when only considering the heaving motion of the floater and supposing the power output system is linear and adopting a slack mooring method. The frequency response function of the floater wave energy convertor system is obtained and the system's capture power and energy capturing width under the regular wave are deduced with the equations as well. The effects on the energy capturing width of the floater's mass, the pontoon's mass, the floater draught line and the external damping coefficient are studied with the frequency domain model. The results show that the device has the largest power output when the mass ratio of the floater to the pontoon is0.14. With the same size, the shallower waterline of the floater has the bigger capture power and energy capturing width. The hydraulic damping system has the biggest effect on the power output system. With the same device, more energy is captured with higher damping at low frequency while the damping has little effect on the energy capturing at high frequency.
     Based on the theory and analysis above, a physical model with a ratio of10:1is accomplished with the similarity criterion. A model test in a towing tank is performed for the further study on the affecting factors of the device's hydrodynamic performance such as the damping of power system, the height of the wave, the wave period, the proportional relationship among the mass of floater and pontoon and the diameter of the floater. The results of hydrodynamic model test are basically consistent with the results of the theoretical analysis, which further verifies the correctness of the theoretical analysis.
引文
[1]中华人民共和国国家发展和改革委员会,《可再生能源中长期发展规划》白皮书,2007.
    [2]赖向军,戴林.石油与天然气-机遇与挑战[M].北京:化学工业出版社,2005.6-10.
    [3]Petroleum B. BP statistical review of world energy[J]. London:Beyond petroleum,2006.2-4.
    [4]王传昆,芦苇.海洋能资源分析方法及储量评估[M].北京:海洋出版社,2009.
    [5]Policy Report, International Energy Agency-Ocean Energy Systems,2006.
    [6]Thorpe T W. An overview of wave energy technologies:status, performance and costs[C].Proceedings, International One day Seminar, Institution of Mechanical Engineers, London UK.1999.
    [7]程正顺.浮子式波浪能转换装置机理的频域及时域研究[D].上海交通大学,2013.
    [8]李允武.海洋能源开发[M],海洋出版社,2008.
    [9]D. Zhang, W. Li, Y. Lin. Wave energy in China:Current status and perspectives [J]. Renewable Energy,34(10):2089-2092,2009.
    [10]王传崑,陆德超等.中国沿海农村海洋能资源区划[R].国家海洋局科技司,水电部科技司,1989.
    [11]王传崑,施伟勇.中国海洋能资源的储量及其评价[C].中国可再生能源学会海洋能专业委员会第一届学术讨论会文集,杭州,169-179,2008.
    [12]Clement A, McCullen P, Falcao A, et al. Wave energy in Europe:current status and perspectives [J]. Renewable and sustainable energy reviews,2002,6(5):405-431.
    [13]Falnes J. A review of wave-energy extraction [J]. Marine Structures,2007,20(4):185-201.
    [14]Thorpe T W. A brief review of wave energy [M]. London, UK:Harwell Laboratory, Energy Technology Support Unit,1999.
    [15]Pelc R, Fujita R M. Renewable energy from the ocean[J]. Marine Policy,2002,26(6): 471-479.
    [16]Power buoys. The Economist[R],19May 2001.
    [17]Ross D, Ross D. Power from the Waves[M]. Oxford:Oxford University Press,1995.
    [18]Salter S H. Wave power [J]. Nature,1974,249(5459):720-724.
    [19]Duckers L. Wave energy [J]. Renewable Energy:Power for a Sustainable Future. Oxford University Press, Oxford,2004.
    [20]Callaghan J, Boud R. Future Marine Energy. Results of the Marine Energy Challenge:Cost competitiveness and growth of wave and tidal stream energy [J]. Carbon Trust,2006.
    [21]Korde U A. Control system applications in wave energy conversion[C]. OCEANS 2000 MTS/IEEE Conference and Exhibition. IEEE,2000,3:1817-1824.
    [22]Grove-Palmer C O J. Wave energy in the United Kingdom:a review of the programme June 1975 to March 1982[C]. Proceedings of 2nd International Symposium on Wave Energy Utilization.1982:23-54.
    [23]Falcao A F O. Wave energy utilization:A review of the technologies[J]. Renewable and sustainable energy reviews,2010,14(3):899-918.
    [24]Hirohisa T. Sea trial of a heaving buoy wave power absorber[J]. In:Berge H, eds. Proceedings of 2nd International Symposium on Wave Energy Utilization, Trondheim, 1982,403-417.
    [25]Budal K, Falnes J, Iversen L C, et al. The Norwegian wave-power buoy project[J]. In:Berge H, eds. Proceedings of 2nd International Symposium on Wave Energy Utilization, Trondheim, 1982.323-344.
    [26]Nielsen K, Smed P F. Point absorber-optimization and survival testing[C].Proceedings of the Third European Wave Energy Conference.1998,18.
    [27]Waters R, Stalberg M, Danielsson O, et al. Experimental results from sea trials of an offshore wave energy system[J]. Applied Physics Letters,2007,90(3):034105.
    [28]Prado M. Archimedes wave swing (AWS)[J]. Ocean wave energy. Berlin:Springer,2008: 297-304.
    [29]El wood D, Schacher A, Rhinefrank K, et al. Numerical modeling and ocean testing of a direct-drive wave energy device utilizing a permanent magnet linear generator for power take-off[C].Proceedings of 28th International Conference on Ocean Offshore Arctic Engineering, ASME, Honolulu, Hawaii.2009.
    [30]Cleason L, Forsberg J, Rylander A, et al. Contribution to the theory and experience of energy production and transmission from the buoy-concept[C].Proc.2nd Int. Symp. Wave Energy Utilization. Trondheim, Norway.1982:345-370.
    [31]Weber J, Mouwen F, Parish A, et al. Wavebob-research & development network and tools in the context of systems engineering[C].Proc. Eighth European Wave and Tidal Energy Conference, Uppsala, Sweden.2009.
    [32]Vining J. Ocean wave energy Conversion[J]. Electrical and Computer Engineering,2005:80.
    [33]马哲.振荡浮子式波浪发电装置的水动力学特性研究[D].青岛:中国海洋大学,2013.
    [34]赵海涛.浮力摆式波浪能装置的水动力性能研究[D].杭州:浙江大学,2012.
    [35]吴必军,郑永红,游亚戈,孙晓燕,陈勇.柱对称双浮子波能装置散射问题的解析方法[J].海洋学报,2004,26(3):115-125.
    [36]苏永玲,谢晶,葛茂泉.振荡浮子式波浪能转换装置研究[J].上海水产大学学报,2003,12(4):338-342.
    [37]勾艳芬,叶家玮,李峰,王冬姣.振荡浮子式波浪能转换装置模型试验[J].太阳能学报,2008,29(4):498-501.
    [39]Wu Bijun, Lin Hongjun, You Yage, Feng Bo, Sheng Songwei. Study on two optimizing methods ofthe oscillating type wave energy conversion devices[J]. Acta Energiae Solaris Sinica,2010,31(6):769-774.
    [40]Su Y, You Y,Zheng Y. Investigation on the oscillating buoy wave power device[J]. China Ocean Engineering,2002,16(1):141-149.
    [41]Chakrabarti S K. Hydrodynamics of offshore structures [J]. Computational Mechanics Limited and Springer-Verlag, New York,1987.
    [42]Brebbia C A, Walker S. Dynamic analysis of offshore structures[M]. London: Newnes-Butterworths,1979:109-143.
    [43]Mandal S. "Nonlinear coupled dynamic response of offshore spar platforms under regular sea waves":By Agarwal, AK and Jain, AK. Ocean Engineering,2003,30,517-555[J]. Ocean Engineering,2004,31(5):791-793.
    [44]董艳秋.深海采油平台波浪荷载及响应[M].天津:天津大学出版社,2005.
    [45]陈学闯,张力腿平台低频水平慢漂力研究[D].天津:天津大学,2002
    [46]崔毅.张力腿平台低频线性波浪载荷及响应研究[D].天津:天津大学,2003.
    [47]Newman J. The exciting forces on fixed bodies in waves[J]. Journal of Ship Research, 1962,6(3):10-17.
    [48]Yeung R W. Added mass and damping of a vertical cylinder in finite-depth waters[J]. Applied Ocean Research,1981,3(3):119-133.
    [49]Hulme A. The wave forces acting on a floating hemisphere undergoing forced periodic oscillations[J]. Journal of Fluid Mechanics,1982,121:443-463.
    [50]Falc o A. F. de O, Wave energy utilization:A review of the technologies. Renewable andSustainable Energy Reviews,2010,14:899-918.
    [51]Eriksson M, Isberg J, Leijon M. Hydrodynamic modelling of a direct drive wave energy converter[J]. International Journal of Engineering Science,2005,43(17):1377-1387.
    [52]Berggren L, Johansson M. Hydrodynamic coefficients of a wave energy device consisting of a buoy and a submerged plate[J]. Applied Ocean Research,1992,14(1):51-58.
    [53]Garnaud X, Mei C C. Wave-power extraction by a compact array of buoys[J]. Journal of Fluid Mechanics,2009,635:389-413.
    [54]聂武,刘玉秋.海洋工程结构动力分析[M].哈尔滨:哈尔滨工程大学出版社,2002.
    [55]李远林,近海结构水动力学[M].广州:华南理工大学出版社,1999.
    [56]李玉成,腾斌,波浪对海上建筑物的作用[M].北京:海洋出版社,2002.
    [57]黄祥鹿,陆鑫森,海洋工程流体力学及结构动力响应[M].上海:上海交通大学出版社,1992.
    [58]竺艳蓉,海洋工程波浪力学[M].天津:天津大学出版社,1991.
    [59]Yilmaz O. Hydrodynamic interactions of waves with group of truncated vertical cylinders[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering,1998,124(5):272-279.
    [60]Oguz Yilmaz, Atilla Incecik, Analytical solutions of the diffraction problem of agroup of truncated vertical cylinder[J]. Ocean Engineering,1998,25(6):385-394
    [61]Y. Drobyshevski, Hydrodynamic Coefficients of a Floating, Truncated Vertical Cylinder in Shallow Water[J]. Ocean Engineering,2004,31:269-304
    [62]孙伯起.不规则波浪中任意三元零航速物体的二阶力计算[J].水动力学研究与进展,1984,1:74-78.
    [63]董慎言,规则波中半潜平台运动响应的势流理论预报[J].中国造船,1986,37-46.
    [64]刘应中,缪国平.船舶在波浪上的运动理论[M].上海:上海交通大学出版版社,1987.
    [65]王言英,阎德刚.自升式海洋平台波浪荷载谱计算[J].中国海洋平台,1995,10(2):50-58.
    [66]Qian K, Wang Y Y. Response characteristics of loads on a semi-submersible platform[J]. China Ocean Engineering,2002,16(3):395-406.
    [67]Bingham H B, Maniar H D. Computing the double-body m-terms using a high-orderB-spline based panel method[C]. In:Presented at the 11th International workshop on Waves andFloating Bodies, Hamburg,1996.
    [68]Danmeier D G. A higher-order panel method for large-amplitude simulation of bodies in waves[D]. Ph. D. Thesis, Massachusetts Institute of Technology, Massachusetts,1999.
    [69]Anderson P, He W Z. On the calculation of two-dimensional added mass and dampingcoefficients by simple Green's function technique[J]. Ocean Engineering,1985, 12(5):425-451.
    [70]贺五洲,戴遗山.简单Green函数法求解三维水动力系数[J].中国造船,1986,2:1-15.
    [71]Beck R F, Liapis S. Transient motions of floating bodies at zero forward speed[J]. Journal of Ship Research,1987,31(3).
    [72]King B K, Beck R F, Magee A R. Seakeeping calculations with forward speed using time-domain analysis[C].Proc.17th Symp. on Naval Hydrodynamics.1988:577-596.
    [73]张亮,戴遗山.近水面航行物体绕射问题的时域解[J].中国造船,1992,119:1-16.
    [74]周正全,张亮,戴遗山.船舶在波浪中航行时绕射问题的时域解[J].中国造船,1992,119:1-25.
    [75]Inglis R B, Price W G. A three-dimensional ship motion theory:comparison between theoretical predictions and experimental data of the hydrodynamic coefficients with forward speed[J]. Transactions of Royal Institution of Naval Architects,1981,124:141-157.
    [76]Lin W M, Yue D K. Numerical solutions for large-amplitude ship motions in the time domain[J]. In:18th ONR Ann Arbor, Michigan,1990:41-66.
    [77]段文洋,戴遗山.浮子大幅运动水动力物面条件非线性时域解[J].哈尔滨工程大学学报,1997,18(5):1-7.
    [78]蔡泽伟,刘应中,严乃长.近水面三维物体运动的时域计算[J].水动力学研究与进展,1989,4(1):32-41.
    [79]蔡泽伟,陈耀松,刘应中.三维水面波动过程的计算方法[J].水动力学研究与进展,1989,4(1):43-49.
    [80]Kring D, Sclavounos P D. Numerical stability analysis for time-domain ship motion simulations[J]. Journal of ship research,1995,39(4):313-320.
    [81]Lin W M, Newman J N, Yue D K. Nonlinear forced motions of floating bodies[C].Proc.15th Intl. Symp. on Naval Hydrody., Hamburg, Germany.1984.
    [82]袁梦.深海浮式结构物系泊系统的非线性时域分析[D].上海:上海交通大学,2011.
    [83]Dommermuth D G, Yue D K P. Numerical simulations of nonlinear axisymmetric flows with a free surface[J]. Journal of Fluid Mechanics,1987,178:195-219.
    [84]柏威.非线性波浪与任意三维物体的相互作用[D].大连:大连理工大学,2001.
    [85]Isaacson M D S Q. Nonlinear-wave effects on fixed and floating bodies[J]. Journal of fluid Mechanics,1982,120:267-281.
    [86]Romate J E. The numerical simulation of nonlinear gravity waves in three dimensions usinga higher order panel method [D], Netherlands:University of Twente,1989.
    [87]Broeze J. Numerical modeling of nonlinear free surface waves with a 3D panel method [D], Netherlands:University of Twente,1993.
    [88]Van Daalen E F G. Numerical and theoretical studies of water and floating bodies [D], Netherlands:University of Twente,1993.
    [89]Kring D, Korsmeyer T, Singer J, et al. Analyzing mobile offshore bases using accelerated boundary-element methods[J]. Marine structures,2000,13(4):301-313.
    [90]De Hass P. Numerical simulation of nonlinear water waves using a panel method: domaindecomposition and applications [D], Netherlands:University of Twente,1997.
    [91]Price A A E, Dent C J, Wallace A R. On the capture width of wave energy converters[J]. Applied Ocean Research,2009,31(4):251-259.
    [92]R. W. Yeung, A. Peiffer, N. Tom, et al. Design, Analysis, and Evaluation of theUC-Berkeley Wave-Energy Extractor [J]. Journal of Offshore Mechanics and Arctic Engineering,2012, 134(2):021902.
    [93]M. Eriksson, J. Isberg, M. Leijon. Hydrodynamic modelling of a direct drivewave energy converter [J]. International Journal of Engineering Science,2005,43(17-18):1377-1387.
    [94]Patankar S V, Spalding D B. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows[J]. International Journal of Heat and Mass Transfer, 1972,15(10):1787-1806.
    [95]Patankar S. Numerical heat transfer and fluid flow[M]. Washington, DC:Hemisphere Publishing Corp,1980.210.
    [96]Ferziger J H, Perid M. Computational methods for fluid dynamics[M]. Berlin:Springer,2002.
    [97]Gentaz L, Alessandrini B, Delhommeau G.2D nonlinear diffraction around free surface piercing body in a viscous numerical wave tank[C].The Proceedings of the International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers,1999.
    [98]Enright D, Fedkiw R, Ferziger J, et al. A hybrid particle level set method for improved interface capturing[J]. Journal of Computational Physics,2002,183(1):83-116.
    [99]Kleefsman K M T, Fekken G, Veldman A E P, et al. A volume-of-fluid based simulation method for wave impact problems[J]. Journal of Computational Physics,2005,206(1): 363-393.
    [100]Sussman M, Puckett E G. A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows[J]. Journal of Computational Physics, 2000,162(2):301-337.
    [101]Sethian J A, Smereka P. Level set methods for fluid interfaces[J]. Annual Review of Fluid Mechanics,2003,35(1):341-372.
    [102]Ferziger JH, Peric M. Computational methods for fluid dynamics[M]. Berlin: Springer,2002,381-396.
    [103]Dalrymple R A, Rogers B D. Numerical modeling of water waves with the SPH method[J]. Coastal engineering,2006,53(2):141-147.
    [104]Lara J, Garcia N, Losada I. RANS modelling applied to random wave interaction withsubmerged permeable structures.[J].Coastal Engineering,2006,53(5-6):395-417.
    [105]Moin P, Mahesh K. Direct numerical simulation:a tool in turbulence research[J]. Annual Review of Fluid Mechanics,1998,30(1):539-578.
    [106]Lesieur M, Metais O. New trends in large-eddy simulations of turbulence[J]. Annual review of fluid mechanics,1996,28(1):45-82.
    [107]Sirnivas S, Allain O, Wornom S, et al. A study of LES models for the simulation of a turbulent flow around a truss spar geometry[C].25th International Conference on Offshore Mechanics and Arctic Engineering. American Society of Mechanical Engineers,2006: 755-761.
    [108]Farhat C, Geuzaine P, Grandmont C. The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of flow problems on moving grids[J]. Journal of Computational Physics,2001,174(2):669-694.
    [109]Chan W M. Overset grid technology development at NASA Ames Research Center[J]. Computers & Fluids,2009,38(3):496-503.
    [110]Peskin C S. The immersed boundary method[J]. Acta numerica,2002,11.
    [111]Monaghan J J. An introduction to SPH[J]. Computer physics communications,1988,48(1): 89-96.
    [112]Agamloh E B, Wallace A K, Von Jouanne A. Application of fluid-structure interaction simulation of an ocean wave energy extraction device[J]. Renewable Energy,2008,33(4): 748-757.
    [113]Bhinder M A, Mingham C G, Causon D M, et al. A joint numerical and experimental study of a surging point absorbing wave energy converter (WRASPA)[C]. ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers,2009:869-875.
    [114]Bhinder M, Mingham C, Causon D, et al. Numerical and experimental study of a surging point absorber wave energy converter[C].Proceedings of the 8th European wave and tidal energy conference.2009.
    [115]Eriksson M, Isberg J, Leijon M. Hydrodynamic modelling of a direct drive wave energy converter[J]. International Journal of Engineering Science,2005,43(17):1377-1387.
    [116]贾启芬,刘习军.工程动力学[M].天津:天津大学出版社,1999
    [117]Lopes M F P, Hals J, Gomes R P F, et al. Experimental and numerical investigation of non-predictive phase-control strategies for a point-absorbing wave energy converter[J]. Ocean Engineering,2009,36(5):386-402.
    [118]Hals, J. Modeling and phase control of wave-energy converters [D]. PhD thesis,NTNU, Trondheim, Norway,2010.
    [119]Muliawan M J, Gao Z, Moan T, et al. Analysis of a two-body floating wave energy converter with particular focus on the effects of power take-off and mooring systems on energy capture[J]. Journal of Offshore Mechanics and Arctic Engineering,2013,135(3):031902.
    [120]Vicente P C, Falcao A F O, Justino P A P. Slack-chain mooring configuration analysis of a floating wave energy converter[C]. Proc. of the 26th international workshop on water waves and floating bodies.2011.
    [121]盛振邦,船舶静力学[M].上海:上海交通大学出版社,1992.
    [122]戴遗山,段文洋,船舶在波浪中运动的势流理论[M].北京:国防工业出版社,2008
    [123]O.M.Faltinsen著,杨建民,肖龙飞,葛春花泽,船舶与海洋工程环境载荷[M].上海:上海交通大学出版社,2008
    [124]黄祥鹿,陆鑫森,海洋工程流体力学及结构动力响应[M].上海:上海交通大学出版社,1992
    [125]竺艳蓉,海洋工程波浪力学[M].天津:天津大学出版社,1991.
    [126]Williams A. N., Demirbilek Z., Hydrodynamic interactions in floating cylinderarray-Ⅰ wave scattering [J], Ocean Engineering,1988,15(6):549-583.
    [127]胡志敏,董艳秋,张建民,张力腿平台波浪载荷计算[J].中国海洋平台,2002,17(3):6-11
    [128]Bhatta D. D., Rahman M., Wave loadings on a vertical cylinder due to heavemotion[J]. International Journal of Mathematics & Mathematic science,1995,18(1): 151-170
    [129]张海燕.Spar平台垂荡-纵摇耦合非线性运动特性研究[D].天津大学,2008.
    [130]Oguz Yilmaz, Hydrodynamic interactions of waves with group of truncatedvertical cylinder[J].Journal of Waterway, Port, Coastal and Ocean Engineering,1998,272-279.
    [131]Oguz Yilmaz, Atilla Incecik, Analytical solutions of the diffraction problem of agroup of truncated vertical cylinder[J].Ocean Engineering,1998,25(6):385-394.
    [132]Ma Q.W, Patel M.H, On the non-linear forces acting on a floating Sparplatform in ocean waves[J]. Applied Ocean Research,2001,23(1):29-40
    [133]邱大洪.波浪理论及其在工程上的应用[M].北京:北京海洋出版社,1985
    [134]王凌宇.海洋浮子式波浪发电装置结构设计及试验研究[D].大连:大连理工大学,2008.
    [135]Sarpkaya T. Force on a circular cylinder in viscous oscillatory flow at low Keulegan-Carpenter numbers[J]. Journal of Fluid Mechanics,1986,165:61-71.
    [136]孟扬.浮子式波浪发电装置设计及其功率特性研究[D].哈尔滨:哈尔滨工程大学2009.
    [137]Agarwal A K, Jain A K. Dynamic behavior of offshore spar platforms under regular sea waves[J]. Ocean Engineering,2003,30(4):487-516.
    [138]Agarwal A K, Jain A K. Nonlinear coupled dynamic response of offshore Spar platforms under regular sea waves[J]. Ocean engineering,2003,30(4):517-551.
    [139]王军君.Spar平台波浪载荷计算分析[D].大连:大连理工大学,2009.
    [140]Cai S, Long X, Gan Z. A method to estimate the forces exerted by internal solitons on cylindrical piles[J]. Ocean Engineering,2003,30(5):673-689.
    [141]Kriebel D L. Nonlinear wave interaction with a vertical circular cylinder. PartⅠ:Diffraction theory[J]. Ocean Engineering,1990,17(4):345-377.
    [142]Garrison C J. Hydrodynamics of large objects in the sea, Part II, Motion of free-floating bodies[J].Journal of Hydronautics,1975; 9(2):58)63
    [143]Sabuncu T,Calisal S. Hydrodynamic coefficients for vertical circu-lar cylinders at finite depth[J].Ocean Engineering,1981; 8:25-63
    [144]Bhatta D D,Rahman M. On scattering and radiation problem for acylinder in water of finite depth[J].International Journal of Engineering Science,2003; 41:931-967
    [145]杨冠声.张力腿平台非线性波浪载荷和运动响应研究[D].天津:天津大学学位论文,2003;33-47
    [146]陈宏彬,李远林.用源分布法求解浅水中二维任意剖面在自由表面上垂荡的附加质量和阻尼系数[J].船舶工程,1997;3:8-11
    [147]Evans D V. Power from Water Waves[J]. Annual Review of Fluid Mechanics.1981,13: 157-187.
    [148]Falcao AFO. Phase control through load control of oscillating-body wave energy converters with hydraulic PTO system [J]. Ocean Engineering,2008,35(3-4):358-366.
    [149]Dean R Q Dalrymple R. Water Wave Mechanics for Engineers and Scientists[M]. Singapore: WorldScientific,1984.
    [150]杨建民,肖龙飞,盛振邦.海洋工程水动力学试验研究[M].上海:上海交通大学出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700