用户名: 密码: 验证码:
中国冬小麦产量潜力及重要农艺性状的遗传改良
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
提高产量潜力一直是国内外小麦育种的主要目标。我国人多地少的基本国情决定了小麦生产的发展必须以提高单产为主,而品种产量潜力的遗传改良是提高小麦单产的重要途径。本研究于2001-2004 年连续三个年度对我国冬小麦主产区产量潜力及相关性状的遗传改良进行了研究,并利用生化和分子标记对主要矮秆基因和1Bl-1RS 易位染色体进行了检测。供试材料主要包括北部冬麦区、黄淮冬麦区、长江中下游冬麦区和西南冬麦区1970 年以来各个时期大面积推广的代表性品种共84 个,基本反映了我国冬小麦主产区品种的历史演变和发展现状。试验分别在北京、河北、山东、河南、陕西、江苏和四川省进行,除陕西和四川点试验在高氮和低氮两种环境下进行外,其余各点均在高氮环境下进行,采取严格的防病、防倒伏措施。主要结果如下:
    1、产量潜力的遗传改良
    我国冬小麦主产区小麦品种产量潜力随品种育成年份呈显著递增趋势,年遗传进展平均为0.70%或43.43 公斤/公顷。北方冬麦区品种产量潜力年遗传进展为0.80%或51.47 公斤/公顷,其中,北京市、河北省、山东省、河南省和陕西省分别为1.2%、0.54%、0.48%、1.05%和0.72%或64.63 公斤/公顷、35.40 公斤/公顷、32.09 公斤/公顷、72.11公斤/公顷和53.13 公斤/公顷。南方冬麦区品种产量潜力年遗传进展平均为0.47%或23.32 公斤/公顷,其中,长江中下游冬麦区为0.31%或14.20 公斤/公顷,西南冬麦区为0.62%或32.44 公斤/公顷。品种产量潜力遗传进展呈现明显的阶段性,产量潜力提高幅度较大的时期与半矮秆品种育成时期相吻合,多数地区发生在七十年代末或八十年代初,这一时期也是北方冬麦区第一批1BL-1RS 品种育成的时期,八十年代后产量潜力遗传改良进入徘徊或缓慢增长阶段,品种改良进展主要表现在抗病、抗逆能力的提高和品质改善等方面。本研究第一次较为全面系统地获得了有关我国冬小麦品种产量潜力遗传改良整体状况的重要基础数据。
    2、主要农艺性状的遗传改良
    穗粒数增加和千粒重提高是北方冬麦区品种产量潜力提高的主要原因,而南方冬麦区千粒重的增加对品种产量潜力提高的贡献最大,穗粒数则变化很小。两个麦区八
Increasing yield potential has been one of the most important breeding objectives worldwide, especially for China which has the largest population but limited land. Knowledge on genetic gain of yield potential and its associated traits is essential for understanding yield-limiting factors and developing strategies for future variety improvement. This study was conducted from 2001 to 2004 on genetic improvements in yield and its associated traits in both north and south winter wheat growing areas. Totally, 84 historical varieties from 1970s to 2000, were included in 9 trials. They were sown in Beijing, Hebei, Shandong, Henan, Shaanxi, Jiangsu and Sichuan provinces respectively. All yield trials were treated with fungicide and pesticide and, except for Shanxi and Sichuan, where the yield trials were conducted under both high and low nitrogen regimes, were conducted with high nitrogen input. Molecular markers were used to clarify the distribution of Rht-B1b, Rht-D1b and Rht8c, and 1BL-1RS translocations. The main results are present below.
    Yield potential over the last 30 years has continuously increased with year of variety release. Annual genetic gain was 43.43 kg/ha or 0.70% on average nationwide,ranging from 51.47 kg/ha or 0.80% in north China to 23.32kg/ha or 0.47% in south China. They were 64.63 kg/ha, 35.40 kg/ha, 32.09 kg/ha, 72.11 kg/ha, 53.13 kg/ha, 14.20 kg/ha, 32.44 kg/ha or 1.2%, 0.54%, 0.48%, 1.05%, 0.72%, 0.31% 0.62% in Beijing, Hebei, Shandong, Henan, Shanxi, Jiangsu and Sichuan provinces respectively. The significant increase of yield potential mainly occurred at the end of 1970s or the beginning of 1980s, which was correspondent to the release of semi-dwarf varieties in both north and south and 1BL-1RS varieties in the north. Yield gain has been slowed down since 1980s and improvements afterwards were made mainly in resistance to biotic and abiotic stresses and processing quality.
    Yield genetic gain was primarily attributed to the increase of kernels per spike
    or thousand kernel weight in the north and only thousand kernel weight in the south. There was no significant change in number of spikes/m2 after 1980s in both north and south. Number of kernels/spike showed a continuous increase in the north, which was mainly attributed to the increase of fertility and number of kernels per spikelet, but no significant change in the south. Thousand kernel weight has been increased periodically and grain weight/spike increased steadily. The most significant change in traits was the reduction of plant height, reduced from above 100 cm before 1970s, to 75 to 85 cm in the north, and 85 to 95 cm in the south after 1980s. Harvest index increased remarkably, from 40% in 1970s to 45-50% after 1980s. No significant changes in maturity were observed except for northern winter wheat zone. There was increase of biomass in a few areas, which might be attributed to improvement of plant type and nitrogen uptake efficiency, though generally no significant change in biomass for most areas. Most varieties contained single dwarf gene, in which Rht-D1b was the most widely distributed, with a frequency of 30.1%, followed by Rht8c with 19.3%, Rht-B1b with 4.8%, and 8.4% of varieties might have Rht-B1d from St2422/464, Italian variety having pedigree of Saitama27, the donor of Rht-B1d. The frequencies of Rht-B1b plus Rht8c or Rht-D1b plus Rht8c, Rht-B1b plus Rht-D1b, and Rht-B1b、Rht-D1b plus Rht8c were 21.7%, 7.2% and 3.6% respectively. Distributions of different dwarf genes varied in different areas. RhtD1b was most widely used in the north and Rht8c in the south. The varieties without any dwarf gene were usually above 120 cm tall, varieties with Rht8c 100 cm tall and varieties with Rht-D1b or more than one dwarf gene 80-90 cm tall, with a few varieties less than 80 cm in height. The effects of biological conditions and genetic background on plant height were observed. 1BL-1RS translocations were the most widely used crossing parent in breeding program in north winter wheat areas in 1970s and 1980s. The percentage of varieties having 1BL-1RS translocation released after 1980, when the first 1BL-1RS variety was released in China, were 59.0%, 40.0%, 13.0%, and 20.0%, in North Winter Wheat Zone, Yellow and Huai River Reaches, Middle and Low Reaches of Yangtze River and Southwest China or 71.4%, 65.5%, 33.3% and 12.5% of the most widely
    grown varieties in those areas respectively. New translocations without secalin were not found. The varieties with high dough elasticity were generally not 1BL/1RS translocations. From breeding point of view, 1BL/1RS parents are generally not recommended in the breeding for high dough elasticity, while good combination of HMW-GS should be present when 1BL/RS parent is used in the breeding for medium dough elasticity. Significant differences in nitrogen uptake, utilization and use efficiencies among varieties were observed. Varieties responded differently, mainly in uptake efficiency, in high and low nitrogen regimes. Close associations were presented between biomass and nitrogen uptake efficiency ( r=0.85, P﹤0.01) and harvest index and nitrogen utilization efficiency ( r=0.85, P﹤0.01). The results indicated that it was feasible to develop variety with both high nitrogen use efficiency and high response to high nitrogen input.
引文
[1] 许为钢,胡琳,吴兆苏,盖钧镒. 关中地区小麦品种产量与产量结构遗传改良的研究. 作物学报,2000, 26:352-358.
    [2] 庄巧生. 中国小麦品种改良及系谱分析. 北京:中国农业出版社,2003.
    [3] 吴兆苏, 魏燮中. 长江下游地区小麦品种更替中产量及有关形状的演变与发展方向. 中国农业科学,1984,(3):14-20
    [4] 董海水. 黄淮地区小麦品种性状演变和发展趋势研究. 中国农业科学院研究生院硕士学位论文. 1985.
    [5] 俞世蓉, 吴兆苏,杨竹平. 江苏淮南地区70 年代以来小麦品种产量及产量因素的演变,中国农业科学, 1988,21(4): 15-21.
    [6] 田笑明. 新疆冬小麦品种更替中农业性状演变和发展方向的研究. 作物学报,1991,(4):297-320.
    [7] 陈化榜, 李晴祺. 山东省50 年代以来小麦品种性状演变的研究. 山东农业大学学报,1991,(3):95-98.
    [8] 丁雪蕙,唐明臻. 江苏淮阴地区小麦品种产量能力及其育种目标的探讨. 南京农业大学学报,1992, 15 (2):16-20.
    [9] 雷振声,林作楫. 河南小麦品种农艺性状演变及今后育种方向. 中国农业科学,1995, 增刊, 28-33.
    [10] 庄巧生. 亲本选配的基本经验. 中国小麦品种及其系谱. 金善宝主编. 北京: 农业出版社. 1983. 294-326.
    [11] 肖世和. 产量潜力改良. 中国小麦品种改良及系谱分析. 庄巧生主编. 北京: 中国农业出版社. 2003. 498-519.
    [12] 朱云集,崔金梅,郭天才,王晨阳,张三坤,李九星,王永华. 温麦6 号生育规律及其超高产栽培关键技术. 作物学报,1998,24,(6):947-951.
    [13] 崔党群.黄淮冬麦区超高产小麦品种的株型研究. 中国小麦育种研究进展,何中虎、张爱民主编,北京:中国科学技术出版社,2002, 83-91.
    [14] 王绍中,赵虹,王西成,范和君,田云峰. 小麦超高产品种筛选的研究初报. 作物学报,1998,24(6):870-875.
    [15] 钱曼懋,孙洪伟. 北部冬小麦品种农艺性状演变研究. 作物品种资源,1989, (1): 3-5.
    [16] 刘志增,卢少源. 华北地区中高产冬麦品种源库演变分析. 河北农业大学学报,1991, 14(3):1-5.
    [17] 胡延吉,赵檀方. 小麦高产育种中粒重作用的研究. 作物学报,1995,21(6):671-678.
    [18] 金善宝. 中国小麦学. 北京:中国农业出版社. 1996. 474
    [19] 曾浙荣,庞家智,周桂英,赵双宁,曹梅林. 我国北部冬麦区小麦品种籽粒灌浆特性的研究. 作物学报,1996,22(6):720-728.
    [20] 丁寿康,宋春华,李月华,姚玉环. 我国小麦大粒品种资源的调查分析. 中国农业科学,1982,1:43-48.
    [21] 吴兆苏. 小麦育种学. 北京:农业出版社. 1990. 209-213.
    [22] 彭正松,颜济,杨俊良. 普通小麦多小穗基因定位. 中国农业科学,1998, 31(5): 82-84.
    [23] 李维平, 赵文明. 小麦增小穗育种方法与新种质资源拓宽研究. 作物学报,2000, 26(2):222-230.
    [24] 朱赞华,徐枫. 淮北地区小麦品种类型的演变及其生理基础的研究. 小麦育种理论与实践的进展. 庄巧生,王恒立主编. 北京:科学普及出版社. 1987, 424-450.
    [25] 许轲. 黄淮地区小麦超高产主要栽培技术的初步研究. 江苏农业科学,1998,4:2-6.
    [26] 马元喜. 小麦器官建成的基本规律. 河南小麦栽培学,1988,河南科学技术出版社.
    [27] 凌启鸿.作物群体质量. 上海:上海科学技术出版社. 2000, 233-243.
    [28] 张嵩午,王长发. 冷型小麦及其生物学特征. 作物学报,1999, 25:608-615.
    [29] 肖世和,阎长生,张秀英,张文祥. 2000. 冬小麦耐热灌浆与冠层温差的关系. 作物学报,2000,26:972-974
    [30] 林作楫. 辉县红. 河南小麦品种志. 河南科学技术出版社,1983.
    [31] 方正. 冬小麦育种实践50 年回顾. 山东农业科学,2002,6:21-25.
    [32] 贾继增, 丁寿康,李月华,张辉. 中国小麦的主要矮秆基因及其矮源的研究. 中国农业科学, 1992, 25(1): 1-5.
    [33] 郭保宏,宋春华,贾继增. 我国小麦品种的Rht1、Rht2 矮秆基因鉴定及分布研究. 中国农业科学,1997, 30(5): 56-60.
    [34] 周阳,何中虎,张改生,夏兰琴,陈新民,陈锋. 利用微卫星标记鉴定中国小麦品种中Rht8 矮秆基因的分布. 作物学报,2003, 29(6): 810-814.
    [35] 杨松杰. 我国小麦品种(系)矮秆基因的分子检测. 新疆农业大学硕士学位论文. 2004.
    [36] 刘秉华. 作物改良理论与方法. 北京: 中国农业科技出版社, 2001.
    [37] 宋荷仙,李跃建,冯天铭. 收获指数在小麦高产育种中的应用. 西农农业学报. 1989,2:27-32.
    [38] 李扬汉. 禾谷科作物的形态与解剖. 上海科技出版社, 1979, 78-231.
    [39] 王勇,李晴祺,李朝恒,李安飞. 小麦茎秆的质量及解剖学研究. 作物学报,1998, 24(4):452-458.
    [40] 魏燮中,吴兆苏. 小麦植株高度的结构分析. 南京农学院学报,1983, 1:14-21.
    [41] 李安飞,李晴祺,李斯深,李宪彬,王勇. 小麦杂种早代茎秆基部性状的相关与选择. 中国小麦育种进展,何中虎,张爱民主编. 北京:中国科学技术出版社, 2002, 92-98.
    [42] 赵双宁,李培,曾浙荣,台建祥,庄巧生. 北京地区冬小麦品种冠层结构的研究. 作物学 报,1986,12(4):217-224.
    [43] 范家骅. 北部冬麦区小麦品种改良及系谱分析. 中国小麦品种改良及系谱分析. 庄巧生主编. 北京: 中国农业出版社, 2003, 38-52.
    [44] 董树亭. 高产冬小麦群体光合能力与产量关系的研究. 作物学报,1991,17(6):461-469
    [45] 曾浙荣,赵双宁,李青. 北京地区高产小麦品种的冠层形成、光截获量和产量. 作物学报,1991,17(3):161-170 .
    [46] 吴立人, 孟庆玉. 洛10、洛13 致病类群的发现与研究. 中国农业科学,1988,21(5):53-58
    [47] 李睛祺. 冬小麦种质资源的创造、评价和利用研究. 济南:山东科学技术出版社1998
    [48] 李睛祺,李安飞,包文翊,李斯深, 李宪彬. 冬小麦新种质“矮孟牛”的创造及研究利用的进展. 21 世纪小麦遗传育种展望. 中国农业科技出版社. 2001, p 465-470.
    [49] 亓增军,刘大均. 冬小麦种质“矮孟牛”中新型小麦-黑麦复杂易位的遗传传递分析. 作物学报,2001,27(5):582-587.
    [50] 张学勇,董玉琛,游光侠,王兰芬,李培,贾继增. 中国小麦大面积推广品种及骨干亲本的高分子量谷蛋白亚基组成分析. 中国农业科学,2001,34(4):355-362.
    [51] 周阳、何中虎,张改生, 夏兰琴,陈新民. 1B/1R 在我国小麦育种中的应用. 作物学报,2004,30(6):531-535.
    [52] 张立言,张建平,李雁鸣,肖崇彬,李振国. 高产冬小麦氮、磷、钾的积累和分配动态的研究. 卢良恕主编. 中国小麦栽培研究新进展. 农业出版社. 1993. 237-244.
    [53] 王璞,戴惠君,李建民,周殿玺,兰林旺. 不同基因型冬小麦氮磷钾吸收利用差异及其水分效应. 冬小麦水肥高效利用栽培技术原理. 中国农业大学出版社. 2000. 235-243.
    [54] 赵广才,张保明,王崇义. 不同类型高产小麦氮素积累及施氮对策探讨. 作物学报,1998,24(6):894-898.
    [55] 潘庆民,于振文,王月福,田奇卓. 公顷产9000kg 小麦氮肥吸收分配的研究. 作物学报,1999, 25(5):541-547.
    [56] 赵英华. 矮丰3 号. 河南小麦品种志. 河南科学技术出版社,1983.
    [57] 刘绍禹. 7023. 河南小麦品种志. 河南科学技术出版社,1983.
    [58] 刘仲齐,饶世达,蒲宗君,余东梅,杨武云. 21 世纪小麦遗传育种展望. 中国农业科技出版社. 2001, 465-470.
    [59] 李生荣,彭明碧. 小麦绵阳号品种改良及系谱分析. 21 世纪小麦遗传育种展望. 中国农业科技出版社. 2001, p 465-470.
    [60] 周朝飞. 长江中下游冬麦区小麦品种改良及系谱分析. 中国小麦品种改良及系谱分析. 庄巧生主编. 北京: 中国农业出版社, 2003, 171-201.
    [61] 程顺和,张伯桥,季开桢,高德荣. 从扬麦158 的选育试论综合育种. 中国小麦育种研究进展. 庄巧生,杜振华主编. 北京: 中国农业出版社, 1996, 146-152.
    [62] 何中虎, 肖世和, 庄巧生. “九五”全国小麦育种研究进展. 中国小麦育种研究进展. 何中虎, 张爱民主编. 北京: 中国科学技术出版社. 2002, 3-7.
    [63] 刘建军, 何中虎, R.J. Pena, 赵振东. 1BL/1RS 易位对小麦加工品质的影响. 作物学报, 2004, 30(2): 149-153.
    [64] 雷振生, 田云峰, 林作楫, 杨会民, 吴政卿, 刘媛媛, 章家长. 河南小麦品质的研究及若干问题的探讨. 中国小麦育种研究进展. 何中虎, 张爱民主编. 北京: 中国科学技术出版社. 2002, 192-198.
    [65] Rajaram, S. Prospects and promise of wheat breeding in the 21st century. Euphytica, 2001, 119: 3-15.
    [66] Evans, L.T. and R. A. Fischer. Yield potencial: its definition, measurement, and significance. Crop Sci., 1999, 39: 1544-1551.
    [67] Schmidt, J. W. Genetic contribution to yield gains in wheat. In Genetic Contributions to Yield Gains of Five Major Crop Plants, Crop Science of America, Special publication No.7. 1984, 89-101.
    [68] McCaig, T.N. and R.M. DePauw. Breeding hard red spring wheat in western Canada: Historical trends in yield and related variables. Can. J. Plant Sci., 1995, 75: 387-393.
    [69] Austin, R.B., J. Bingham, R. D. Blackwell, L. T. Evens, M. A. Ford, C. L. Morgan and M. Taylor. Genetic improvement in winter wheat yields since 1900 and associated physiological changes. J. Agric. Sci. Camb., 1980a, 94: 675-689.
    [70] Sayre, K. D., S. Rajaram, and R. F. Fischer. Yield potential progress in short bread wheat in northwest Mexico. Crop Sci., 1997, 37: 36-42.
    [71] Austin, R.B., Margaret, A. Ford and C. L. Morgan. Genetic improvement in the yield of winter wheat: a further evaluation. J. Agric. Sci. Camb., 1989, 112: 295-301.
    [72] Brancourt-Hulmel, M., G. Doussinault, C. Lecomte, P. Berard, B. Le Buanec, and M. Trottet. Genetic improvement of Agronomic traits of winter wheat cultivars released in France from 1946 to 1992. Crop Sci. 2003, 43: 37-45.
    [73] Canevara, M.G., M. Romani, M. Corbellini, M. Perenzin and B. Borghi. Evolutionary trends in morphological, physiological, agronomical and qualitative traits of Triticum aestivum L. cultivars bred in Italy since 1900. European J. Agron. 1994, 3:175-185.
    [74] Jensen, N F. Limits to growth in world food production. Science, 1978, 201: 317-320.
    [75] Cox, T.S., J.P. Shroyer, Liu Ben-Hui, R.G. Sears and T.J. Martin. Genetic improvement in agronomic traits of hard red winter wheat cultivars from 1919 to 1987. Crop Sci 1988, 28: 756-760.
    [76] Khalil, I.H., B.F. Carver and E.L. Smith. Genetic gains in two selection phases of a wheat-breeding program. Plant Breeding, 1995, 114: 117-120.
    [77] Donmez, E., R.G. Sears, J.P. Shroyer and G.M. Paulsen. Genetic gain in yield attributes of winter wheat in the Great Plains. Crop Sci. 2001, 41: 1412-1419.
    [78] Hucl, P. and R. J. Baker. A study of ancestral and modern Canadian spring wheat. Can. J. Plant Sci., 1987, 67: 87-97
    [79] Perry, M. and M. Dántuono. Yield improvement and associated characteristics of some Australian spring wheat cultivars introduced between 1860 and 1982. Austealian Journal of Agricultrrual Redsearch, 1989, 40: 457-472.
    [80] Siddique, K.H.M., R.K. Belford, M.W. Perry and D. Tennant. Growth, development and light interception of old and modern wheat cultivars in a Mediterranean-type environment. Aust. J. Agric. Res., 1989, 40: 473-87.
    [81] Slafer, G. A. Genetic improvement in bread wheat ( Triticum aestivum L.) yield in Argentina. Field Crop Res., 1989, 21: 289-296.
    [82] Slafer, G.A. and F.H, Andrade. Physiological attributes related to the generation of yield in bread wheat cultivars released at different eras. Field Crops Res. 1993, 31: 351-367.
    [83] Calderni, D.F., M.F. Dreccer and G.A. Slafer. Genetic improvement in wheat yield and associated traits: A re-examination of previous results and the latest trends. Plant Breeding, 1995, 114: 108-112.
    [84] Waddington, S.R., J.K. Ransom, M. Osmanzai and D.A. Saunders. Improvement in yield potential of bread wheat adapted to northwest Mexico. Crop Sci. 1986, 26: 698-703
    [85] Ortiz-Monasterio, R., K. D. Sayre, S. Rajaram, and M. McMahon. Genetic progress in wheat yield and nitrogen use efficiency under four nitrogen rates. Crop Sci. 1997, 37: 898-904.
    [86] Kulshrestha, V.P. and H.K. Jain. Eighty years of wheat breeding in India: past selection pressures and future prospects. Z. Pflanzenzuchtg, 1982, 89: 19-30.
    [87] Byerlee, D. and P. Moya. Impact of International Wheat Breeding Research in the Developing World, 1966-90. Mexico, D.F.: CIMMYT, 1993, 35.
    [88] Austin, R.B. Yield of wheat in the United Kingdom: recent advances and prospects. Crop Sci. 1999, 39: 1604-1610.
    [89] Foulkes, M.J., R. Sylvester-Breadley and R. K. Scott. Evidence for differences between winter wheat cultivars in acquisition of soil mineral nitrogen uptake and utilization of applied fertilizer nitrogen. J. Agri. Sci. Cambridge, 1998, 130: 29-44.
    [90] Silvey, V. The contribution of new varieties to cereal yield in England and Wales between 1947 and 1983. J. Natl. Inst. Agric. Bot., 1986, 17: 155-168.
    [91] Feyerherm, A.M., G.M. Paulsen, and J.L. Sebaugh. Contribution of genetic improvement to recent wheat yield increases in USA. Agronomy J., 1984, 76: 985-990.
    [92] Sayre, K.D., R.P. Singh, J. Huerta-Espino, and S. Rajaram. Genetic progress in reducing losses to lesf rust in CIMMYT-derived Mexican spring wheat cultivars. Crop Sci., 1998, 38: 654-659.
    [93] Ortiz-Monasterio, J.I., R. J. Pena, K. D. Sayre, and S. Rajaram. CIMMYT’s genetic progress in wheat grain quality under four N rates. Crop Sci., 1997b, 37(3): 892-898.
    [94] Rajaram, S. and M. van Ginkel. Yield potential debate: Germplasm vs. methodology, or both. In: Increasing yield potential in wheat: breaking the barriers. Mexico, D.F.: CIMMYT, 1996, 11-18.
    [95] Nagarajan, S. and Ghanshyam Singh. Sustaining wheat ( Triticum ) revolution –retrospect and prospect. Indian J. of Agric. Sci., 1998, 68: 396-404.
    [96] Peterson, C.J., R.G.Sears, and E.T. Kanemasu. Rate and duration of spikelet initiation in 10 winter wheat cultivars. Crop Sci.,1985, 25: 221-225.
    [97] Ferrara, G.O., M.G. Mosaad, V. Mahalakshmi and S. Rajaram. 1997. Photoperiod and vernalisation response of Mediterranean wheats, and implications for adaptation. In: Wheat prospects for global improvement, H.J. Braun, F. Altay, W.E. Kronstad, S.A.S. Beniweal and A. McNAB(eds). Kluwer Academic Publishers. Netherlands. 509-516.
    [98] Worland, A.J., A. Borner, V. Korzun, W.M. Li, S. Petrovic and E.J. Sayers. 1997. The influnce of photoperiod genes on the adaptability of European winter wheats. In: Wheat prospects for global improvement, H.J. Braun, F. Altay, W.E. Kronstad, S.A.S. Beniweal and A. McNAB(eds). Kluwer Academic Publishers. Netherlands. 517-526.
    [99] Peterman, C.J., R.G. Sears, and E.T. Kanemasu. Rate and duration of spikelet initiation in 10 winter wheat cultivars. Crop Sci., 1985, 25: 221-225.
    [100] Flintham, J,E, and Gale, M,D. The Tom Thumb dwarfing gene, The3, in wheat, 2. Effects on height, yield and grain quality, Theoretical and Applied Genetics, 1983, 66, 249-256.
    [101] Slafer, G.A. and R. Savin. Source-sink relationships and grain mass at different positions within the spike in wheat. Field Crop Research, 1994, 37: 39-49.
    [102] Whingwiri, E.E. and W.R. Stern. Floret survival in wheat: significance of the time of floret initiation relative to terminal spikelet formation. J. Agic. Sci., Camb., 1982, 98: 257-268.
    [103] Fischer, R.A. Growth and yield of wheat. In Potential productivity of field crops under different environments. W.H. Smith and S.J. Bante (ed.). International Rice Research Institute, Los Banos, Philippines. 1983, 129-154.
    [104] Abbate, P.E., F.H. Andrade, L. Lazaro, J.H. Bariffi, H.G. Berardocco, V.H. Inza, and F. Marturano. Grain yield increase in recent Argentine wheat cultivars. Crop Sci., 1998, 38: 1203-1209.
    [105] Chapman, S.R., and F.H. MccNeal. Gene action for yield components and plant height in a spring wheat cross. Crop Sci., 1971, 11: 384-386.
    [106] Halloran, G.M. Genetic analysis of hexaploid Triticum aestivum using inter-varietal chromosome substitution lines. I. Culm length, ear density, spikelet number and fertility. Can. J. Genet. Cytol., 1974, 16: 449-456.
    [107] Millet, E. Genetic control of heading date and spikelet number in common wheat ( T. aestivum L. ) line ‘Noa’. Theor. Appl. Genet., 1986, 72: 105-107.
    [108] Millet, E. Monosomic analysis of heading date and spikelet number in the common wheat ( T. aestivum L. ) multispikelet line ‘Noa’. Theor. Appl. Genet., 1987, 74: 487-492.
    [109] Yen, C., Y. L. Zheng. L.L. Yang. An ideotype for high yield breeding, in theory and practice. 8th Intern. Wheat Genet. Symp., Beijing, 1993, 1113-1117.
    [110] Hoogendoom, J. The reciprocal F monosomic analysis of the genetic control of time of ear emergence, number of leaves and number of spikelets in wheat (triticum aestivum L ). Euphytica, 1985, 34: 545-558.
    [111] Peng, Z.S., C. Yen, and J.L., Yang. Chromosomal location of genes for supernumerary spikelet in bread wheat. Euphytica, 1998, 103: 109-114.
    [112] Willson, D. Breeding for morphological and physiological traits. Plant Breeding II, Frey, K. J. ed., 1981, 233-290.
    [113] Bingham, J. Investigations on the physiology of yield in winter wheat by comparisons of varieties and by artificial variation in grain number per ear. J. Agric. Sci., 1971, 68: 411-22
    [114] Fischer, R.A. and D. HilleRisLambers. Effect of environment and cultivar on source limitation to grain weight in wheat. Aust. J. Agric. Res., 1978, 29: 443-58.
    [115] Koshkin, E.I. and V.V. Tararina. Yield and source/sink relations of spring wheat cultivars. Field Crop Research, 1989, 22: 297-306.
    [116] Siddique, K.H.M., E.J.M. Kirby, and M.W. Perry. Ear:stem ratio in old and modern wheat varieties: Relationship with improvement in number of grains per ear and yield. 1989, Field Crop Res. 21: 59-78.
    [117] Slafer, G.A., F.H. Andrade, E.H. Satorre. Genetic-improvement effects on pre-anthesis physiological attributes relates to wheat grain-yield. Field Crops Res., 1990, 23: 255-263.
    [118] Bingham, J., Colin Law and Terry Miller. Wheat Yesterday, Today and Tomorrow. Cambridge: PBIC & PSR, 1991.
    [119] Fischer, R. A. Optimizing the use of water and nitrogen through breeding of crops. Plant and Soil. 1981, 58: 249-278.
    [120] Waddington, S. R., M. Osmanzai, M. Yoshida and J.K. Ransom. The yield of durum wheats released in Mexico between 1960 and 1984. J. Agric. Sci. Camb., 1987, 108: 469-477.
    [121] Singh, R.P., J. Huerta-Espino, S Rajaram, and J. Crossa. Agronomic effects from chromosome translocations 7DL.7Ag and 1BL.1RS in spring wheat. Crop Sci., `1998, 38: 27-33
    [122] Ruckenpauer, P. Stability of harvest index in efficiency in plant breeding”. Proc. 30th Conf. EUCARPIA, 1984, 113-116.
    [123] Fischer,R.A., D.Rees, K.D.Sayre, Z.-M.Lu, A.G.Condon, and A.Larque Saavedra, Wheat yield progress associated with higher stomatal conductance and photosynthetic rate, and cooler canopies. Crop Sci., 1998, 38: 1467-1475.
    [124] Vilhelmsen, A.L., M.P. Reynolds, B. Skovmand, D. Mohan, K.N. Ruwali, S. Nagarajan, and O. Stoelen. Genetic diversity and heritability of heat tolerance traits in wheat. In: Application of Physiology in Wheat Breeding. Mexico, D.F.: CIMMYT. 2001.
    [125] Farquhar,G.D. and Rechards,R.A. Isotopic composition of plant carbon correlates with water use efficiency of wheat genotypes. Aust.J. Plant Physiol., 1984, 11: 539-552
    [126] Condon,A.G.,Rechards,R.A. and Farquhar,G.D. Carbon isotop discrimination is positively correlated with grain yield and dry matter production in field grown wheat. Crop Sci., 1987, 27: 996-1001
    [127] Amani.I., R.A. Fischer, and M.P. Reynolds. Canopy temperature depression association with yield of irrigated spring wheat cultivars in hot climate. J. Agron. Crop Sci. 1996, 176: 119-129.
    [128] Araus, J.L. Integrative physiological criteria associated with yield potential. P150-160 in M.P. Reynoldss et al. Increasing yield potential in wheat: Breaking the barriers. Workshop Proc. Cd. 2. Obregon, Mexico, 28-30 March 1996, CIMMYT, Mexico, D.F.
    [129] Reynolds, M.P., M. Balota, M.I.B. Delgado and R.A. Fischer. Physiological and morphological traits associated with spring wheat yield under hot, irrigated conditions, Aust. J. Plant Physiology. 1994, 21: 717-730.
    [130] Reynolds, M.P., J.I. Ortiz-Monasterio, and A. McNab (eds). Application of Physiology in Wheat Breeding. Mexico, D.F.: CIMMYT. 2001.
    [131] Reynolds, M.P., R.P. Singh, A. Ibrahim, O.A.A. Ageeb, A. Larque-Saavedra, and J.S. Quick. Evaluating physiological traits to complement empirical traits for wheat in warm environments. Euphytica 1998, 100: 84-95.
    [132] Worland, A.J. and S.Petrovic. The gibberellic acid insensitive dwarfing gene from the wheat variety Saitama 27. Euphytica, 1988, 38: 55-63.
    [133] Worland A J. Gibberllic acid insensitive dwarfing genes in southern European wheats. Euphytica, 1986, 35: 857-866.
    [134] Volgel, O.A., J.C. Craddock, C.E. Muir, E.H. Everson, and C.R. Rohde. 1956. Semidwarf growth habit in winter wheat improvement for the Pacific Northwest. Agron. J. 1956, 48: 76-78.
    [135] Evenson R. E. and D. Gollin. Assessing the impact of the green revolution, 1960 to 2000. Science, 2003, 300: 758-762.
    [136] Allan, R.E., O.A. Vogel and J.C. Craddock. Comparative response to gibberellic acid of dwarf, semi-dwarf, and standard short and tall winter wheat varieties. Agronomy Journal, 1959, 51: 737-740.
    [137] Gale M.D., Marshall G A. Chromosom location of Gail and Rht genes for gibberellic insensiti-vity and semi-dwarfism in a derivative of Norin 10 wheat. Heredity, 1976, 37,283-289.
    [138] Gale M D, Gregory R S. A rapid method for early generation selection of dwarf genotypes in wheat. Euphytica, 1977, 26: 733-738.
    [139] Worland A J. Gibberllic acid insensitive dwarfing genes in southern European wheats. Euphytica, 1986, 35: 857-866.
    [140] McIntosh, R.A. Catalogue of gene symbols for wheat. In: Proc 10th Int Wheat Genetic Symp., Italy. 2004.
    [141] Gale M D, Law C N, Marshall G A. The analysis and evaluation of semi-dwarfing genes in wheat, including a major height reducing gene in the variety ‘Sava’. Proceedings of a Research Co-ordinating Meeting. Vienna: IAEA-TECDOC268, 1981, 7-23.
    [142] Worland, A.J., E.J. Sayers, V. Korzun. Allelic variation at the dwarfing gene Rht8 locus and its significance in international breeding programs. Euphytica, 2001, 119: 155-159.
    [143] Worland, A.J., M.L. Appendino, E.J. Sayers. The distribution, in European winter wheats, of genes that influence ecoclimatic adaptability whilst determining photoperiodic insensitivity and plant height. Euphytica, 1994, 80: 219-228 .
    [144] Hoogendoorn, J., W.H. Pfeiffer, S. Rajaram and M.D. Gale. Adaptive aspects of dwarfing genes in CIMMYT germplasm. Proceedings of 7th International Wheat Genetic Symposium, 1987, 1093-1100.
    [145] Allan, R.E. Agronomic comparison between Rht1 and Rht2 semidwarf genes in winter wheat. Crop Sci., 1989, 29: 1103-1108.
    [146] Fischer, R.A. and K.J. Quail. 1990. The effects of majaor dwarfing genes on yield potential in spring wheats. Euphytica, 46, 51-56.
    [147] Miralles, D.J. and G.A. Slafer. Yield, biomass and yield components in dwarf, semi-dwarf and tall isogenic lines of spring wheat under recommended and late sowing dates. Plant Breeding, 1995, 114, 392-396.
    [148] Worland, A.J., A. Borner, V. Korzun, W.M. Li, S. Petrovic and E.J. Sayers. The influnce of photoperiod genes on the adaptability of European winter wheats. In: Wheat prospects for global improvement, H.J. Braun, F. Altay, W.E. Kronstad, S.A.S. Beniweal and A. McNAB(eds). Kluwer Academic Publishers. Netherlands. 1997, 517-526.
    [149] Flintham, J.E., A. Borner, A.J. Worland and M.D. Gale. Optimizing wheat grain yield: effects of Rht (gibberellin-insensitive) dwarfing genes. Journal of Agricultural Science, Cambridge, 1997, 128, 11-25.
    [150] Ellis M H, Spielmeyer K R, Gale G J, Rechards R A. “Perfect”markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theor Appl Genet 2002, 105: 1038-1042.
    [151] Uddin, M.N. and D.R. Marshall. Effects of dwarfing genes on yield and yield components under irrigated and rainfed conditions in wheat(Triticum aestivum L.). Euphytica, 1989, 42: 127-134.
    [152] Borner, A., A.J. Worland, J. Plaschke, Erika Schumann and C.N. Law. Pleiotropic effects of genes for reduced height(Rht) and dat-length insensitivity (Ppd) on yield and its components for wheat grown in middle Europe. Plant Breeding, 1993, 111: 204-216.
    [153] Brooking, I.R. and Kirby E.J.M. Interrelationship between stem and ear development in winter wheat: the effects of Norin 10 dwarf gene, Gai/Rht2. J. Agric. Sci. Cambridge, 1981, 97: 373-381.
    [154] Fischer, R.A. and Y.M. Stockman. Increased kernel number in Norin 10-derived dwarf wheat: evaluation of the cause. Aust. J. Plant Physiol., 1986, 13: 767-784.
    [155] Siddique, K.H.M., R.K. Belford, M.W. Perry, and D. Tennant. Growth, development and light interception of old and modern wheat cultivars in a Mediterranean-type environment. Aust. J. Agric. Res., 1989, 40:473-487.
    [156] Youssefian, S., E.J.M. Kerby, M.D. Gale. Pleiotropic effects of the GA-insensitive Rht dwarfing genes in wheat. 2. Effects on leaf, stem, ear and floret growth. Field Crops Res., 1992, 28: 191-210.
    [157] Watanabe, N., J.R. Evans, and W.S. Chow. Changes in the photosynthetic properties of Australian wheat cultivars over the last century. Aust. J. Plant Physiol. 1994, 21: 1449-1450.
    [158] Miralles, D.J. and G.A. Slafer. Yield, biomass and yield components in dwarf, semi-dwarf and tall isogenic lines of spring wheat under recommended and late sowing dates. Plant Breeding, 1995, 114, 392-396.
    [159] Flintham, J.E., A. Borner, A.J. Worland and M.D. Gale. Optimizing wheat grain yield: effects of Rht (gibberellin-insensitive) dwarfing genes. Journal of Agricultural Science, Cambridge, 1997, 128, 11-25.
    [160] Worland A J, V. Korzun, Roder M S, Ganal M W, Law C N. Genetic analysis of the dwarfing gene Rht8 in wheat. Part II. The distribution and adaptive significance of allelic variants at the Rht8 locus of wheat as revealed by microsatellite screening. Theor Appl Genet, 1998, 96: 1110-1120.
    [161] Korzun V, Roder M S, Ganal M W, Worland J. Genetic analysis of the dwarfing gene (Rht8) in wheat. Part I. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat ( Triticum aestivum L.). Theor Appl Genet, 1998, 96: 1104-1109.
    [162] Peng J, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F, Duralalagaraja Sudhakar, Christou P, Snape J W, Gale MD, Harberd N P. ‘Green revolution’genes encode mutant gibberellin response modulators. Nature , 1999, 400: 256-251.
    [163] Sip, V., P. Amler, L. Bobkova and M. Skorpik. Efficiency of early generation selection foe Rht2 in a Czechoslovak wheat breeding programme. Proceedings of 7th Internatinal Wheat Genetic Symposium, 1987, 1175-1180.
    [164] Fischer, R.A. and K.J. Quail. The effects of majaor dwarfing genes on yield potential in spring wheats. Euphytica, 1990, 46, 51-56.
    [165] Richards, R.A. The effect of dwarf genes in spring wheat in dry environments. I. Agronomic characteristics. Aust. J. Agric. Res. 1992, 43, 517-523.
    [166] Donald, C.M. The breeding of crop ideotypes. Euphitica, 1968, 17: 385 –403.
    [167] Donald, C. M. and J. Hamblin. The biological yield and harvest index of cereals as agronomic and plant breeding criteria. Adv. Agron. 1976, 28: 361-405
    [168] Donald, C.M. Competitive plants, communal plants, and yield in wheat crops. IN: L.T. Evans and W,J., Peacok (eds), Wheat Science-Today and Tomorrow. Cambridge University Press, Cambridge, 1981, 223-247.
    [169] Sedgley, R.H. An appraisal of the Donald ideotype after 21 years. Field Crop Research, 1991, 26:93-112
    [170] Rasmusson, D.C. A plant breeder’s experience with ideotype breeding. Field Crops Research, 1991, 26: 191-200.
    [171] Waddington, S. R., M. Osmanzai, M. Yoshida and J.K. Ransom. 1987. The yield of durum wheats released in Mexico between 1960 and 1984. J. Agric. Sci. Camb., 108, 469-477
    [172] Rajaram,D., and G.P. Hettel, eds. Wheat breeding At CIMMYT: Commemorating 50 years of research in Mexico for global wheat improvement. Wheat Special Report No.29. Mexeco. D.F.: CIMMYT. 1995
    [173] Peng, S., Khush, G.S. and Cassman, K.G. Evolution of the new plant ideotype for increased yield potential. In: Breaking the yield barrier. K.G. Cassman ed. IRRI, Manila, Philippines. 1994, 5-20
    [174] Khush, G.S. and S. Peng. Breaking the yield frontier of rice. In: Increasing yield potential in Wheat: Breaking the barriers. Reynolds, M.P., S. Rajaram, and A. McNab, eds. Mexico, D.F. CIMMYT, 1996, 36-51
    [175] Rasmusson, D.C. An evaluation of ideotype breeding. Crop Sci, 1987, 27: 1140-1146.
    [176] Grafius, J.E. Multiple characters and correlated response. Crop Sci., 1978, 18:931-934.
    [177] Fowler, C.W., and D.C. Rasmusson. Leaf area relationships and inheritance in barley. Crop Sci., 1969, 9: 729-731.
    [178] Yap, T.C., and B.L. Harvey. Inheritance of yield components and morpho-physiological traits in barley, Hordeum vulgare L. CropSci., 1972, 12;283-286.
    [179] Hamid, Z.A., and J.E. Grafius. Developmental allometry and its implication to grain yield in barley. Crop Sci., 1978, 18:83-86.
    [180] Doley, W.P. Allomeric relationships in spring barley. M.S. Thesis, Univ. of Minnesota, St. Paul. 1983.
    [181] Angus, J.F., R. Jones, and J.H. Wilson. 1972. A comparison of Barley cultivars with different leaf inclinations. Aust. J. Agric. Res. 23: 945-957.
    [182] Villareal. R L, Rajaram S, Mujeeb-Kazi A, Toro E D. The effect of chromosome 1B/1R translocation on the yield potential of certain spring wheat. Plant Breeding, 1991, 106: 77-81
    [183] Carver B F, Rayburn A L. Comparison of related wheat stocks possessing 1B or 1RS.1BL chromosomes: Agronomic performance. Crop Science, 1994, 34: 1505-1510.
    [184] Rabinovich. S V. Importance of wheat-rye translocation for breeding modern cultivars of Triticum aestivum L. Euphytica, 1998, 100: 323-340.
    [185] Graybosch R.A. Uneasy Unions: Quality effects of rye chromatin transfer to wheat.Journal of Cereal Science, 2001, 33: 3-16.
    [186] Moreno-Seville B, Baenziger P S, Peterson C J, Graybosch, R A, McVey D J. The 1B/1R translocation: agronomic performance of F3-derived lines from a winter wheat cross. Crop Science, 1995, 35: 1051-1055.
    [187] Villareal R.L., E.D. Toro, A.Mujeeb-Kazi and S. Rajaram. The 1BL/1RS chromosome translocation effect on yield characteristics in a Titicum aestivum L. cross. Plant Breeding, 1995, 114: 497-500.
    [188] Singh, R.P., J. Huerta-Espino, S Rajaram, and J. Crossa. Agronomic effects from chromosome translocations 7DL.7Ag and 1BL.1RS in spring wheat. Crop Sci., 1998. 38: 27-33.
    [189] Moreno-Seville B, et al. Agronomic performance and end-use quality of 1B and 1B/1R genotypes derived from the winter wheat Rawhihide. Crop Science, 1995, 35: 1607-1612
    [190] McKendry A L,Tague D N, Finney O L, Miskin K E. Effect of 1BL/1RS on milling and baking quality of soft red winter wheat. Crop Science, 1996, 36: 848-851
    [191] Dhaliwal A S, Mares D J, Marshall D R. Effect of 1B/1R chromosome translocation on milling and quality characteristics of bread wheats. Cereal Chemistry, 1987, 64: 72-76.
    [192] Graybosch R A, et al. Relationships between protein solubility characteristics, 1BL/1RS, high-molecular weight glutenin composition and end-use quality in winter wheat germplasm. Cereal Chemistry, 1990,67: 342-349.
    [193] Johnson J M, Griffey C A, Harris C H. Comparative effects of 1BL/1RS translocation in relation to protein composition and milling and baking quality of soft red winter wheat. Cereal Chemistry, 1999,76(4): 467-472.
    [194] Martin P, Gomez M, Carrillo J M. Interaction between allelic variation at the Glu-D1 locus and a 1BL.1RS translocation on flour quality in bread wheat. 2001, 41: 1080-1084.
    [195] Lee J H, Graybosch R A, Peterson C J. Quality and biochemical effects of a 1BL/1RS wheat-rye translocation in wheat. Theor Appl Genet, 1995, 90: 105-112.
    [196] Fransis H A, Leitch A R, Koebner R M D. Conversion of a RAPD-generated PCR product, containing a novel dispersed repetitive element, into a fast robust assay for the presence of rye chromatin in wheat. Theor Appl Genet, 1995, 90: 636-642.
    [197] Schlegel, R., Vahl. U. and Muller, G. Current lists of wheats with rye introgressions of homoeologous group. Annual Wheat Newsletter 1994, 40: 104-111.
    [198] Graybosch, R.A., Peterson, C.J., Hansen, L.E., Worrall, D., Shelton, D.R., and Lukaszewski, A. Comparative flour quality and protein characteristics of 1BL/1RS and 1AL/1RS wheat-rye translocation lines. Journal of Cereal Science, 1993, 17: 95-106.
    [199] Graybosch, R.A., Peterson, C.J., Shelton, D.R. and Baenziger, P.S. Genotypic and environmental modification of wheat flour protein composition in relation to end-use quality. Crop Science, 1996, 36: 296-300.
    [200] Rogowsky, P.M., Guidel, F.L.Y.,Langridge, P. Shepherd, K.w., Koebner, R.M.D. Isolation and characterization of wheat-rye recombinants involving chromosome arm 1DS of wheat. Theortical and Applied Genetics.1991, 82:537-544.
    [201] Singh, R.P., J. Huerta-Espino, S Rajaram, and J. Crossa. Agronomic effects from chromosome translocations 7DL.7Ag and 1BL.1RS in spring wheat. Crop Sci., 1998, 38: 27-33
    [202] Sharma, D.and D.R. Knott. The transfer of leaf rust resistance from Agropyron to Triticum by irradiation. Can. J. Genet. Cytol., 1966, 8: 137-143.
    [203] Singh, R.P., and S. Rajaram. Resistance to Puccinia recondita f. sp. tritici in 50 Mexican bread wheat cultivars. Crop Sci. 1991, 31: 1472-1479.
    [204] Friebe, B., J. Jiang, W.J. Raupp, R.A. McIntosh and B.S. Gill., 1996, characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica, 91: 59-87.
    [205] Knott, D.R. Mutation of a gene for yellow pigment linked to Lr19 in wheat. Can. J. Genet. Cytol., 1980, 22: 651-654.
    [206] Knott, D.R., 1984. The genetic mature of mutation of a gene for yellow pigment linked to Lr19 in ‘Agatha’wheat. Can. J. Genet. Cytol.,1984, 26: 392-393.
    [207] Knott, D.R. The effect of transfers of alien genes for leaf rust resistance on the agronomic and quality characteristics of wheat. Euphytica, 1989, 44: 65-72
    [208] Marais, G.F., Gamma irradiation induced deletions in an alien chromosome segment of the wheat ‘Indis’and their use in gene mapping. Genome, 1992a, 35: 225-229.
    [209] Matson, P.A., R. Naylor, I. Ortiz-Monasterio. Integration of environmental, agronomic, and economic aspects of fertilizer management. Science, 1998, 280:112-115.
    [210] Austin, R.B. Yield of wheat in the United Kingdom: recent advances and prospects. Crop Sci., 1999, 39: 1604-1610.
    [211] Moll R H, E J Kamprath, and W A Jackson. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron. J., 1982, 74: 562-564.
    [212] Gerloff, S. Plant efficiencies in the use of N, P and K. In: Plan adaptation to mineral stress in problem soils. M.J. Wright (ed.). Cornell Uni. Press, : New York.1977, p. 161-174.
    [213] Dhugga K.S. and J.G. Waines. Analysis of nitrogen accumulation and use in bread and durum wheat. Crop Science, 1989, 29: 1232-1239.
    [214] Ortiz-Monasterio, J.I, K.D. Sayre, S. Rajaram, and M. McMahon. Genetic progress in wheat yield and nitrogen use efficiency under four nitrogen rates. Crop Sci. 1997, 37: 898-904.
    [215] Foulkes, M.J., R. Sylvester-Breadley and R. K. Scott. Evidence for differences between winter wheat cultivars in acquisition of soil mineral nitrogen uptake and utilization of applied fertilizer nitrogen. J. Agri. Sci. Cambridge, 1998, 130: 29-44.
    [216] Van Ginkel, M.m I. Ortiz-Monastero, R. Methodology for selecting segregating populations for improved N-use efficiency in bread wheat. Euphytica, 2001, 119(1-2): 223-230.
    [217] Byerlee, D., and P. Moya. Impact of international wheat breeding research in the developing world, 1966-90. Mexico, D.F.: CIMMYT. 1993, 6-9.
    [218] Graybosch R A, Peterson C J, Hansen L E, Mattern P J. Relationships between protein solubility characteristics, 1BL/1RS, high-molecular weight glutenin composition and end-use quality in winter wheat germplasm. Cereal Chemistry, 1990,67: 342-349
    [219] Zhou Yang, Zhu Da Long, Lin Qiuping, Wang Jinrong, Yu Dajie. Quality, its genetic improvement and market development of Henan-grown wheat. Seed Industry and Agricultural Development. China Agricultural Press. Beijing, 1997,371-375.
    [220] Barnes W C. Dough un-mixing time, and the sticky dough problem associated with SR31 wheat. Euphytica, 1990, 47: 49-55
    [221] William A B & Michael G. F. Biochemical, molecular, and cytogenetic technologies for characterizing 1 RS in wheat: A review. Euphytica, 1999, 108: 1-19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700