用户名: 密码: 验证码:
山区地下开采引起地表变形对长输气管线的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤炭开采造成地表移动与变形具有一定的规律,且这一规律性在平原地区的研究已较为成熟,而在丘陵及山区,煤炭开采造成的地表破坏规律与平原地区具有明显的不同,若能对开采后山区地表移动与变形的破坏规律进行较为有效的预计,是完全可以减少地面建构筑物破坏,同时对合理开发地下煤炭资源是有实际意义的。
     就西气东输管线而言,长度已达5万km以上,仅一、二、三线工程干线总里程近1.5万km,且已建成的一线管线工程有近1千km途经陕西神府、山西的河东,霍西,沁水、河南焦作、山东兖州、江苏徐州及两淮等煤炭基地,其地下埋藏有丰富,甚至是优质的煤炭资源,为此研究地下煤炭资源开采后地表变形对输气管线的影响,保证输气管线正常运行和煤炭资源有效开发,具有较大的实用价值。
     本文在系统分析煤炭开采引起的岩层移动与变形在平原所表现的一般特征及山区所表现的特殊特征条件下,就地表移动与变形预计方法进行了概述,指出了山区地形条件下,地下开采引起的地表移动与变形是复杂的,且地表移动与变形规律至今仍是人们研究的难题之一。
     对此,论文利用BP神经网络非线性特征的特点,针对东山煤业所处的山区地形条件,就其某一工作面的实测观测站资料,在融入地形及其他因素(包括预计点的位置、预计点所在坡度及坡向、开采条件与地质因素等)后,构建了各因素量化指标及山区开采沉陷3层结构的BP神经网络预计模型,并通过对地表移动与变形的预计结果与实际观测数据的对比,表明所构建的BP神经网络模型与实际地表变形是基本相一致的,这表明利用BP神经网络进行山区地下开采沉陷预计是可行的。
     其次,本文利用GIS中几何与属性数据相关联的特性,以DTM为基础,借助于ANSYS大型数值分析软件,构建了山区地表移动与变形预计的FLAC3D模型,实现了快速建立山区开采沉陷预计的FLAC3D模型。据此结合西山煤电马兰矿的某工作面实际开采进行了两个主断面地表移动与变形的数值模拟预计,获得了该工作面两个主断面的移动与变形分布云图及等值线图,并通过与该工作面地表移动观测站实测移动与变形资料的对比,给出该数值模拟的预计与实测地表变形时基本一致的结论,表明FLAC3D数值模拟方法可以应用于山区地表移动与变形的预计,同时两种方法各有优缺点,BP神经网络及数值模拟都具有时间短、工作量小、效益高的优点,但BP神经网络仍是一种表象预计,需要大样本,同时不能直观反映岩体内部各岩层的移动变形情况,而FLAC3D不仅直观反映地表移动与变形,还可以反映岩体内部的移动与变形,更具有实用性。但两种方法都可以用于山区地表移动变形的预计。
     此外,论文以西气东输管线山西某段实际资料为研究背景,针对已发生地下采煤造成输气管线变形的情况,系统地整理了输气管线与地表变形的实际观测资料,并结合实际地形和地表下沉及水平变形量,总结出管线变形与地表移动变形之间的关系是:管线的拉伸、压缩整体指向坡体的下方,而管线压缩范围大于其拉伸范围;管线变形量是小于地表变形的。
     对此,本文利用数值模拟FLAC3D,结合西气东输管线下方实际煤炭赋存条件,构建了管线与工作面三种不同的空间布局关系,并分别进行了数值建模及模拟,结果是:①在以管线中心点为监控剖面的模拟中,给出了距该剖面上不同开采位置处管线的应力分布,表明管线受开采影响时,其应力分布呈现出由小变大再变小的规律性;同时给出管线的压缩与剪切应力是按顺时针方向变化,并且以剪应力为主;②在对管线整体受地下开采的模拟中,以开采推进距管线不同距离时,对管线的下沉、水平位移动态趋势进行了分析,表明了三种空间关系下,管线在垂直位移、水平位移方面呈现出不同的表象,总体呈现出全管线在平行管线方向上,水平位移基本呈对称分布,而垂直管线方向水平位移呈不对称分布,并以指向下坡方向为主的规律;垂直位移分布随开采的进行,位移逐渐增大,然后达最大,再减小的趋势,基本以开采中心为对称分布的特点;③论文综合分析后,选取了斜交空间关系最有利于管线安全运行的结论,为今后管线下方进行煤炭资源的开采,同时又保证管线的正常运行提供了依据。
Surface movement and deformation caused by coal mining follows some regularity which has been studied more maturely in plain regions, while such regularity in hilly and mountainous areas is obviously different from in the plains. More efficiently prediction of such regularity after coal mining, could perfectly help to reduce the damage of ground buildings, and is practically significant to reasonably exploit the underground coal resources.
     The total length of the West-East Gas Transmission Pipeline (WEGTP) is up to50,000km, and it is close to15,000km only for the first, second and third pipeline projects. The first pipeline projects have been built, nearly1,000km of which passing through numerous coal bases such as Shenfu of Shaanxi Province, Shanxi Province (e.g. Hedong, huoxi, Qinshui), Jiaozuo of Henan Province, Yanzhou of Shandong Province, Xuzhou of Jiangsu Province, Huainan and Huaibei of Anhui Province. There have rich underground coal resources of good quality in these regions. Therefore, it has a great value in use to investigate the impact of ground deformation on gas transmission pipelines after fully underground mining, thereby guaranteeing normal operation of these pipelines and efficient development of coal resources.
     The present study systematically analyzed general characteristics of rock formations during movement and deformation in plains and its special features in mountainous areas, presented an overview of the prediction methods for ground movement and deformation, and then pointed out that the ground movement and deformation caused by the underground mining is very complex. So far, it has remained one of the major challenges to examine and reveal the regularity. In this study, we investigated in depth the regularity of surface movement and deformation due to the underground mining.
     First, the thesis utilized nonlinear features of BP nerve network to specially analyze the measured data of some working plane from Dongshan Coal located in the mountainous areas. In order to quantitatively build and measure all factors and then to construct a3-layer structure model of BP nerve network for mining subsidence in the mountainous regions, we considered the terrain and other factors including prediction points (location, slope and slope direction), mining conditions, geological factors and so on. Through contrast of the ground movement and deformation between the expected results and actual observations, we found that the BP neural network model was generally consistent with the actual surface deformation, indicating it is feasible to develop a design of underground mining subsidence based on BP nerve networks for the mountain areas.
     Second, a FLAC3D model has been built to predict the surface movement and deformation in mountainous regions by using the feature that the geometry is associated with the attribute data in GIS, on the basis of the DTM and the large numerical analysis software ANASYS, thus rapidly achieving in construction of the FLAC3D model of mining subsidence in mountain regions. Through combining the actual mining of Malan in Xishan coal and electricity of Shanxi Province, therefore, numerical simulation and prediction for movement and deformation were conducted for two major sections in order to obtain distribution cloud images and contour maps which are associated with their movement and deformation. Through contrast with the measured ground movement and deformation data, it is concluded that prediction of the numerical simulation is expected to be consistent with the measured surface deformation, indicating that the FLAC3D numerical simulation method can apply to prediction of the ground movement and deformation in mountainous regions.
     The above mentioned two methods have their own advantages and disadvantages, respectively. Although the BP nerve network and numerical simulation are relatively fast, workload small and efficiency high, it is still only an appearance design, needs big samples, and cannot intuitively reflect movement and deformation of the internal rock body. In contrast, the FLAC3D model can intuitively reflects movement and deformation for both the ground surface and the internal rock body, so that it has more practicality than the BP nerve network. Either of them can be used to predict ground movement and deformation in mountainous areas.
     In addition, this thesis used the real data and actual information from some part of the WEGTP in Shanxi for research background to systematically arrange the observed data from deformation of gas transmission pipelines and ground movement deformation. Considering volume of the actual terrain deformation, surface sinking and horizontal deformation, we have established a relationship between the pipeline deformation and the ground movement and deformation as follows:Stretch and compression of a pipeline overall points to bottom of the slope body, while the pipeline compression range is greater than its stretch range, and volume of the pipeline deformation is less than surface deformation volume.
     In the text we utilized the numerical simulation FLAC3D to build three different kinds of spatial distribution relationships between pipelines and work profiles according to the actual coal conditions below the WEGTP. Corresponding numerical modeling and simulation were respectively conducted, and the results are as follows:(1) Simulation made in a control surface at the center of the pipeline presented its shear stress distribution from different mining locations, which indicated a regularity of the stress change from small to large and then to large change due to effects of mining.(2) To simulate effects of underground mining on integral pipelines, we analyzed the move trend of pipeline sinking and horizontal displacement when mining advances from different distance from the pipeline. Three spatial relationships were indicated. Pipelines have different appearances for their vertical and horizontal displacements. Overall, the horizontal displacement paralleling the pipeline generally showed symmetric distribution, while it was not symmetric when perpendicular to the pipeline direction and mainly pointed to the downhill direction. The vertical displacement slowly increased, reached the maximum, and then decreased, demonstrating symmetrical distribution features around the mining center.(3) In this thesis we took the permissible deformation of WEGTP into consideration, and concluded that the oblique spatial relationship between pipeline and displacement is the most conducive to the pipeline operation after a comprehensive analysis, thus providing sufficient basis for exploitation of coal resources under the pipeline in future and guaranteeing the normal operation of the pipeline.
引文
[1]国家煤炭工业局制定.《建筑物、铁路、水体及主要井巷煤柱留设及压煤开采规程》[M].北京:煤炭工业出版社,2000.6.
    [2]http://www.sxcoal.com时间:2012年04月01日来源:中国中控网.
    [3]王永,王佟,康高峰等.中国可供性煤炭资源潜力分析[J].中国地质,2009,36(4):845-852.
    [4]徐发奎,李凤明.我国“三下”压煤及开采中若干问题浅析[J].煤炭经济研究,2005,5:26-27.
    [5]葛嘉婧,韩流,田海倩等.大型矿区采—储—运现状及一体化系统构建[J].现代矿业,2011,12(12):62-65.
    [6]何国清,杨伦,凌赓娣等.矿山开采沉陷学[M].中国矿业大学出版社,徐州,1991.4.
    [7]刘宝琛,廖国华著.煤矿地表移动的基本规律[M].中国工业出版社,北京,1965.
    [8]何国清.岩移预计的威布尔分布法[J].中国矿业学院学报,徐州,1988,8:8-15.
    [9]吴侃,葛家新,周鸣等。概率积分法预计模型的某些修正[J].煤炭学报,北京,1998,23(1):33-36.
    [10]吴侃,靳建明,戴仔强.概率积分法预计下沉量的改进[J].辽宁工程技术大学学报,阜新,2003,22(1):20-22.
    [11]吴侃,靳建明.时序分析在开采沉陷动态参数预计中的应用[J].中国矿业大学学报,2000,29(4):413-415
    [12]邹友峰.地表下沉系数计算方法研究[J].岩土工程学报,1997,19(3):109-112.
    [13]邓喀中,张冬至,张周权.深部开采条件下地表沉陷预测及控制探讨[J].中国矿业大学学报,2000,29(1):52-55.
    [15]胡友健.负指数函数法参数a、b变化规律的探讨[J].中州煤炭,1991,2:6-9.
    [16]藤永海.采动过程中地表移动变形研究[J].矿山测量,1997,4:17-20.
    [17]杨伦,温吉洋,于世全.极不充分采动条件下地表下沉规律及计算方法研究[J].中 国地质灾害与防治学报,2005,16(1):81-83.
    [18]郝庆旺,马伟民.威布尔分布下沉方程的最佳形式及在地表移动计算中的应用[J].中国矿业学院学报,1986,3:32-42.
    [19]邹友峰,马伟民.正交设计法在开采沉陷学中的应用[J].中国矿业学院学报,1987,4:31-36.
    [20]何国清.岩移预计的威布尔分布法[J].中国矿业学院学报,1988,1:8-15.
    [21]Salamon, M. D. G. Elastic analysis of disPlaeements and stresses induced by the mining of seam or roof dePosis[J]. J. S. Afr, Inst. Metall.1963, Vol.63
    [22]MD.G沙拉蒙.地下工程的岩石力学[M].冶金工业出版社,1982.
    [23]白矛,刘天泉,仲惟林.用力学方法研究岩层及地表移动[J].煤炭学报,1982,3:27-38.
    [24]何国清.充分采动区内及主断面上水平移动变形的分布规律[J].中国矿业学院学报,1986.2:62-73.
    [25]杨伦.采矿下沉及参数的力学分析[J].煤炭学报,1987,2:90-95.
    [26]杨伦.煤矿岩层与地表移动机理和规律的再认识[J].阜新矿业学院学报,1988,7(1):9-18.
    [27]杨伦,于广明,王旭春等.煤矿覆岩采动离层位置的计算[J].煤炭学报,1997,22(5):477-480.
    [28]吴立新,王金庄,邢安仕.块段开采时上覆厚岩层对地表沉降的影响[J].矿山测量,1993,1:32-35.
    [29]余学义,刘智,牛宗涛等.采场上覆厚硬岩层的结构稳定性分析[J].煤田地质与勘探,2007,35(5):38-41.
    [30]王金庄,常占强,陈勇.厚松散层条件下开采程度及地表下沉模式的研究[J].煤炭学报,2003,28(3):230-234.
    [31]李永树,王金庄.厚冲积层条件下开采沉陷盆地形态分析[J].测绘工程,1999,8(2):43-45.
    [32]邓喀中,谭思秀,刘茂德.在有裂隙厚煤层中的条带煤柱尺寸计算方法[J].江苏煤炭,1994,4:43-45.
    [33]邓喀中马伟民.开采沉陷中的岩体节理效应[J].岩石力学与工程学报,1996,15:345--352.
    [34]吴侃,王悦汉,邓喀中.采空区上覆岩层移动破坏动态力学模型的应用[J].中国矿业大学学报,2000,29(1):34-36.
    [35]Bai M, Eisworth D, LI Z and Tomii N. Evolution of stresses displacements induceds in discretely Lyered Media, Int. J. Rock Mech. Min. Sci&Geomech. Abstr, 1990.27(1).
    [36]Dr. M. Bai, D. Elsworth. Modeling of subsidence and stress-dependent hydraulic conductivity for intact and fractured porous media[J]. Rock Mechanics and Rock Engineering,1994,27(4)
    [37]钱鸣高,缪协兴.岩层控制中的关键层理论研究[J].煤炭学报,1996,21(3):225-230
    [38]许家林,钱鸣高.岩层控制关键层理论的应用研究与实践[J].中国矿业,2001,10(6):54-56.
    [39]徐乃中,张玉卓.岩离层注浆减缓地表沉陷的动态力学模型[J].西安科技学院学报.2000,20(增):35-38.
    [40]刘文生,范学理.覆岩离层产生机理及离层充填控制地表沉陷技术的工程实施[J].煤矿开采,2002,7(3):53-55.
    [41]马伟民,朱维毅.岩层和地表重复采动规律的模拟研究[J].中国矿业学院学报.1984,2:5-17.
    [42]淮南矿业学院采矿系矿压研究室.用相似材料模拟法研究淮北芦岭煤矿采场周围支承压力的分布规律[J].淮南矿业学院学报。1988,2:35-49.
    [43]孟祥利,何新义.采动沉陷对地面建筑物基础影响的模拟实验分析[J].西安矿业学院学报,1990,3:50-58.
    [44]邓喀中,马伟民,郭广礼等.岩体界面效应的物理模拟[J].中国矿业大学学报,1995,24(4):80-84.
    [45]崔希民,缪协兴,苏德国.岩层与地表移动相似材料模拟试验的误差分析[J].岩石力学与工程学报,2002,21(12):1827-1830.
    [46]刘栋林,朱卫兵,王路军等.煤层群重复采动对坡体稳定影响的物理模拟研究[J]. 煤炭科技,2012,38(1):64-67.
    [47]刘兴国,王泳嘉.应用电算机数值模拟研究崩落法矿岩移动规律[J].化工矿山技术,1980,5:10-17.
    [48]何万龙,孔沼璧,康建荣.山区地表采动滑移机理及其向量分析[J].矿山测量,1991,3:21-25.
    [49]康建荣,王金庄,温泽民.采动覆岩动态下沉速度规律的相似模拟研究[J].太原理工大学学报,2000,31(4):364-366.
    [50]郭达志,郝庆旺.开采沉陷预计与分析的空间模拟[J].中国矿业大学学报,1995,24(3):57-61.
    [51]谢和平,周宏伟,王金安等.FLAC在煤矿开采沉陷预测中的应用及对比分析[J].岩石力学与工程学报,1999,18(4):397-401.
    [52]Falconer K. Fractal geometry:mathematical foundations and applications. England:John Wiley & Sons Ltd,1990.
    [53]于广明,谢和平,杨伦等.采动断层活化分形界面效应的数值模拟研究[J].煤炭学报,1998,23(4):396-400
    [54]唐巨鹏、潘一山.ANSYS在煤矿开采数值模拟中应用研究[J].岩土力学,2004,25(增刊2):329-332.
    [55]王泳嘉,刑纪波.离散单元法及其在岩土力学中应用[M].沈阳:东北大学出版社,1991.80-120.
    [56]麻凤海,杨帆.地层沉陷的数值模拟应用研究[J].辽宁工程技术大学学报(自然科学版),2001,20(3):257-261.
    [57]张向东,常春,王泳嘉等.连续开采下上覆岩层移动的离散元模拟[J].山西矿业学院学报,1997,15(1):20-26.
    [58]张文军,沈海鸿,蔡桂宝.浅埋煤层开采覆岩移动规律数值分析[J].辽宁工程技术大学学报(自然科学版),2002,21(2):143-145.
    [59]邓喀中,张冬至,张周权.深部开采条件下地表沉陷预测及控制探讨[J].中国矿业大学学报,2000,29(1):52-55.
    [60]于保华,朱卫兵,许家林.深部开采地表沉陷特征的数值模拟[J].采矿与安全工程学 报,2007,24(4):422-426.
    [61]范学理、刘文生.条带法开采控制地表沉陷的新探讨[J].阜新矿业学院学报(自然科学版),1992,11(2):20-25.
    [62]郝玉龙,陈庆敏,李逎梁.条带开采地表移动的变形预计[J].矿山压力与顶板管理,1998,3:64-66.
    [63]赵扬锋,张华兴,潘一山.条带开采中采出率对地表沉陷影响的数值模拟研究[J].煤矿开采,2003,8(3):1-3.
    [64]谢飞鸿,罗冠炜,刘京学.条带开采沉陷预测分析与工程应用[J].辽宁工程技术大学学报(自然科学版),2008,27(6):825-828.
    [65]蒋坤,许家林,朱卫兵等.条带采宽对地表沉陷影响的数值模拟研究[J].矿山测量,2005,4:51-54.
    [66]邓喀中,马伟民,何国清.多煤层开采时条带空间位置对岩层移动的影响[J].中国矿业大学学报,1991,20(2):72-78.
    [67]余学义,尹士献,赵兵朝.采动厚湿陷性黄土破坏数值模拟研究[J].西安科技大学学报,2005,25(2):135-13.
    [68]余学义,黄森林.浅埋煤层覆岩切落裂缝破坏及控制方法分析[J].煤田地质与勘探,2006,34(2):18-21.
    [69]孙超,薄景山,孙有为.采空区沉陷研究历史及现状[J].防灾科技学院学报,2008,10(4):128-131.
    [70]钱鸣高,缪协兴,许家林.岩层控制中的关键层理论研究[J].煤炭学报,1996,21(3):225-230.
    [71]钱鸣高,茅献彪,缪协兴.采场覆岩中关键层上载荷的变化规律[J].煤炭学报,1998,23(2):135-139.
    [72]茅献彪,缪协兴,钱鸣高.采动覆岩中关键层的破断规律研究[J].中国矿业大学学报,1998,27(1):39-42.
    [73]李树刚,石平五,钱鸣高.覆岩采动裂隙椭抛带动态分布特征研究[J].矿山压力与顶板管理,1999,3(4):44-46.
    [74]许家林,钱鸣高,朱卫兵.覆岩主关键层对地表下沉动态的影响研究[J].岩石力学 与工程学报,2005,24(5):787-791.
    [75]缪协兴,陈荣华,浦海.采场覆岩厚关键层破断与冒落规律分析[J].岩石力学与工程学报,2005,24(8):1289-1295.
    [76]朱学兵.浅埋近距离煤层重复采动关键层结构失稳机理研究[D].北京:中国矿业大学,2010.4.
    [77]吴立新,王金庄,邢安仕.块段开采时上覆厚岩层对地表沉降的影响[J].矿山测量,1993,1:32-35.
    [78]吴立新,王金庄.连续大面积开采托板控制岩层变形模式的研究[J].煤炭学报,1994,19(3):233-241.
    [79]吴立新,王金庄,赵士胜。托板控制下开采沉陷的阶段性和板裂性[J]。矿山测量,1994,4:29-32.
    [80]申兴兵,杨维祥,吴成宏.条带开采具有托板情况的最大下沉值的预计方法[J].山东煤炭科技,2000,4:9-10.
    [81]张运海,吴祥,李新华.顶板托板存在对采空区充水系数的影响[J].煤炭科学技术,2006,34(7):33-35.
    [82]郝延锦,刘海青,戴华阳.覆岩中托板的判别方法研究[J].煤炭工程,2007,11:91-93
    [83]郝延锦,周文国,戴华阳.覆岩中托板的判别与应用[J].辽宁工程技术大学学报,2007,26(2):169-172.
    [84]余学义,刘智,牛宗涛.采场上覆厚硬岩层的结构稳定性分析[J].煤田地质与勘探,2005,35(5):38-41.
    [85]宋振骐.实用矿山压力与控制[M].徐州:中国矿业大学出版社,1995.
    [86]杨伦,于广明,王旭春.煤矿覆岩采动离层位置的计算[J].煤炭学报,1997,22(5):277-280.
    [87]余学义,党天虎,潘宏宇.采动地表动态沉陷的流变特性[J].西安科技学院学报,2003,23(2):131-134.
    [88]张向东,范学理,赵德深.覆岩运动的时空过程[J].岩石力学与工程学报,2002,21(1):56-59.
    [89]BellSE. Successful design for mining subsidence (C)//large movements and structures. New York:Academic Press,1978:562-578.
    [90]邹友峰,何满潮.条带开采地表沉陷预计的新理论[J].水文地质工程地质,1994,2:1-5.
    [91]邹友峰,马伟民,何满潮等.条采沉陷计算的空间分层介质力学法[J].焦作矿业学院学报,1994,36(1):3-11.
    [92]郭文兵,柴一言.条带开采采场应力分布规律的光弹性实验研究[J].辽宁工程技术大学学报(自然科学版),1998,17(6):590-594.
    [93]谭志祥,钱晓虎,邓喀中等.条带开采地表沉陷规律实测研究[J].矿山压力与顶板管理,2004,1:80-82.
    [94]郭文兵,刘义新.深部条带开采下沉系数与采厚关系的数值模拟[J].河南理工大学学报(自然科学版),2007,26(3):254-258.
    [95]刘衍高.深部条带开采地表移动观测设计探析[J].煤炭技术,2008,27(1):155-157.
    [96]郭文兵.深部大采宽条带开采地表移动的预计[J].煤炭学报,2008,33(4):368-372.
    [97]郭广礼,王悦汉,马占国.煤矿开采沉陷有效控制的新途径[J].中国矿业大学学报,2004,33(2):150-153.
    [98]刘长友,杨培举,侯朝炯.充填开采时上覆岩层的活动规律和稳定性分析[J].中国矿业大学学报,2004,33(2):166-169.
    [99]谢文兵,史振凡,陈晓祥等.部分充填开采围岩活动规律分析[J].中国矿业大学学报,2004,33(2):162-165.
    [100]温兴林,成枢,程久龙.离层带注浆充填时地表移动计算及充填效果监测[J].煤炭学报,2000,25(增刊):54-57.
    [101]刘文生,范学理.覆岩离层产生机理及离层充填控制地表沉陷技术的工程实施[J].煤矿开采,2002,7(3):53-55.
    [102]徐乃中,张玉卓.岩离层注浆减缓地表沉陷的动态力学模型[J].西安科技学院学报[J].2000,20(增):35-38.
    [103]苏仲杰,刘文生.减缓地表沉降的覆岩离层注浆新技术的研究[J].中国安全科学学报,2001,11(4):21-24.
    [104]郭广礼,邓喀中,张连贵.综采放顶煤地表移动规律特殊性[J].中国矿业大学学报,1999,28(4):375-378.
    [105]滕永海,王金庄.综采放顶煤地表沉陷规律及机理[J].煤炭学报,2008,33(3):264-267.
    [106]张建全,廖国华,黄在文等.综放开采条件下覆岩离层动态发育规律[J].北京科技大学学报,2001,23(6):492-494.
    [107]王悦汉,邓喀中,张冬至等.重复采动条件下覆岩下沉特性的研究[J].煤炭学报,1998,23(5):470-475.
    [108]刘阳,栾元重,颜世英等.重复开采地表沉陷数值模拟分析[J].矿业工程,2011,9(6):55-57.
    [109]谭志祥,邓喀中.建筑物下采煤研究进展[J].辽宁工程技术大学学报,2006,25(4):485-488.
    [110]邓喀中,郭广礼,谭志祥.采动区建筑物地基、基础协同作用特性研究[J].煤炭学报,2001,26(6)
    [111]吕奎,孔益平,周宇.安全与环境工程[J].2012,19(2):117-124.
    [112]’潘家华.油气管道断裂力学分析[M].北京:石油工业出版社,1989.
    [113]Starostinv. pipeline disaster in the USSR [J]. pipes pipelines Int,1990,35(2):7-8.
    [114]Pipeline & Hazardous Materials Safety Administration of USA. Significant Pipeline Incidents through 2010 by Cause[EB/OL]. (2011-10-31) [2011-11-2]. http: //primis. phmsa. dot. gov/comm./reports/safety/SigPSIDet_1991_2010_US.html?no-cache=2547.
    [115]李鹤林,赵新伟,吉玲康.油气管道失效分析与完整性管理[J].理化检验-物理分册,2005,41:24-31.
    [116]吴俊.长途油气管道破坏预警的干涉型分布式光纤传感系统定位技术研究[D].重庆:重庆大学,2007.
    [117]孙宇坤,邵煜.地层变形对埋地管道的影响分析[J].中国给水排水,2008,24(7):51-56.
    [118]柳春光,史永霞.沉陷区域埋地管线数值模拟分析[J].地震工程与工程振动,2008,28(4):178-183.
    [119]王鸿,张弥,常怀民.采空区地表移动盆地对埋地管道的影响分析[J].石油工程建设,2008,34(2):23-26.
    [120]万继涛,胡松涛,韩祥银等.地下矿产开采对天然气管道工程的安全影响评价[J].山东国土资源,2008,24(6):35-37
    [121]刘名阳.煤矿采空影响区油气管道的危险性评价[D]。西安:西安科技大学,2009。
    [122]何万龙.开采引起的山区地表移动与变形预计[J].煤炭科学技术,1983,6:46-52.
    [123]何万龙,孔照璧.山区地表移动及变形预计[J].矿山测量,1986,2:24-30.
    [124]胡友健,吴北平,戴华阳.山区地下开采影响下地表移动规律[J].焦作工学院学报,1999,18(4):242-247.
    [125]戴华阳,翟厥成,胡友健.山区地表移动的相似模拟实验研究[J].岩石力学与工程学报,2000,19(4):501-504.
    [126]马超、康建荣、何万龙.山区典型地貌表土层采动滑移规律的数值模拟分析[J].太原理工大学学报,2001,32(3):222-226.
    [127]蓝航,张华兴,姚建国等.山区地表采动沉陷预计的数值模拟[J].煤炭学报,2007,32(9):912-916.
    [128]王贵荣,袁志明,韩飞.黄土山区矿井地表移动变形数值模拟[J].西安科技大学学报,2007,27(2):236-239.
    [129]余学义,施文刚,张平等.黄土沟壑区地表移动变形特征分析[J].矿山测量,2010,2:38-40.
    [130]麻凤海,杨帆.地层沉陷的数值模拟应用研究[J].辽宁工程技术大学学报(自然科学版),2001,20(3):257-261.
    [131]曹丽文,姜振泉.人工神经网络在煤矿开采沉陷预计中的应用研究[J].中国矿业大学学报,2002,31(01):23-26.
    [132]曹丽文,姜振泉.基于GIS和人工神经网络技术的开采沉陷预计建模方法[J].重 庆大学学报,2002,25(12):141-144.
    [133]苏美德,赵忠明,李德海.灰色系统理论模型在矿山开采沉陷中的应用[J].西部探矿工程,2003.4:82-83.
    [134]邹兆南.BP神经网络及应用研究[D].重庆:重庆交通学院,2004.
    [135]丁士圻,郭丽华.人工神经网络基础[M].哈尔滨:哈尔滨工程大学出版社,2008.
    [136]Alice E. Smith, Zhi-Guang, Samuel Y, etc. Practical Guidelines for Developing BP Neural Network Models of Measurement Uncertainty Data[J]. Journal of Manufacturing Systems,2006,25(4):239-250.
    [137]Terry Windeatt, Robert Tebbs. Spectral technique for hidden layer neural network training[J]. Pattern Recognition Letters,1997, (18):723-731.
    [138]Bai Yanping, Zhang Haixia, Hao Yilong. The performance of the backpropagation algorithm with varying slope of the activation function[J]. Chaos, Solitons and Fractals,2007, (33):1-9.
    [139]Zhang C., Wu W., Chen X. H., etc. Convergence of BP algorithm for product unit neural networks with exponential weights [J]. Neurocomputing,2008, (72): 513-520.
    [140]Terry Windeatt, Robert Tebbs. Spectral technique for hidden layer neural network training[J]. Pattern RecognitionLetters,1997, (18):723-731.
    [141]郭文兵,吴财芳,邓喀中.开采影响下建筑物损害程度的人工神经网络预测模型[J].岩石力学与工程学报,2004,23(4):583-587.
    [142]赵文,孙海霞,刘立健等.地下管线变形与破坏的实验与监测研究[J].合肥工业大学学报(自然科学版),2009,32(10):1485-1489.
    [143]王翰章,王化云.管道热应力及热补偿[J].林业科技情报,2004,3(4):12-14.
    [144]沈松泉,黄振仁,顾竟成主编.压力管道安全技术[M].南京:东南大学出版社,2000,22-23.
    [145]岳进才主编.压力管道技术[M].北京:中国石化出版社,2005,36-38.
    [146]隋之锋.输气管道特殊管段应力分析及安全性研究[D].中国石油大学,2009,36-37.
    [147]李国成等译.管道手册[M].北京:中国石化出版社,2005.355-357.
    [148]赵艳梅,张文格,王冰,李毅.压力管道应力分析的一般途径与可靠性讨论[J].压力容器,2001,18(4):61-63.
    [149]唐永进主编.压力管道应力分析[M].北京:中国石化出版社,2003,33-34.
    [150]帅健,于桂杰主编.管道及储罐强度设计[M].北京:石油工业出版社,2006,55-57.
    [151]方明.管道热应力分析实例[J].广州化工,2005,16(6):42-45.
    [152]王志祥,梁治钊,孙国模,文启鼎主编.管道应力分析与计算[M].北京:水利电力出版社,1993,3(2):11-14.
    [153]杨永康,李建胜,康天合,季春旭.浅埋厚基岩松软顶板综放采场矿压特征工作面长度效应[J].岩土工程学报,2012,34(4):709-716.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700