用户名: 密码: 验证码:
十字花科蔬菜根肿病菌检测技术及畜禽粪便传播病原菌研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
十字花科蔬菜根肿病是由芸薹根肿菌(Plasmodiophora brassicae Woron)侵染引起的一种重要土传病害。近年来,十字花科蔬菜根肿病在我国云南、四川、湖北等主栽区大面积暴发流行,造成巨大的经济损失。本论文以十字花科蔬菜根肿病菌为研究对象,研究根肿病菌检测技术及畜禽粪便在根肿病菌传播过程中的作用。主要研究结果如下:
     1.创建了Hoechest33342-PI荧光双染检测新技术,检测不同介质中根肿菌休眠孢子活力。休眠孢子染色特征为,有活力的孢子发蓝色荧光,无活力孢子发红色荧光。最佳染色条件为,Hoechest33342的工作浓度为5μg/mL,染色的最佳时间为在37℃下孵育10min;PI的工作浓度为5μg/mL,染色时间为在4℃条件下染色15min。该技术适用于检测物理、射线及化学药剂作用引起的根肿菌休眠孢子失活,也可检测多种植物病原真菌活力,包括镰刀菌属(Fusarium)、葡萄孢属(Botrytis)、壳球孢属(Macrophomina)、疫霉属(Phytophthora)等17个属植物病原真菌。
     2.建立了十字花科蔬菜根肿病菌快速、高灵敏性检测技术。建立了基于根肿rDNA-ITS区序列的实时荧光定量PCR检测技术,最低检测限点为70个拷贝数/反应,相当于1000个休眠孢子·g-1土壤,其灵敏性比常规PCR至少高出2~3个数量级。采用蔗糖密度梯度离心法对样本中根肿菌休眠孢子进行富集,进一步提高了荧光定量PCR检测的灵敏性,检测限点为10个休眠孢子·g-1土壤,灵敏性较单独荧光定量PCR使用时提高了100倍。
     3.证明了畜禽粪便是十字花科蔬菜根肿病菌传播途径之一。采用荧光定量PCR技术检测带菌鸡粪及猪粪,平均带菌量分别为6.42×106个休眠孢子.g-1鸡粪和5.62×106个休眠孢子.g-1猪粪;Hoechst33342-PI复染法检测带菌鸡粪及猪粪中休眠孢子活力,有活力孢子比例分别为62.20%和68.89%;接种感病寄主植物后病情指数分别为47.22和52.78,三者结合证明了禽粪便可传播十字花科蔬菜根肿病菌。
     4.初步明确了畜禽消化道环境对根肿菌休眠孢子活力的影响。体外模拟畜禽消化道环境,评价高温(41℃和37℃)、高胆盐浓度(0.3%禽畜胆盐)、强酸环境(pH值2.0,3.0)处理后根肿菌休眠孢子存活率。根肿菌休眠孢子在鸡的消化道高温、高胆盐浓度及强酸作用后有活力孢子比例为53.24%,猪消化道环境作用后有活力休眠孢子比例为57.86%;接种感病寄主植物后病情指数分别为48.34和52.78,根肿菌休眠孢子对消化道的高温、高胆盐浓度及强酸环境具有很强的耐受性。
     5.采用高温堆肥技术可以杀灭带菌猪粪中的根肿菌,实现根肿菌无害化处理。整个堆肥过程中共进行2次发酵,温度均维持在55~68℃之间,持续时间均为10d左右,水分含量在55%左右,整个堆肥过程中堆体温度和水分含量有利于杀死根肿菌休眠孢子,在堆肥进行40d时可以完全杀死猪粪中的根肿菌休眠孢子,无活力孢子比例为100%,接种感病寄主植物不发病。发酵结束时堆肥pH值为8.32,呈微碱性适于农作物生长;毒素敏感植物种子的发芽率超过90%,完全符合植物生长的要求,对植物生长无抑制作用。
     本研究创建了Hoechest33342-PI荧光双染检测技术,用于检测不同介质中根肿菌休眠孢子活力,首次将荧光双染技术应用到植物病原菌活力检测领域,可为植物病原菌活力、致病力检测及杀菌剂活性筛选提供了新的技术手段;建立了十字花科蔬菜根肿病菌快速高灵敏性检测技术。该技术为进一步研究根肿病的流行规律及早期诊断和监测提供了理论依据和有效的技术手段。
     同时,通过体外模拟技术初步明确了畜禽粪便传播根肿病菌的机制,证明了畜禽粪便是十字花科蔬菜根肿病的传播途径之一。通过高温堆肥技术实现了猪粪中根肿菌无害化处理,该研究结果为根肿病防治策略的制定提供理论依据及技术支持。
Clubroot of Crucifers is a soil-borne disease caused by P. brassicae. The outbreaks have been widespread in the main growing areas in China, such as Yunnan, Sichuan and Hubei. The widespread outbreaks have caused huge economic losses. P. brassicae rwas taken as the researching object, which included the detection technology of P. brassicae and the role of livestock and poultry manure in the transmission of P. brassicae.. The main results are as follows:
     1. A fluorescence microscopic method was developed to directly assess the pathogenic activity of P. brassicae resting spores. Resting spores were stained with a mixture solution of two fluorescences (Hoechest33342and propidium iodide), and were observed by fluorescence microscopy (phase contrast, UV filter set, oil immersion). The fluorescent staining characteristic of the spores showed that the live spores exhibited intense blue fluorescence, while the dead spores displayed red fluorescence. The optimum staining conditions were that, the work concentration of Hoechest33342was5μg/ml, incubated for10min at37℃; PI was5μg/mL, incubate for15min at4℃. This technology was also used to detect the gross changes in the pathogenic activity of the spores which were induced by heat, UV light and chemical treatments. Besides for the detection of P. brassicae, this method can also be applied to detect a variety of other plant pathogens, including17genus, such as Fusarium, Botrytis, Macrophomina, Phytophthora, and etc.
     2. A rapid and highly sensitive technology used for the direct detection and quantification of P. brassicae was developed. In addition, the SYBR Green I Real-Time PCR assay with P. brassicae ribosomal DNA and internal transcribed spacer (ITS) was also an important result. The detection limit was0.0234fg.μL-1when tested with P.brassicae genomic DNA. The detection limit in soil samples corresponded to1000resting spores-g-1soil, was higher than that of the conventional PCR by at least2-3orders of magnitude. The variation coefficient of Ct values of diluted standard DNA was less than4%, which indicated a good reproducibility. Using the sucrose density gradient centrifugation to gather the resting spores of P. brassicae in soil samples improved the detecting sensitivity of fluorescence quantitative PCR. Thus, the detection limit can reach to10resting spores-g-1soil after gathering, and the sensitivity of the assay was100fold higher than that of the real-time polymerase chain reaction (PCR).
     3. Livestock and poultry dung are the main transmission routes of P. brassicae. Using the fluorescence microscopic method, quantitative PCR, DNA of P. brassicae, the causal agent of clubroot, was detected and quantified in livestock and poultry dung and bioassay. Quantifiable levels of infested livestock and poultry dung were6.42×106resting spores-g-1poultry dung and5.62×106resting spores-g-1livestock dung, respectively; the vast majority of resting spores on these samples were viable, as determined by Hoechst33342-PI fluorescence dye staining. The percentage of viable P. brassicae resting spores was62.20%and68.89%in chicken and pig manure, respectively. The bioassays of infested chicken and pig manure can cause consistent clubroot symptoms, disease index were47.22and52.78. These results suggested that infested chicken and pig manure might cause dissemination of this pathogen.
     4. The mechanism of livestock and poultry dung for dissemination of P. brassicae was preliminarily explained. Survival rates of P. brassicae resting spores were evaluated in vitro through simulating the high temperature (41℃and37℃), high concentration of bile salts (0.3%livestock bile salts) and acidic conditions (pH2.0,3.0) of chicken and pig gastrointestinal tract environments. The survival rate was53.24%in the simulative digestive tract of chicken with high temperature, high concentrations of bile salt and acid. The survival rate was57.86%in the simulative digestive tract of pig with high temperature, high concentrations of bile salt and acid. The susceptible plants inoculated with the treated P. brassicae resting spores in the simulative digestive tracks of chicken and pig showed obvious clubroot symptoms, and disease indexes were48.34and52.78, respectively. The results indicated that resting spores were strongly tolerant to high temperature, high concentrations of bile salt and also in acidic condition.
     5. P. brassicae in pig manure can be eradicated through high temperature composting technology. The whole composting process included two fermentations. For each fermentation, the pig manure was incubated at60℃-70℃for10days with high moisture levels (55%w/w moisture content). Both temperature and moisture content were critical for eradication of P. brassicae spores. The spores were totally extracted from composted clubroot affected residues after incubating for40days, and the percentage of dead resting spores was100%. After inoculated with these spores, the host didn't show any clubroot symptoms in greenhouse plant bioassay. After two fermentations, the pH value of composting materials was8.32, slight alkaline which was suitable for the plants. The germination rate of Chinese cabbage seed can over90%, meeting the requirements of the plant growth and had no inhibitory effect on plant growth.
     A new technology of Hoechest33342-PI double dye fluorescence detection was developed to detect the vitality of resting spores in different media. Moreover, a fluorescence microscopy method was developed to directly assess the pathogenic activity of P. brassicae resting spores. It is the first time that the technology has been adopted in detecting the activity of plant pathogens; establishing the detection of P. brassicae with fast and high sensitivity technology successfully is also an important result. The application of these procedures will contribute to a better understanding of the epidemiology of clubroot and help us to control this disease.
     At the same time, by means of the in vitro simulation technology, the transmission mechanism of P. brassicae. depends on livestock and poultry manure, was previously known. We have also proved that livestock and poultry dung is a significant way of the transmission routes of P. brassicae. Moreover, through high temperature compost technology, the P. brassicae in the livestock and poultry dung can completely be killed. In summary, the results can provide the basic of theory and technical support to the establishment of the control strategies to Clubroot of Crucifers.
引文
1.采克俊,司维,李亚辉,季维智.流式细胞术在哺乳动物精液质量检测中的应用[J].动物学研究,2003,24:311-317.
    2.陈世和,张所明,宛玲,嵇蒙.城市生活垃圾堆肥处理的微生物特性研究[J].上海环境科学,1989,8(5):17-21.
    3.凌婉婷,徐建民,高彦征,汪海珍.土壤中溶解性有机质及其对污染物吸附和解吸行为的影响[J].植物营养与肥料学报,1998,4(3):201-210.
    4.戴玉华,杨莲,李顺德,刘建荣,张国仙,赵艳梅.调节土壤pH防治白菜根肿病技术探索[J].中国植保导刊,2004.
    5.丁云花,简元才.十字花科蔬菜根肿病菌生理小种及接种方法[J].中国蔬菜,2005,(8):29-31.
    6.杜俊杰,郭仁舆.用精子荧光染色法评价男性生育力[J].西安医科大学学报,1989,10(4):309-311.
    7.高明泉,王旭祎,张建红,彭洪江,岳鹏. PERLKA对茎瘤芥根肿病的控害效果[J].西南园艺,2004a,32(5):67-70.
    8.高苇,李宝聚,石延霞,谢学文.多主棒孢在黄瓜、番茄和茄子寄主上致病力的分化[J].园艺学报,2011,38(3):465-470.
    9.何平安,李荣.中国有机肥料养分志[M].北京:中国农业出版社,1999,(12):36-48.
    10.黄毅,潘天明.流式细胞计检测人精子染色质缩合度及精液参数的关系[J].生殖与避孕,1998,18(4):244-245.
    11.季相山,陈松林,赵燕.鱼类精子质量评价研究进展[J].中国水产科学,2007,14(6):1050-1051.
    12.姜心禄.油菜根肿病的发生及防治[J].四川农业科技,2004,(12):27-27.
    13.李国学.高温堆肥和沤肥碳氮转化和杀灭病原菌的比较研究[J].北京农业大学学报,1995,21(3):286-289.
    14.刘更另.有机肥料的生产使用是一项社会产业[J].中国农业科学,1988,21(5):1-6.
    15.刘萍,毕绍喜.昆明地区蔬菜十字花科根肿病综合防治[J].云南农业科技,2003,(2):41-41.
    16.刘奕,纪锋,谷伟,龚丽,郑金霞,杨翟平,王炳谦.荧光染色法检测虹鳟精子质量[J].水产学杂志,2010,23(1):33-34.
    17.吕俊杰.油菜根肿病发生原因及防治措施[J].安徽农学通报,2005,11(2):53-53.
    18.钱玉明.油菜根肿病的发生与防治[J].安徽农业,2002,(9):23-23.
    19.司军,李成琼,肖崇刚,任雪松,王小佳.甘蓝根肿病抗性遗传规律的研究[J].园艺学报,2003,30(6):658-662.
    20.司军,李成琼,任雪松,肖崇刚.十字花科植物根肿病及抗根肿病育种研究进展.中国园艺学会十字花科蔬菜分会第六届学术研讨会暨新品种展示会论文集[C],2008.
    21.孙保亚,沈向群,郭海峰,周永红.十字花科植物根肿病及抗病育种研究进展[J].中国蔬菜,2005,(4):34-37.
    22.孙道旺,杨家鸾,杨明英,严位中.75%达科宁防治白菜根肿病产量损失测定及残留分析[J].西南农业大学学报,2010,23(2):45-48.
    23.唐文华.北京十字花科蔬菜根肿病的发生和鉴定[J].植物保护,1990,16(1):17-18.
    24.王承海.中国棒孢菌属分类研究[硕士论文].山东,山东农业大学,2006.
    25.王旭袆,高明泉,彭洪江,张建红.涪陵茎瘤芥根肿病调查与防治[J].长江蔬菜,2004,(5):38-39.
    26.王旭祎,徐兴慧.涪陵茎瘤芥主要病害的发生与防治[J].长江蔬菜,2005,(6):30-31.
    27.文景芝,徐冬青,陈永萱.检测棉花黄萎病菌的间接ELISA法建立与应用[J].南京农业大学学报,2000,23(1):105-108.
    28.肖崇刚,郭向华.甘蓝根肿病菌的生物学特性研究[J].菌物系统,2002,21(4):597-603.
    29.杨佩文,李家瑞,杨勤忠,王群.十字花科蔬菜根肿病菌休眠抱子的分离与检测[J].云南农业大学学报,2002,17(3):301-302.
    30.谢勇,王云月,陈建斌,王扬,罗文福,朱有勇.烟草黑胫病分子检测[J].云南农业大学学报,2000,15(2):176.
    31.徐瑞英,徐瑞芹.十字花科根肿病的发生与防治[J].吉林蔬菜,2006,(2):41-42.
    32.杨家鸾,杨明英,严位中,孙道旺,李萍.昆明菜区大白菜根肿病防治技术研究初探[J].云南农业大学学报,2002,17(4):342-344.
    33.杨佩文,李家瑞.十字花科蔬菜根肿病研究进展[J].植物保护,2002,28(5):43-45.
    34.杨佩文,李家瑞,杨勤忠,曾莉,王群.根肿病菌核糖体基因ITS区段的克隆测序及其在检测中的应用[J].云南农业大学学报(自然科学),2003,18(3):228-233.
    35.杨佩文,杨勤忠,王群.十字花科蔬菜根肿病菌的PCR检测[J].云南农业大学学报,2002,17(2):137-139.
    36.杨永林.十字花科蔬菜根肿病抑菌型土壤初探[J].植物保护学报,1990,17(2):127-131.
    37.于秀英,张宁. DNA分子标记在真菌系统分类与鉴定中的应用[J].内蒙古民族大学学报(自然科学版),2006,21(4):411-415.
    38.张宝俊,李志岗,郭明霞,徐玉梅,王建明.枯萎病菌的PCR-RFLP分子检测和早期诊断[J].西北农林科技大学学报(自然科学),2005,35(S1):88-90.
    39.张夫道.长期施肥条件下土壤养分的动态和平衡[J].植物营养与肥料学报,1995,1(3):10-20.
    40.张贺,蒲金基,张欣,漆艳香,谢艺贤,张辉强.巴西橡胶树棒孢霉落叶病病原菌的生物学特性[J].热带作物学报,2007,28(3):83-87.
    41.张丽丽,张敬泽,胡东维,徐同.一串红叶斑病的病原鉴定[J].菌物学报,2008,27(5):634-640.
    42.张中义,冷怀琼,张志铭.植物病原真菌学[M].成都:四川科学技术出版社,1988.
    43.赵艳兵.饲喂乳杆菌对雏鸡生产性能的影响[J].吉林农业大学学报,1999,2:21.
    44.中国土壤学会农业化学专业委员会.土壤农业化学分析[M].北京:科学出版社,1989,140-208.
    45.中华人民共和国国家标准局.GB7864-87.中华人民共和国国家标准一森林土壤阳离子交换量的测定[M]..北京:化学工业出版社,1998.
    46.中华人民共和国农业部.NY5252002.中华人民共和国农业行业标准一有机肥料[M]..北京:中国标准出版社,2002.
    47.周定杰,靳镭.荧光染色技术在精子检测中的应用[J].中国优生与遗传杂质,2007,15(7):1-5.
    48.周鑫,夏欣一,曹奇,康宁,范晓博,邵永,李瑛,黄宇烽. SYBR-14/PI双染法流式细胞术检测精子质膜完整性的研究[J].男科学杂志,2010,16(7):589-593.
    49.周永力,吕国忠,刘伟成,白金铠.采用PCR-RFLP和RAPD对球壳孢目真菌系统学的研究[J].菌物系统,1998,17(2):160-166.
    50.周永力,谢学文,王疏,潘雅姣,刘小舟,杨皓,徐建龙,黎志康.采用Nest-PCR从田间和水稻植株上检测稻曲病菌[J].农业生物技术学报,2006,14(4):542-545.
    51. Abbasi P A, Lazarovits G. Effect of soil application of AG3phosphonate on the severity of clubrootof bok choy and cabbage caused by Plasmodiophora brassicae [J]. Plant Disease,2006,90:1517–152.
    52. Arie T, Kobayashi Y, Okada G, Kono Y, Yamaguchi I. Control of soilborne clubroot disease ofcruciferous plants by epoxydon from Phoma glomerata [J]. Plant Pathology,1998,47:743–748.
    53. Baumber J, Ball BA, Linfor J J. Reactive oxygen species and cryopreservation promotedeoxyribonucleic acid(DNA) fragmentation in equine spermatozoa[J]. Journal of Andrology,2003,24(4):621-626.
    54. Benchaib M, Braun V, Lornage J. Sperm DNA fragmentation decreases the pregnancy ratein allassisted reproductive technique[J]. Human Reproduction,2003, l8(5):1023-1028.
    55. Benyacoub J, Czamercki Maulden G L, cavadini C. Supplementation of food with Enterococcusfaecium (SF68) stimulates immune functions in young dogs [J]. Nature,2003,133(4):1158~
    1162.
    56. Bohnsack C W, Albert L S. Early effects of boron deficiency on indole acetic acid oxidase levels ofsquash root tips [J]. Plant Physiolog,1977,59:1047–1050.
    57. Bollen G J, Volker D, Wijnen A P. Inactivation of soil-borne plant pathogens during small-scalecomposting of crop residues[J]. Netherlands Journal of Plant Pathology,1989,95:19-30(Suppl.1).
    58. Bollwein H, Fuchs I, Koess C. Inter relationship between plasma membrane integrity,mitochondrial membrane potential and DNA fragmentation in cryopreserved bovine spermatozoa[J]. Reprod Domest Anim,2008,43(2):189-195.
    59. Borhan H, Cladwell C D, Falk K C. Diseases of Camelina sativa (L.) Crantz (false flax)[J].Canadian Journal of Plant Pathology,2009,31:375-386.
    60. Buczacki S T. Glasshouse evaluation of some systemic fungicides for control of clubroot ofbrassicae [J]. Annals of Applied Biology,1973,74:85–90.
    61. Buczacki S T, Cadd S E. Glasshouse evaluation of systemic compounds, derivatives ofdithiocarbamic acid and other fungicides for the control of clubroot [J]. Annals of Applied Biology,1976,84:43–50
    62. Buczacki S T, Toxopeus H, Mattusch P, Johnston T D, Dixon G R, Hobolth, L A. Study ofphysiologic specialization in Plasmodiophora brassicae: Proposals for attempted rationalizationthrough an international approach [J]. Transactions of the British Mycological Society,1975,65:295-303.
    63. Buczacki S T. Plasmodiophora. An inter-relationship between biological and practical problems[M]. In: Zoosporic Plant Pathogens. Buczacki S T, eds. London, UK: Academic Press,1983,161-191.
    64. Buczaki S T, Cadd S E, Ockendon J G, White J G. Field evaluations of systemic fungicides andderivatives of dithiocarbamic acid for the control of clubroot [J]. Annals of Applied Biology,1976,84:51–56
    65. Buczacki S T, White J G. The value of soil sterilants for the control of clubroot on a field scale[J].Plant Pathology,1979,28:36–39.
    66. Buezaeki S T,Oekendon J B,Freeman G H. Ananalysis of some effects of lightand soil temperatureon clubroot disease [J]. Annals of Applied Biology,1978,88:229-238.
    67. Campbell R N, Greathead A S, Myers D F, de Boer G J. Factors related to control of clubroot ofbrassicas in the Salinas Valley of California [J]. Phytopathology,1985,75:665–670.
    68. Campbell R N, Grethead A S. Control of clubroot of brassicas by liming. In: Engelhard AW (ed)Soilborne plant pathogens: Management of diseases with macro and microelements [M]. APSPress, St. Paul, MN,1989,90–101.
    69. Cao T, Manolii V P, Hwang S F, Howard R J, Strelkov S E. Virulence and spread ofPlasmodiophora brassicae [clubroot] in Alberta, Canada[J]. Cananadian Journal of Plant Pathology,2009,31:321-329.
    70. Cao T, Tewari J, Strelkov S E. Molecular Detection of Plasmodiophora brassicae, Casual Agent ofClubroot of Crucifers, in Plant and Soil [J]. Plant Disease,2007,91:80-87.
    71. Castlebury L A, Maddox J V, Glawe D A. A technique for the extraction and purification of viablePlasmodiophora brassicae resting spores from host root tissue [J]. Mycologia,1994,86:458-460.
    72. Christopher J. Schulz, Gary W. Fecal Bacteroidales Diversity and Decay in Response to Variationsin Temperature and Salinity Childers. Applied and Environmrntal Microbiology,2011,8(77):2563-2572.
    73. Cheah L H, Gowers S, Marsh A T. Clubroot control using Brassica break crops [J]. ActaHorticulturae,2006,706:329-332.
    74. Cheah L H, Kent G, Gowers S. Brassica crops and a Streptomyces sp. as potential biocontrol forclubroot of brassicas [J]. The New Zealand plant protection,2001,54:80-83.
    75. Cheah L H, Page B B C. Trichoderma spp. for potential biocontrol of clubroot of vegetablebrassicas [C]. The New Zealand plant protectiont Conference,1997,50:150-153.
    76. Cheah L H, Page B B C, Falloon R E. Integrated control of clubroot of vegetable brassicas[C]. In:Australasian Plant Pathology Society12th Biennial Conference, Canberra,1999,135.
    77. Cheah L H, Page B B C, Koolaard J P. Soil-incorporation of fungicides for control of clubroot ofvegetable brassicas [C]. The New Zealand plant protectiont Conference,1998,51:130–133.
    78. Cheah L H, Veerakone S, Kent G. Bological control of clubroot on cauliflower with Trichodermaand Streptomyces spp [J]. The New Zealand plant protection,2000,53:18–21.
    79. Cho C W, Fuller M S. Observations of the water expulsion vacoule of Phytophthora palmivora [J].Protoplasma,1989,149:47–55
    80. Christensen K K, Carlsbaek M, Kron E. Strategies for evaluating the sanitary quality ofcomposting [J]. Journal of Applied Microbiology,2002,92:1143-58.
    81. Chung H S, Kim Y B, Chun S L. Screening and selection of acid and bile resistant bifidobacteria[J]. Int Journal of Food Microbiol,1999,47:25-32.
    82. Coconnier M H, Lievin V, Lorrot M. Antagonistic acticity of lactobacillus acidophilus LB againstintracellular Salmonella enterica serovar Typhimurium infecting human enterocyte like Caco-2/tc-7cells [J]. Applied and Environmrntal Microbiology,1998,66:1152-1157.
    83. Colhoun J. Clubroot disease of brassicas caused by Plasmodiophora brassicae Woron [J].Phytopathological Paper No.3.Commonwealth Mycological Institute, Kew,1958,108.
    84. Conforth I S. Calcium cyanamide in agriculture[J]. Soils Fertilisers,1971,34:463-470.
    85. Datnoff L E, Lacy G H, Fox J A. Occurrence and populations of Plasmodiophora brassicae insediments of irrigation water sources [J]. Plant Disease,1984,68:200-203.
    86. Datnoff L E, Kroll T K, Lacy G H. Efficacy of chlorine for decontaminating water infested withresting spores of Plasmodiophora brassicae[J]. Plant Disease,1987,71:734-736.
    87. Diederichsen E, Beckmann J, Schondelmeier J, Dreyer F. Genetics of clubroot resistance inBrassica napus‘Mendel’[J]. Acta Horticulturae,2006,706:307-312.
    88. Diederichsen E, Frauen M, Linders E G A, Hatakeyama K, Hirai M. Status and perspectives ofclubroot resistance breeding in crucifer crops [J]. Journal of Plant Growth Regulation,2009,28:265-281.
    89. Dixon G R. Clubroot, a case for integrated control [J]. Plantsman,2003,2:179-183.
    90. Dixon G R. Husbandry—the sustainable means of controlling soil borne pathogens: a synopticreview [J]. Acta Horticulturae,2009,817:233-242.
    91. Dixon G R. The occurrence and economic impact of Plasmodiophora brassicae and clubrootdisease [J]. Journal of Plant Growth Regulation,2009,28:194-202.
    92. Dixon G R, Craig M A, Burgess P J, Thomas J. MTF651: a new soil-applied fungicide for thecontrol of plasmodial fungi [C]. Proc Brighton Crop Protection Conference Pests Disease,1994,2:541-548.
    93. Dixon G R, Kennedy R, Baird L, Kenyon D M. Report of field experimentation with Boron andAgral for the control of clubroot (Plasmodiophora brassicae) using field experimentation inScotland and England [J]. Final report for FV177project to the Horticultural DevelopmentCouncil, West Malling Kent and to Borax Consolidated Ltd., Guildford, Surrey,1997,25.
    94. Dixon G R, Page L V. Calcium and nitrogen eliciting alterations to growth and reproduction ofPlasmodiophora brassicae(clubroot)[J]. Acta Horticulturae,1998,459:343-349.
    95. Dixon G R, Webster M A. Antagonistic effects of boron,calcium and pH on pathogenesis caused byPlasmodiophora brassicae Woron in (clubroot) a review of recent work [J]. Crop Research (HortRes),1988,28:83-95.
    96. Dixon G R, Wilson F. Field evaluation of WL105305(NK483) for control of clubroot(Plasmodiophora brassicae)[J]. Tests Agrochem Cultiv No.5(Annals of Applied Biology104,Supplement),1984,34-35.
    97. Dixon G R. The Occurrence and Economic Impact of Plasmodiophora brassicae and ClubrootDisease[J]. Journal of Plant Growth Regulation,2009,28:194-202.
    98. Dobson R L, Gabrielson R L, Baker A S, Bennett L. Effects of lime particle size and distributionand fertilizer formulation on clubroot disease caused by Plasmodiophora brassicae [J]. PlantDisesae,1983,67:50-52.
    99. Donald C, Porter I. Integrated control of clubroot [J]. Journal of Plant Growth Regulation,2009,28:289-303.
    100. Donald E C. The influence of abiotic factors and host plant physiology on the survival andpathology of Plasmodiophora brassicae of vegetable brassicas[J]. PhD thesis, University ofMelbourne,2005.
    101. Donald E C, Lawrence J M, Porter I J. Evaluation of a fluorescent staining technique as anindicator of pathogenicity of resting spores of Plasmodiophora brassicae[J]. Australia PlantPathology,2002,31:373-379
    102. Donald E C, Lawrence J M, Porter I J. Influence of particle size and application method on theefficacy of calcium cyanamide for control of clubroot of vegetable brassicas [J]. Crop Protection,2004,23:297-303.
    103. Donald E C, Lawrence J M, Porter I J. Evaluation of a fluorescent staining technique as anindicator of pathogenicity of resting spores of Plasmodiophora brassicae [J]. Australia PlantPathology,200231:373-379.
    104. Donald E C, Porter I J, Faggian R, Lancaster R A. An integrated approach to the control of clubrootin vegetable brassica crops [J]. Acta Horticulturae,2006,706:283-300.
    105. Donald E C, Porter I J, Lancaster R A. Band incorporation of fluazinam (Shirlan) into soil tocontrol clubroot of vegetable brassica crops [J]. Aust J Exp Agric,2001,41:1223-1226.
    106. Doyle O P E, Clancy K J. Integrated chemical applications for the control of clubroot in brassicas[C]. Process British Crop Protection Conference Pests Disease,1986,8:923–930.
    107. Einhorn G H, Bochow H, Huber J, Krebs B. Methodological studies to detect antagonists of theclubroot pathogen Plasmodiophora brassicae Wor [J]. Arch Phytopathology Pflanzen,1991,27:205-208.
    108. Faggian R, Bulman S R, Lawrie A C, Porter I J. Specific PCR primers for the detection ofPlasmodiophora brassicae in soil and water[J]. Phytopathology,1999a,89:392–397.
    109. Faggian R, Donald C, Porter I J, Lawrie A C. Epidemiology of recent clubroot outbreaks usingPCR to trace sources of inoculum [C]. In: Australasian Plant Pathology Society12th biennialconference, Canberra,1999b,342.
    110. Faggian R, Strelkov S E. Detection and measurement of Plasmodiophora brassicae [J]. Journal ofPlant Growth Regulation,2009,28:282-288.
    111. Feng J, Xiao Q, Hwang F, Stephen E. Strelkov B.Infection of canola by secondary zoospores ofPlasmodiophora brassicae produced on a non-host[J]. European Journal of Plant Pathology,2012,132:309-315.
    112. Fletcher J T, Hims M J, Archer F C, Brown A. Effects of adding calcium and sodium salts to fieldsoils on the incidence of clubroot [J]. Annal of Applied Biology,1982,100:245-251.
    113. Friberg H, Lagerlof J, Ramert B. Germination of Plasmodiophora brassicae resting sporesstimulated by a non-host plant [J]. European Journal of Plant Pathology,2005,113:275-281.
    114. Friberg H, Lagerlof J, Katarina H, Ramert B. Effect of earthworms and incorporation of grass onPlasmodiophora brassicae[J]. Pedobiologia,2008,52:29-39.
    115. Friberg H, Lagerlof J, Ramert B. Usefulness of non-host plants in managing Plasmodiophorabrassicae [J]. Plant Pathology,2006,55:690-695.
    116. Garner D L, Johnson L A. Viability assessment of mammalian sperm using SYBR-14andpropidiumiodide [J]. Biology of Reproduction,1995,53(2):276-284.
    117. Hata S, Sumi Y, Ohi M. Dry powder and extract of Posidonia australis Hook. F., a species ofseagrass, stimulate the germination of the pathogen Plasmodiophora brassicae and controlclubroot of Chinese cabbage [J]. Journal of the Japanese Society for Horticultural Science,2002,71:197-202.
    118. Hildebrand P D, McRae K B. Control of clubroot caused by Plasmodiophora brassicae withnonionic surfactants [J]. Canadian Journal of Plant Pathology,1998,20:1-11.
    119. Hind-Lanoiselet T, Parker P. Clubroot of canola and mustard [J]. Prime fact,2005,115,1–2.
    120. Horiuchi S, Hori M. A simple greenhouse technique for obtaining high levels of clubroot incidence[C]. Bulletin of the Chugoku National Agriculture Experimental Station Series E (EnvironmentalDivision),1980,17:33-55.
    121. Horiuchi S, Hori M, Takashi S, Shimizu K. Factors responsible for the development of clubrootsuppressing effect in soil solarization [J]. Bull Chugoku Natl Agric Exp Stn E,1982,20:25-48.
    122. Howard R J, Strelkov S E, Harding M W. Clubroot of cruciferous crops new perspectives on an olddisease [J]. Canadian Journal of Plant Pathology,2010,32:43-57.
    123. Humpherson Jones F M. Glasshouse evaluation of fungicides, biocides and surfactants for controlof clubroot [J]. Tests AgrochemCultiv No.10(Annal of Applied Biology114, Supplement),1989,36-37
    124. Humpherson-Jones F M. Effect of surfactants and fungicides on clubroot (Plasmodiophorabrassicae) of brassicas [J]. Annal of Applied Biology,1993,122:457-465.
    125. Humpherson-Jones F M, Dixon G R, Craig M A, Ann D M. Control of clubroot using calciumcyanamidea review [C]. Process Brighton Crop Protection Conference Pests Disease,1992,3:1147-1154.
    126. Ikegami H. Decrease of clubroot fungus by cultivation of different crops in heavily infested soil [J].Royal Economic Society Bull Agriculture Gifu University,1985,50:19-32
    127. Ingram D C, Tommerup I C. The life history of Plasmodiophora Brassicae [J]. Process ResearchSociety London,1972,180:103-112.
    128. Ito S, Maehara T, Maruno E, Tanaka S, Kameya-Iwaki M, Kishi F. Development of a PCR-basedassay for the detection of Plasmodiophora brassicae in soil [J]. Journal of Phytopathology,1999,147:83-88.
    129. Jutta Ludwig-Mu11er, Astrid Schuller. What can wen learn frome Clubroot-alterations in host rootsand hormone homeostasis caused by Plasmodiophora Brassicae [J]. European Journal of PlantPathology,2008,121:291-302.
    130. Katan J. Solar pasteurization of soils for disease control: status and prospects [J]. Plant Disease,1980,64:450-454.
    131. Katan J, Greenberger A, Alon H, Grinstein A. Solar heating by polyethylene mulching for thecontrol of diseases caused by soilborne pathogens [J]. Phytopathology,1976,66:683-688.
    132. Koji K, Takahiro A. Life Cycle of Plasmodiophora Brassieae [J]. Joumal of Plant GrowthRegulation,2009,28(3):203-211.
    133. Kuginuki Y, Hiroaki Y, Hirai M. Variation in virulence of Plasmodiophora brassicae in Japantested with clubroot resistant cultivars of Chinese cabbage (Brassica rapa L. spp. pekinensis)[J].European Journal of Plant Pathology,1999,105:327-332.
    134. Kwang C J, Min Y K, Jihun K, David J, Baumler,Charles W. Reduction of Escherichia coliO157:H7Shedding in Cattle by Addition of Chitosan Microparticles to Feed. Applied andEnvironmental Microbiology,2011,8(77):2611-2616.
    135. Lee M L, Hsieh W H. Influence of pH, sodium and potassium salts on viability of resting spores ofPlasmodiophora brassicae [J]. Plant Pathology Bull,1992,1:31-36.
    136. Lisa G,Craig T, Anita L, Michael B, Michele T, Andrew G, Gordus E, Robert A, Robert E.Prevalence, Distribution, and Diversity of Salmonella enterica in a Major Produce Region ofCalifornia [J]. Applied and Environmental Microbiology,2011,8(77):2734–2748.
    137. Maefarlane1.Germination of resting spores of PlasmodioPhora Brassieae [J]. Transaetions of theBritish Mycologieal Soeiety,1970,55:97-l12.
    138. Magda L,Clarissa G, Marcela S. The use of flow cytometry in the evaluation of cell viability ofcryopreserved sperm of the marine shrimp (Litopenaeus vannamei)[J]. Cryobiol,2004,48(3):349-356.
    139. Maruyama S, Akanuma R, Otani F, Nagase Y. Practical studies on the integrated control forclubroot disease (caused by the fungus, Plasmodiophora brassicae) of Chinese cabbage in highaltitude cool region [Japan],6: Integrated control of clubroot disease by combination of calciumfertilizer, fungicides and cultural practices [J]. Bull Nagano Veg Orn Crops Exp Stn (Jpn)(no.3),1983,123-128.
    140. McNeil M. Roberts A M I, Cockerell V, Mulholland V. Real-time PCR assay for quantification ofTilletia caries contamination of UK wheat seed [J]. Plant Pathology,2004,53:741-750.
    141. Miller S A, Mera J R, Baysal F. Evaluation of fungicides for the control of clubroot of broccoli,2006[J]. Plant Disease Management123Reports (online). Report1,V004. The AmericanPhytopathological Society, St. Paul, MN. doi:10.1094/PDMR01,2007.
    142. Mitani S, Sugimoto K, Hayashi H, Takii Y, Ohshima T, Matsuo N. Effects of cyazofamid againstPlasmodiophora brassicae Woron on Chinese cabbage [J]. Pest Management,2003,59:287-293.
    143. Murakami H, Tsushima S, Akimoto T, Kuroyanagi Y, Shishido Y. Quantitative studies on therelationship between plowing into soil of clubbed roots of preceding crops caused byPlasmodiophora brassicae and disease severity in succeeding crops [J]. Soil Sciense and PlantNutrition,2004,50:1307-1311.
    144. Murakami H, Tsushima S, Akimoto T, Murakami K, Goto I, Shishido Y. Effects of growing leafydaikon (Raphanus sativus) on populations of Plasmodiophora brassicae (clubroot)[J]. PlantPathology,2000b,49:584-589.
    145. Murakami H, Tsushima S, Kuroyanagi Y, Shishido Y. Reduction of resting spore density ofPlasmodiophora brassicae and clubroot disease severity by liming [J]. Soil Sciense and PlantNutrition,2002b,48:685-691.
    146. Murakami H, Tsushima S, Shishido Y. Soil suppressiveness to clubroot disease of Chinese cabbagecaused by Plasmodiophora brassicae [J]. Soil Biology&Biochemistry,2000a,32:1637-1642.
    147. Murakami H, Tsushima S, Shishido Y. Factors affecting the pattern of the dose response curve ofclubroot disease caused by Plasmodiophora brassicae [J]. Soil Sciense and Plant Nutrition,2002a,48:421-427.
    148. Myers D F, Campbell R N. Lime and the control of clubroot of crucifers: effects of pH, calcium,magnesium, and their interactions [J]. Phytopathology,1985,75:670-673.
    149. Myers D F, Campbell R N, Greathead A S. Clubroot of brassicas in California: soils responddifferently to lime for clubroot control [J]. Phytopathology,1981,71:1005-1006.
    150. Naiki T, Dixon G R.The effects of chemicals on developmental stages of Plasmodiophorabrassicae (clubroot)[J]. Plant Pathology,1987,36:316-327.
    151. Naiki T, Dixon G R. The effects of chemicals on developmental stages of Plasmodiophorabrassicae (clubroot)[J]. Plant Pathology,1987,35:316-327.
    152. Narisawa K, Tokumasu S, Hashiba T. Suppression of clubroot formation in Chinese cabbage by theroot endophytic fungus, Heteroconium chaetospira [J]. Plant Pathology,1998,47:206-210.
    153. Nishimura T, Tsuge S, Sakamote T, Suzuki S, Kawahara T. Residues of pentachloronitrobenzeneand its impurity hexachlorobenzene in soil and various crops [J]. Bull Agric Chem Insp Stn (Jpn),1980,20:38-45.
    154. Niwa R, Kumei T, Nomura Y, Yoshida S, Osaki M, Ezawa T. Increase in soil pH due to Ca richorganic matter application causes suppression of the clubroot disease of cruciferous [J]. SoilBiology&Biochemistry,2007,39:778-785.
    155. Noble R, Fermor T R, Evered C E, Atkey P T. Bench-scale preparation of mushroom substrates incontrolled environments [J]. Compost Science and Utilization,1997,5:32-43.
    156. Noble R, Roberts S J. Eradication of plant pathogens and nematodes during composting: a review[J]. Plant Pathology,2004,53:548-68.
    157. Page L V. Studies of components for a potential integrated control system for Plasmodiophorabrassicae [J]. PhD thesis, University of Strathclyde, Glasgow,2001.
    158. Pena A L, Johannisson A, Linde-Forsberg C. Validation of flow cytometry for assessment ofviability and acrosomal integrity of dog spermatozoa and for evaluation of different methods ofcryopreservation [J]. J Reprod Fertil Supplement,2001,57:371-376.
    159. Porter I, Cross S. Clubroot hygiene strategy [J]. Institute for Horticultural Development,Agriculture Victoria, Victoria,1995,4.
    160. Porter I, Donald C, Lancaster R, Faggian R. Integration of classical and molecular approaches tosuccessfully control clubroot of crucifers [C]. In: British Society for Plant Pathology PresidentialMeeting2004, University of Aberdeen,5-10.
    161. Porter I J, Donald E C, Cross S J. Field evaluation of fluazinam against clubroot (Plasmodiophorabrassicae) of cruciferous vegetable crops [J]. Tests Agrochem Cultiv No.19(Annal of AppliedBiology132, Supplement),1998,12-13.
    162. Porter I J, Merriman P R. Evaluation of soil solarization for control of root diseases of row crops inVictoria [J]. Plant Pathology,1985,l34:108–118.
    163. Porter I J, Merriman P R, Keane P J. Soil solarisation combined with low rates of soil fumigantscontrols clubroot of cauliflowers, caused by Plasmodiophora brassicae Woron [J]. AustralianJournal of Experimental Agriculture,1991,31:843-851.
    164. Punja Z K, Carter J D, Campbell G M, Rossell E L. Effects of calcium and nitrogen fertilizers,fungicides, and tillage practices on incidence of Sclerotium rolfsii on processing carrots [J]. PlantDisease,1986,70:819-824.
    165. Ryckeboer J, Cops S, Coosemans J. The fate of plant pathogens and seeds during backyardcomposting of vegetable, fruit and garden wastes [J]. Microbiology of Composting. Berlin,Germany: Springer-Verlag,2002,527-37.
    166. Sundelin T, Christensen C B, Larsen J, Moller K, Lübeck M, Bodker L, Jensen B. In plantaquantification of Plasmodiophora brassicae using signature fatty acids and real-time PCR[J]. PlantDisease,2010,94:432-438.
    167. Seiber J N, Knuteson J A, Woodrow J E, Wolfe N L, Yates M V, Yates S R. Fumigantsenvironmental fate, exposure, and analysis [J]. American Chemical Society,1996,18.
    168. Shkolnik M Y.General conception of the physiological role of boron in plants [J]. Plant Physiology,1974,28:279-283.
    169. Smieton M J. On the use of chlorinated nitrobenzenes for the control of clubroot disease ofBrassicae [J]. J Pom Hort Sci,2009,17:195-217.
    170. Siemens J, Bulman S, Rehn F, Sundelin T. Molecular Biology of Plasmodiophora brassicae.Journal of Plant Growth Regulation,2009,28:245-251.
    171. Strelkov S E, Cao T, Manolii V P, Lange R M, Smith-Degenhardt E, Orchard D, Tewari J P.Incidence of clubroot on canola in Alberta in2005[J]. Canadian Plant Disease Survey,2006,86:91-93.
    172. Strelkov S E, Manolii V P, Cao T, Xue S, Hwang S F. Pathotype classification of Plasmodiophorabrassicae and its occurrence in Brassica napus in Alberta [J]. Canadian Journal of Phytopathology,,2007,155:706-712.
    173. Strelkov S E, Manolii V P, Manolii E, Hwang S F. Incidence of clubroot on canola in Alberta in2009[J]. Canadian Plant Disease Survey,2010,90:123-125.
    174. Takahashi K. Biological agents affecting the viability of resting spores of Plasmodiophorabrassicae Wor. in soil without host roots [J]. Annal Phytopathology Society Japan,1994,60:667-674.
    175. Takeshi O, Terumasa K, Shigeru M, Norifusa M, Toshio N. Development of a novel fungicide,cyazofamid [J]. J Pestic Sciense,2004,29:147-152.
    176. Tanaka S, Kochi S, Kunita H, Ito S, Kameya Iwaki M. Biological mode of action of the fungicide,flusulfamide, against Plasmodiophora brassicae (clubroot)[J]. European Journal of PlantPathology,1999,105:577-584.
    177. Tate K G, Eales R F. Clubroot control in cabbage and cauliflower using mechanised transplantingdrenches [J]. New Zealand Journal of Experimental Agriculture,1982,10:409-412.
    178. Tewari J P, Strelkov S E, Orchard D, Hartman M, Lange R M, Turkington T K. Identification ofclubroot of crucifers on canola (Brassica napus) in Alberta [J]. Canadian Journal of PlantPathology,2005,27:143-144.
    179. Thomas C A, Garner D L, DeJamette J M. Fluorometric assessments of acrosomal integrity andviability in cryopreserved bovine spermatozoa [J]. Biology Reproduction,1997,56(4):991-998.
    180. Townley D.Control of clubroot disease using modern antiprotozoal fungicides [J]. PhD thesisR9541, University of Reading,2005.
    181. Voorrips R E. Plasmodiophora brassicae: aspects of pathogenesis and resistance in Brassicaoleracea [J]. Euphytica,1995,83:139-146.
    182. Wakeham A J, White J G. Serological detection in soil of Plasmodiophora brassicae resting spores[J]. Physiology Molecular Plant Pathology,1996,48:289-303.
    183. Wallenhammar A C. Prevalance of Plasmodiophora brassicae in a spring oilseed rape growingarea in central Sweden and factors influencing soil infestation levels [J]. Plant Pathology,1996,45:710-719.
    184. Wallenhammar A C, Arwidsson O. Detection of Plasmodiophora brassicae by PCR in naturallyinfested soils [J]. European Journal of Plant Pathology,2001,107:313-321.
    185. Wallenhammar A C, Almquist, Soderstro M, Jonsson A. In-field distribution of Plasmodiophorabrassicae measured using quantitative real-time PCR [J]. Plant Pathology,2012,61:16-28.
    186. Williams P H, Aist S J, Aist J R.Response of cabbage root hairs to infection by PlasmodiophoraBrassieae [J]. Canadian Journal of Botany,2011,49:41-47.
    187. Yamagishi H, Yoshikawa H, Ashizawa K H, Yui S. Effects of resistant plants as a catch crop on thereduction of resting spores of clubroot (Plasmodiophora brassicae Worn.) in soil [J].Journal of theJapanese Society for Horticultural Science,1986,54:460-466.
    188. Ylimaki A, Toiviainen A, Kallio H, Tikanmaki E. Survival of some plant pathogens duringindustrial-scale composting of wastes from a food processing plant [J]. Annal Agriculturae Fenniae,1983,22:77-85.
    189. Young C C, Cheng K T, Waller G R. Phenolic compounds in conducive and suppressive soils onclubroot disease of crucifers [J]. Soil Biology&Biochemistry,1991,23:1183-1189.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700