用户名: 密码: 验证码:
磷素对不同磷效率基因型大豆的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验以4个磷高效基因型品种和2个磷低效基因型品种为试材,比较了磷素(P_2O_5)对不同磷效基因型大豆生理生化性状的影响,从光合生理、抗逆生理和大量营养元素吸收特性上分析了磷高效品种的高产机理,试图为我国大豆磷效率育种和高产栽培提供一定的理论依据。研究结果如下:
     1磷对不同磷效率基因型大豆光合生理和保护酶的影响
     磷高效品种整个生育期均具有较高的叶绿素含量、净光合速率和气孔导度,且叶绿素含量、净光合速率和气孔导度在生育后期受磷处理影响较小,下降幅度也较小,而磷低效品种在高磷处理下才具有较高的光合速率。
     从光合日变化来看,开花期不同磷处理下,两类型品种均没有明显的午休现象,低磷处理下,磷高效品种净光合速率较高;在不同磷处理下,结荚期和鼓粒期磷高效品种上午的净光合速率均较高。
     磷高效品种整个生育期叶片均具有较高的可溶性蛋白含量,而且在生育后期下降较缓。与低磷处理相比,中磷和高磷处理下,磷高效品种叶片的可溶性蛋白含量在开花期呈下降趋势,而在鼓粒期则呈增长趋势。中磷和高磷处理下,磷低效品种叶片的可溶性蛋白含量在整个生育期均比低磷处理下的高。
     鼓粒期磷高效品种的可溶性糖含量在不同磷处理下均低于磷低效品种的。在中磷和高磷处理下,生育后期磷高效品种的叶片可溶性糖含量比低磷处理有所下降,而磷低效品种的则有所增长。
     在低磷处理下,磷高效品种的SOD活性在整个生育期变化都比磷低效品种小,磷高效品种的POD和CAT活性在生殖生长阶段比磷低效品种的高,且在生育后期下降较缓。低磷处理下,磷高效品种的MDA含量显著低于磷低效品种的。
     2磷素对不同磷效率基因型大豆各器官的氮磷钾百分含量的影响
     低磷处理下,与磷低效品种相比,磷高效品种的茎秆和整株的氮百分含量在生殖生长阶段都较高,叶片的氮百分含量除结荚期外均较高,荚皮的氮百分含量在鼓粒期显著高于磷低效品种的。中磷和高磷处理下两类型大豆品种的差异缩小。磷高效品种茎秆的氮百分含量受磷处理影响较小,而磷低效品种茎秆的氮百分含量在生育后期受磷处理影响较大。与低磷处理相比,中磷处理下,磷高效品种的叶片和整株的氮百分含量在结荚期显著提高,磷低效品种叶片的氮百分含量在生育后期有所增长,整株的氮百分含量在结荚期和始熟期显著提高。与低磷处理相比,高磷处理下磷高效品种叶片和整株的氮百分含量在各个生育期都没有显著变化,而磷低效品种叶片的氮百分含量在鼓粒期和鼓粒末期会显著提高,整株的氮百分含量也在生育后期显著增加。
     在低磷处理下,磷高效品种的茎秆、叶片和整株的磷百分含量在生殖生长阶段高于磷低效品种的,荚皮的磷百分含量在鼓粒期极显著低于磷低效品种的。中磷和高磷处理下两者间差异缩小。与低磷处理相比,中磷和高磷处理下,磷高效和磷低效品种的茎秆、叶片和整株的磷百分含量在生殖生长阶段均有所增长,但磷高效品种增幅较小。中磷处理下,磷高效品种籽粒的磷百分含量在始熟期和成熟期都比低磷处理有了显著的增加,磷低效品种籽粒的磷百分含量在成熟期有所增加。高磷处理下,磷高效品种的籽粒的磷百分含量在成熟期比低磷处理显著增加,磷低效品种的在鼓粒末期和成熟期都有显著增加。
     低磷处理下,磷高效品种的茎秆和整株的钾百分含量在不同生育期均高于磷低效品种的,荚皮的钾百分含量在始熟期和成熟期显著高于磷低效品种的。与低磷处理相比,中磷和高磷处理下,磷低效品种的茎秆、荚皮和籽粒的钾百分含量在不同生育期均有所增长,且增长幅度较大,磷高效品种的茎秆、荚皮、籽粒和整株的钾百分含量受磷处理影响相对较小。
     3磷素对不同磷效率基因型大豆氮磷钾积累量的影响
     低磷处理下,磷高效品种茎秆的氮积累量和磷积累量在不同生育期均高于磷低效品种的,钾积累量从分枝期到始熟期高于磷低效品种的。中磷和高磷处理下两种类型品种的茎秆氮、磷、钾的积累量差异减小。与低磷处理相比,中磷和高磷处理下,磷高效品种的茎秆氮和磷积累量及磷低效品种的茎秆氮、磷、钾积累量在整个生育期均有所增长,但磷低效品种的涨幅较大,磷高效品种的茎秆钾积累量除始熟期外其它生育期均有所增长。
     在低磷处理下,磷高效品种的叶片氮积累量和磷积累量不同生育期均高于磷低效品种的,叶片钾积累量除结荚期外均高于磷低效品种的。中磷处理下,磷高效品种的叶片氮积累量均高于磷低效品种的,叶片的磷积累量和钾积累量在开花期显著高于磷低效品种的。高磷处理下,磷高效品种的叶片氮积累量在鼓粒期和成熟期显著高于磷低效品种,叶片磷积累量在鼓粒期和始熟期显著高于磷低效品种的,叶片钾积累量在两类型品种间差异较小。与低磷处理相比,中磷和高磷处理下,磷高效品种和磷低效品种的叶片氮积累量和磷积累量在整个生育期均有所增长,但磷低效品种的增长幅度更大,且其叶片钾积累量在整个生育期也有较大幅度的增长。
     低磷处理下,磷高效品种的荚皮氮积累量在成熟期显著高于磷低效品种的,荚皮磷积累量从鼓粒末期到成熟期较高,荚皮的钾积累量在始熟期和成熟期显著高于磷低效品种。与低磷处理相比,中磷和高磷处理下,磷高效品种的荚皮氮和磷积累量有所增长,钾积累量没有明显变化,而磷低效品种的荚皮氮、磷、钾积累量在鼓粒末期到成熟期均有较大幅度增长。
     磷高效品种的籽粒氮、磷积累量在始熟期和成熟期均高于磷低效品种的。与低磷处理相比,中磷和高磷处理下,两类型品种的籽粒氮、磷、钾积累量均有所增长,但磷低效品种涨幅更大。
     低磷处理下,磷高效品种的整株氮、磷、钾积累量不同生育期均高于磷低效品种的。与低磷处理相比,在中磷和高磷处理下,磷高效和磷低效品种的整株氮磷钾积累量在不同生育期均有所增长,但磷低效品种增长幅度较大。
     4磷素对不同磷效率基因型大豆物质生产特性的影响
     低磷处理下,磷高效品种仍具有较高的生物产量和干物质积累速率,且生物产量高于磷低效品种的。与低磷处理相比,在中磷和高磷处理下,两类型品种的生物量都有所提高,但磷低效品种的增加幅度较大。磷高效品种在低磷处理下仍然具有较高的群体生长参数,保证了磷高效品种无论在群体还是单株上都具有较高的生物产量,是其在低磷处理下也具有较高产量的物质基础。
     与磷低效品种相比,磷高效品种在低磷处理下具有较低的结荚高度;较高的分枝数、单株荚数、粒茎比、经济系数、百粒重和单株粒重,从而使磷高效品种即便在低磷条件下也具有较高产量。
In this experiment,4 soybean cultivars[Glycine max(L.)Merr.]with high phosphorus efficiencies and 2 soybean cultivars with low phosphorus efficiency were used as materials to compare the effect of P on physiological traits and biochemical traits of soybean cultivars with different phosphorus efficiencies.The mechanism of high-yield in high phosphorus efficiency soybean cultivars was analyzed on photo-physiology,stress-resistance physiology and the absorption characteristic of major nutrition element,in order to offer theoretical basis for phosphorus efficiency soybean breeding and high yield cultivation.The main results were as follows:
     1 Effect of P on the photo-physiology and protective enzymes of soybean cultivars with different phosphorus efficiency.
     The high phosphorus efficiency soybean cultivars had relative higher chlorophyll content, net photosynthetic rate and stomatal conductance in the whole growth stages.And P had a little effect on chlorophyll content,net photosynthetic rate and stomatal conductance in later growth stage.The decreasing ranges of these traits were small.The low phosphorus efficiency soybean showed a higher photosynthetic rate only under the high phosphorus treatment.
     Under different phosphorus treatments,the diurnal variation of photosynthesis of these two types of soybean cultivars showed no "noontime snooze" during flowering stage.And the high phosphorus efficiency soybean cultivars showed higher net photosynthetic rate under low phosphorus treatment.The high phosphorus efficiency soybean cultivars had high net photosynthetic rate in a.m.during podding stage and grain-filling stage.
     The leaves of high phosphorus efficiency soybean cultivars had high soluble protein content during the whole growth stages,and decreased slowly in the later growth stages. Compared with low phosphorus treatment,the soluble protein content in the leaves of high phosphorus efficiency soybean cultivars showed a downward trend in the flowering stage and showed an upward trend in seed-filling stage under moderate phosphorus and high phosphorus.Under moderate and high phosphorus treatments,the soluble protein content in the leaves of low phosphorus efficienc soybean cultivars was lower than that undre low phosphorus treatments.
     The soluble sugar contents of soybean cultivars with high phosphorus efficiency were lower than that of soybean cultivars with low phosphorus efficiency in the seed-filling stage under different phosphorus treatments.Under moderate and high phosphorus treatments,the soluble sugar contents in the leaves of soybean cultivars with high phosphorus efficiency decreased a little,while that of soybean cultivars with low phosphorus efficiency increased a little in the later growth stage.
     Under low phosphorus treatment,the activities of SOD of soybean cultivars with high phosphorus efficiency were lower than that of soybean cultivars with low phosphorus efficiency in the whole growth stage.The activities of POD and CAT in the high phosphorus efficiency cultivars were higher than that of low phosphorus efficiency cultivars in reproductive growth stage,and decreased slowly in later growth stage.Under low phosphorus treatment,the MAD contents of high phosphorus cultivars were lower than that of low phosphorus cultivars significantly.
     2 Effect of P on the content of nitrogen,phosphorus and potassium in every soybean organ in soybean cultivars with different phosphorus efficiency.
     Under low phosphorus treatment,the contents of nitrogen in the stem and in the whole plant of soybean cultivars with high phosphorus efficiency were higher than those of soybean cultivars with low phosphorus efficiency in the reproductive stage.The nitrogen content in leaf was higher in the whole growth stages except podding stage.In grain-filling stage,the nitrogen content in pod shell were significantly higher than that of low phosphorus efficiency cultivars.The difference between these two soybean types was small under moderate and high phosphorus treatments.The phosphorus treatment had small effects on the nitrogen contents in the stem of high phosphorus efficiency cultivars.The phosphorus treatment had big effect on the nitrogen content in the stem of low phosphorus efficiency cultivars.Compared with low phosphorus treatment,the nitrogen content in the leaf and in the whole plant increased significantly in the podding stage under moderate phosphorus treatment.The nitrogen content in the leaf of low phosphorus cultivars increased in the later growth stage. The nitrogen content of the whole plant increased significantly in podding stage and initial maturity stage.Compared with low phosphorus treatment,the nitrogen content in the leaf and in the whole plant showed no significant change during the whole growth stages under high phosphorus treatment.The nitrogen content in the leaf of low phosphorus efficiency cultivars increased significantly in podding stage and later podding stage.The nitrogen content of the whole plant increased significantly in the later growth stage.
     Under low phosphorus treatment,the phosphorus contents in the stem,leaf and in the whole plant of high phosphorus efficiency cultivars were higher than that of low phosphorus efficiency cultivars in the reproductive stage.The phosphorus content in pod shell was significantly lower than that of low phosphorus efficiency cultivars in seed-filling stage.This difference became small under moderate and high phosphorus treatment.Compared with low phosphorus treatment,the phosphorus content in the stem,leaf and in the whole plant of soybean cultivars with high phosphorus efficiency increased in the reproductive stage.But the increasing ranges of low phosphorus efficiency cultivars were small.Under moderate phosphorus treatment,the phosphorus content in the seed of high phosphorus efficiency cultivars increased in maturity stage.Under high phosphorus treatment,the phosphorus content in the seed of high phosphorus efficiency cultivars increased significantly than that of under low phosphorus treatment in the maturity stage.The phosphorus content in the seed of low phosphorus efficiency cultivars increased significantly in grain-filling stage and maturity stage.
     Under low phosphorus treatment,the potassium contents in the stem and in the whole plant of soybean cultivars with high phosphorus efficiency were higher than those of soybean cultivars with low phosphorus efficiency.The potassium contents in pod wall were significantly higher than those of low phosphorus efficiency cultivars in the initial maturity stage.Compared with low phosphorus treatment,the potassium contents in stem,pod wall and seed of low phosphorus efficiency cultivars increased in every growth stage.And the increasing ranges were large.The phosphorus treatment had relatively small effect on the potassium contents in stem,pod shell,grain and whole plant.
     3 Effect of P on the accumulations of nitrogen,phosphorus and potassium in soybean cultivars with different phosphorus efficiencies.
     Under low phosphorus treatment,the nitrogen accumulation and phosporus accumulation in the stem of high phosphorus efficiency cultivars were higher than those of low phosphorus efficiency cultivars.The potassium accumulation was higher than those of low phosphorus efficiency cultivars during branching stage to initial maturity stage.Under moderate and high phosphorus treatments,the differences become small between soybean cultivars with different phosphorus efficiencies.Compared with low phosphorus treatment,the nitrogen accumulation and phosphorus accumulation in the stem of high phosphorus efficiency cultivars and the nitrogen,phosphorus and potassium accumulation in the stem of low phosphorus efficiency cultivars were relatively high during the whole growth stages,but the increasing ranges of low phosphorus efficiency were large.The potassium accumulation in stem was relatively higher during the whole growth stages except initial maturity stage.
     Under low phosphorus treatment,the nitrogen and phosphorus accumulation in the leaf of soybean cultivars with high phosphorus efficiency were higher than those of soybean cultivars with low phosphorus efficiency in every growth stage.The potassium accumulation in the leaf was higher than that of low phosphorus efficiency cultivars in every growth stage except podding stage.Under moderate treatment,the nitrogen accumulation in leaf of high phosphorus efficiency cultivars was higher than that of low phosphorus efficiency cultivars. The phosphorus and potassium accumulation in the leaf were significantly higher than those of low phosphorus efficiency cultivars in flowering stage.Under high phosphorus treatment, the nitrogen accumulation in the leaf was higher than that of low phosphorus efficiency cultivars in the seed-filling stage and maturity stage.The accumulation of phosphorus was higher than that of low phosphorus efficiency cultivars in seed-filling stage and initial maturity stage.The difference of potassium accumulation in the leaf was small between these two soybean types.Compared with low phosphorus treatment,the nitrogen accumulation in the leaf of these two types of soybean increased under the moderate and high phosphorus treatments.And the increasing ranges of low phosphorus efficiency cultivars were large.And the potassium accumulation in the leaf of cultivar with tow phosphorus efficiency increased greatly in the whole growth stages.
     Under low phosphorus treatment,the nitrogen accumulation in the pod wall of high phosphorus efficiency cultivars was significantly higher than that of low phosphorus efficiency cultivars in the maturity stage.The accumulation of phosphorus in pod wall was higher from seed-filling stage to maturity stage.The potassium accumulation in the pod wall was significantly higher than that of low phosphorus efficiency cultivars in initial maturity stage and maturity stage.Compared with low phosphorus treatment,under the moderate and high phosphorus treatment,the nitrogen and phosphorus accumulation in the pod shell increased a little.The potassium accumulation showed no change.The nitrogen,phosphorus and potassiu accumulation in the pod shell of low phosphorus efficiency cultivars increased greatly in the seed-filling stage and maturity stage.
     The nitrogen and phosphorus accumulation in the grain of high phosphorus efficiency cultivars were higher than that of low phosphorus efficiency cultivars in the initial maturity stage and maturity stage.Compared with low phosphorus treatment,under moderate and high phosphorus treatment,the nitrogen,phosphorus and potassium accumulation increased in these two soybean types.The increasing range of low phosphorus efficiency cultivars was great.
     Under low phosphorus treatment,the nitrogen,phosphorus and potassium accumulation in the whole plant of high phosphorus efficiency cultivars were higher than those of low phosphorus efficiency cultivars during every growth stage.Compared with low phosphorus treatment,under moderate and high phosphorus treatment,the nitrogen,phosphorus and potassium accumulation in the whole plant of soybean cultivars with high phosphorus efficiency were increased.And the increasing range of low phosphorus efficiency cultivars was great.
     4 Effect of P on the dry matter aceumulationof soybean cultivars with different phosphorus efficiency.
     Under low phosphorus treatment,the cultivars with high phosphorus efficiency had high biomass and dry material production.And the biomasses of high phosphorus efficiency cultivars were higher than that of low phosphorus efficiency cultivars.Compared with low phosphorus treatment,under moderate and high phosphorus treatment,the biomass of both types of soybean increased.And the increasing range of low phosphorus efficiency cultivars was larger.The high phosphorus efficiency cultivars still had relatively high population-growth parameter under low phosphorus treatment,which ensured the high biomass of high phosphorus efficiency cultivars both on the level and on the single plant level. And this is the basis for the high biomass under low phosphorus treatment.
     Compared with low phosphorus efficiency cultivars,the high phosphorus efficiency cultivars had lower first pod height,and more branch number,pod number per plant, seed-stem ratio,economic coefficient,100-seed weight and seed weight per plant.All of these made the high yield of soybean cultivars with high phosphorus efficiency even under low phosphorus treatment.
引文
1.鲍士旦.2005.土壤农化分析.南京农业大.北京:中国农业出版社,p268.
    2.蔡柏岩,葛菁萍,祖伟.2008b.不同基因型大豆磷素吸收特性比较研究.土壤通报,39(3):607-611.
    3.蔡柏岩,葛菁萍,金惠玉,刘丽君,祖伟.2006.磷素水平对不同大豆品种钾素吸收效率的影响.大豆科学,25(6):42-46.
    4.蔡柏岩,葛菁萍,祖伟.2007.不同磷肥水平对大豆磷营养状况和产量品质性状的影响.植物营养与肥料学报,13(3):404-410.
    5.蔡柏岩,葛菁萍,祖伟.2008a.磷素水平对不同大豆品种产量和品质的影响.植物营养与肥料学报,14(1):65-70.
    6.蔡柏岩,祖伟,葛菁萍.2004.磷素水平对不同基因型大豆干物质积累与分配的影响.大豆科学,23(4):273-280.
    7.曹爱琴,严小龙.2001.不同供磷条件下大豆根构型的适应性变化.华南农业大学学报,22(1):92.
    8.曹黎明,潘晓华.2000.水稻不同耐低磷基因型的评价指标分析.上海农业学报,16(4):31-34.
    9.曹一平,陆景陵译,Marschner H著.1988.高等植物的矿质营养.北京:农业大学出版社,PP137-143.
    10.陈怀珠.赵艳红,杨守臻,李初英,孙祖东.2008.磷胁迫下不同基因型大豆的症状表现及耐性极限研究.大豆科学,27(1):165-169.
    11.陈怀珠,赵艳红,杨守臻,李初英,孙祖东.2008.磷胁迫下不同基因型大豆的症状表现及耐性极限研究.大豆科学,27(1):165-169.
    12.陈俊意,蔡一林,王国强,王久光,孙海燕,刘志斋,吕学高,陈天青,徐德林.2008.玉米基因型磷效率的主成分分析.玉米科学,16(1):67-70.
    13.陈屏昭,陈顺方,刘忠荣,周云,樊钦平.2003.缺磷胁迫对温州蜜柑叶片光合作用的影响.云南农业大学学报,18(2):158-162.
    14.陈仁忠.1988.夏大豆高产栽培模式的研究.大豆科学,7(4):301-307.
    15.陈少裕.1991.膜脂过氧化对植物细胞的伤害。植物生理学通讯,27(2):84-90.
    16.单守明,刘国杰,李绍华,苗鹏飞.2008.DA-6对草莓叶绿体光化学反应和Rubisco活性的影响.中国农业大学学报,13(2):7-10.
    17.丁洪,李生秀,郭庆元.1997.酸性磷酸酶活性与大豆耐低磷能力的相关研究.植物营养与肥料学报,3(2):123-128.
    18.丁洪,李生秀.1998.大豆品种耐低磷和对磷肥效应的遗传差异.植物营养与肥料学报,4(3): 257-263.
    19.丁玉川,陈明昌,程滨,李丽君,李典友.2005.不同大豆品种磷吸收利用特性比较研究.西北植物学报,25(9):1791-1797.
    20.丁玉川,陈明昌,程滨,李丽君.2006.不同磷水平对大豆植株生长发育的影响.山西农业科学,34(1):47-49.
    21.丁玉川,陈明昌,程滨,李丽君.2004.作物磷营养效率生理生化基础研究进展.山西农业科学,32(3):25-29.
    22.丁玉川,陈明昌,程滨.2006.北方春大豆磷高效基因型的筛选.植物营养与肥料学报,12(4):597-600.
    23.董钻.2001.大豆产量生理.北京:中国农业出版社.pp:63-115.
    24.付国占,严美玲,蔡瑞国.2008.磷氮配施对小麦籽粒蛋白质组分含量和面团特性的影响.中国农业科学,41(6):1640-1648.
    25.盖钧镒.2003.发展我国大豆遗传改良事业解决国内大豆供给问题.中国工程科学,5(5):1-6.
    26.高聚林,刘克礼,刘景辉,刘砚梅,陈新民.2004.大豆群体对氮、磷、钾的平衡吸收关系的研究.大豆科学,23(2):106-110.
    27.高忠,张荣铣,方敏.1995.植物叶片中RUBP羧化酶/加氧酶及光反应机构衰老机理的研究进展.南京农业大学学报,18(2):26-33.
    28.郭丽,龙素霞,赵芳华,鲍金香,郭程瑾,肖凯.2008.小麦不同品种磷效率比较和评价的生化指标研究.植物遗传资源学报,9(4):506-510.
    29.郝晶,张立军,谢甫绨.2007.低温对大豆不同耐冷性中萌发期保护酶活性的影响.大豆科学,26(2):171-175.
    30.何天祥,郑传刚.2001.攀西地区秋大豆干物质积累与分配规律的研究.大豆科学,20(3):215-220.
    31.胡根海,章建新,唐长青.2002.北疆春大豆生长动态及干物质积累与分配.新疆农业科学,9(5):264-267.
    32.胡蕾,施益华,刘鹏,徐根娣,王芳,章丹丹,李奇勇.2003.锰对大豆膜脂过氧化及POD和CAT活性的影响研究.金华职业技术学院学报,(1):29-32.
    33.黄亚群,马文奇.1994.早作豌豆磷肥效应研究明.河北农业大学学报,17(增刊):58-61.
    34.金剑,王光华,刘晓冰,陈雪丽,李兴国.2006.不同施磷量对大豆苗期根系形态性状的影响.大豆科学,25(4):360-364.
    35.李德华,贺立源,刘武定.2001.土壤中非生物逆境胁迫与根系有机酸分泌.武汉植物学研 究,19(6):497-507.
    36.李锋,李木英,潘晓华,朱安繁.2004.不同水稻品种幼苗适应低磷胁迫的根系生理生化特性.中国水稻科学,18(1):8-52.
    37.李合生.2002.植物生理生化实验原理和技术.北京:高等教育出版社,pp:134-135.
    38.李继云,李振声.1995.有效利用土壤营养元素的作物育种新技术研究.中国科学(B辑),25(1):41-48.
    39.李鹏,洪亮,龚红,董志新.2004.磷素营养基因型差异与作物生产的关系.甘肃农业,(3):55.
    40.李志刚,董丽杰,宋书宏,谢甫绨.2007.磷素和干旱胁迫对大豆叶片活性氧和保护酶系统的影响.作物杂志,(6):35-37.
    41.李志刚,谢甫绨,宋书宏.2004.大豆高效利用磷素基因型的筛选.中国农学通报,20(5):126-129.
    42.梁泉,廖红,梅曼彤,程小会,严小龙.2006.作物磷效率相关性状的QTL分析研究进展.分子植物育种,4(4):453-463.
    43.林德喜,胡锋,范晓晖,杨林章.2006.长期施肥对太湖地区水稻土磷素转化的影响.应用与环境生物学报,12(4):453-456.
    44.林海建,张志明,高世斌,潘光堂.2008.玉米耐低磷研究现状及磷高效育种策略的探讨.中国农学通报,24(1):181-185.
    45.刘德立,禹邦超,孙义勇,高正兵,余世明.1994.逆温对水稻幼苗SOD和CAT活性及其同工酶的影响.华中师范大学学报(自然科学版),28(4):525-528.
    46.刘国栋,李继云,李振声.1995.植物高效利用土壤磷营养的化学机理.植物营养与肥料学报,1(3-4):72-78.
    47.刘厚诚,邝炎华,陈日远.2003.缺磷胁迫下长豇豆幼苗膜脂过氧化及保护酶活性的变化.园艺学报,30(2):215-217.
    48.刘建中,李振声,李继云.1994.利用植物自身潜力提高土壤中磷的生物有效性.生态农业研究,2(1):16-23.
    49.刘君,蔡昆争,骆世明,赵长星.2008.磷处理对不同磷效率基因型大豆根系性状和干物质积累及产量的影响.青岛农业大学学报(自然科学版),25(3):211-214.
    50.刘灵,廖红,王秀荣,严小龙.2008.不同根构型大豆对低磷的适应性变化及其与磷效率的关系.中国农业科学,41(4):1089-1099.
    51.刘亚,李自超,米国华,张洪亮,穆平,王象坤.2005.水稻耐低磷种质的筛选与鉴定.作物学报,31(2):238-242.
    52.刘毅志,张漱茗,李新政.1985.氮磷钾化肥对高产夏玉米子粒品质的影响.山东农业科学,(2):31-37.
    53.刘莹.2000.不同年代小麦品种旗叶光合性能及SOD活性的比较研究.邯郸农业高等专科学校学.报,17(4):20-21,31.
    54.卢坤,钟巍然,张凯,王瑞,郑钦玉,李加纳.2009.甘蓝型油菜苗期磷高效基因型的TOPSIS法筛选.中国生态农业学报,17(1):120-124.
    55.鲁剑巍,陈防,张竹青,刘冬碧,李剑夫,陈健.2005.磷肥用量对油菜产量、养分吸收及经济效益的影响.中国油料作物学报,27(1):73-76.
    56.鲁如坤.2003.土壤磷素水平和水体环境保护.磷肥与复肥,18(1):4-7.
    57.苗淑杰,韩晓增,乔云发,周连仁.2009.不同作物对黑土中磷素形态及有效性的影响.土壤通报,40(1):105-108.
    58.苗淑杰,乔云发,韩晓增,颜心.2007.大豆根系特征与磷素吸收利用的关系.大豆科学,26(1):16-20.
    59.明凤,张福锁.1999.水稻耐低磷有关性状的分子标记.科学通报,44(23):2514-2518.
    60.穆平,黄超,李自超.2008.中国粳稻核心种质耐低磷性的鉴定与筛选.中国农业大学学报,13(6):1-5.
    61.年海,郭志华,余让才,卢永根,黄鹤.1998.不同来源大豆品种耐低磷能力的评价.大豆科学,17(2):108-114.
    62.潘晓华,刘水英,李锋,李木英.2003.低磷胁迫对不同水稻品种叶片膜质过氧化及保护酶活性的影响.中国水稻科学,17(1):57-60.
    63.潘晓华,石庆华,郭进耀,王永锐.1997.无机磷对植物叶片光合作用的影响及其机理的研究进展.植物营养与肥料学报,3(3):201-208.
    64.庞欣.1999.缺磷胁迫对黄瓜体内磷运愉及再分配的影响.植物营养与肥料学报,5(2):137-143.
    65.彭正萍,李春俭,门明新.2004.缺磷对不同穗型小麦光合生理特性和产量的影响.作物学报,30(8):826-830.
    66.乔亚科,李桂兰.2007.作物耐低磷机制及耐低磷育种研究进展.河北科技师范学院学报,21(1):67-73.
    67.邱化蛟,许秀美,冷寿慈.2004.不同基因型小麦磷素代谢差异研究.山东农业大学学报(自然科学版),35(2):169-172.
    68.邱惠珍,张福锁.2004.不同磷效率小麦对低铁胁迫的基因型差异.植物营养与肥料学报,10(4):361-366.
    69.任丽丽,高辉远.2007.1氐温弱光胁迫对野生大豆和大豆栽培种光系统功能的影响.植物生理与分子 生物学学报,33(4):333-340.
    70.任海红,刘学义,李贵全.2008.大豆耐低磷胁迫研究进展.分子植物育种,6(2):3 16-322.
    71.申忠宝,齐志勇,金剑.2007.大豆不同生殖生长期干旱胁迫条件下施磷对根系形态性状的影响.大豆科学,26(4):528-532.
    72.沈金雄,李志玉,廖星,郭庆元.2006.磷对甘蓝型油菜产量及矿质营养吸收与积累的影响.作物学报,32(8):1231-1235.
    73.沈玉芳,李世清,邵明安.2008.水肥不同层次组合对冬小麦(Triticum aestivum L.)氮磷养分有效性和产量效应的影响.生态学报,28(6):2698-2706.
    74.史端和.1989.植物营养原理.江苏科学技术出版社,p295.
    75.史占忠.1989.大豆植株全氮磷钾含量变化分析.大豆科学,8(4):369-374.
    76.宋艳波.2003.不同品种枣树SOD、POD、PPO活性与矿质元素含量的相关性研究:(硕士学位论文).山西太谷:山西农业大学.
    77.孙贵荒,刘晓丽,董丽杰.2002.高产大豆干物质积累与产量关系的研究.大豆科学,21(3):199-202.
    78.孙海国,张福锁,杨军芳.2000b.缺磷胁迫对小麦根细胞周期蛋白基因cyclAt表达的影响.植物生理学报,26(5):441-445.
    79.孙海国,张福锁.2000a.小麦根系生长对缺磷胁迫的反应.植物学报,42(9):913-919.
    80.索东让.2001.土壤磷索对作物产量及供磷能力的影响.磷肥与复肥,16(4):66-67.
    81.唐梅,李伏生,张富仓,梁继华,王力,陈俊.2006.不同磷钾条件下苗期适度水分亏缺对大豆生长及干物质积累的影响.干旱地区农业研究,24(5):109-113.
    82.童学军,李惠珍,曾焕泰,章文贤,严小龙,卢永根.2001.低磷胁迫下溶液培养大豆生长和磷素营养特性及其与土培下磷效率特性的关系.植物营养与肥料学报,7(3):298-304.
    83.童学军,严小龙,卢永根,年海,郑少玲.1999.广东大豆地方种质磷效率特性研究Ⅰ.大豆基因型磷效率特性差异及其与土壤有效磷含量的关系.土壤学报,36(3):404-411.
    84.万美亮,邝炎华,陈建勋.1999.缺磷胁迫对甘蔗膜质过氧化及保护酶系统活性的影响.华南农业大学学报,20(2):1-6.
    85.王芳,刘鹏,朱靖文.2004.镁对大豆游离脯氨酸、可溶性糖和可溶性蛋白质含量的影响.河南农业科学,(6):35-38.
    86.王宏燕,刘书宇,赵福华.2002.生物种衣剂对大豆发芽和苗期生长、光合作用及酶活性的影响.东北农业大学学报,33(2):111-115、
    87.王建国,李兆林.2006.肥与大豆产量及品质的关系,农业系统科学与综合研究,22(1):55-57.
    88.王建华,刘鸿先.1989.超氧化物歧化酶(SOD)在植物逆境和衰老生理中的作用.植物生理学通讯,(1):1-7.
    89.王建林,曹志洪.1993.根际营养环境与持续农业.植物生理学通讯,29(5):329-336.
    90.王立刚,刘克礼,高聚林,刘景辉,张胜.2007.大豆对磷素吸收规律的研究.大豆科学,26(1):30-34.
    91.王美丽,严小龙.2001.大豆根形态和根系分泌物特性与磷效率.华南农业大学学报,22(3):14.
    92.王淑敏.1990.植物营养与施肥,北京:农业出版社,pp63-89.
    93.王树亮,田奇卓,李娜娜,谢连杰,裴艳婷,李慧.2008.不同小麦品种对磷素吸收利用的差异.麦类作物学报,28(3):476-483.
    94.王喜庆.1996.大麦植物体内无机磷的运转及其次稳恒调节的机理.麦类作物学报,(6):38-40.
    95.王晓慧,徐克章,李大勇.2007.大豆品种遗传改良过程中叶片可溶性糖含量和比叶重的变化.大豆科学,26(6):879-84.
    96.王艳,李晓林,张福锁.2000.不同基因型植物低磷胁迫适应机理的研究进展.生态农业研究,8(4):34-36.
    97.王应祥,廖红,严小龙.2003.大豆适应低磷胁迫的机理初探.大豆科学,22(3):208-212.
    98.王政,高瑞凤,李文香,倪永君,姜德锋.2008.氮磷钾肥配施对大豆干物质积累及产量的影响.大豆科学,27(4):588-592.
    99.吴俊江,钟鹏,刘丽君,刘德生,林蔚刚,董德建.2008.不同大豆基因型耐低磷能力的评价,大豆科学,27(6):983-987.
    100.吴明才,肖昌珍,郑普英.1999.大豆磷素营养研究.中国农业科学,32(3):59-65.
    101.吴平,罗安程,倪俊建,章永松.1996.植物营养分子遗传研究进展.植物营养与肥料学报,2(1):1-6.
    102.邢倩,谷艳芳,高志英,丁圣彦.2008.氮、磷、钾营养对冬小麦光合作用及水分利用的影响.生态学杂志,27(3):355-360.
    103.徐根娣,刘鹏,许献军,倪建英.2003.锰浸种对大豆幼苗膜脂过氧化和体内保护系统的影响.浙江师范大学学报(自然科学版),26(3):278-282.
    104.徐国郎.1990.节水型农业灌溉技术.北京:气象出版社,pp80-47.
    105.徐国伟,杨立年,王志琴,刘立军,杨建昌.2008.麦秸还田与实地氮肥管理对水稻氮磷钾吸收利用的影响.作物学报,34(8):1424-1434.
    106.徐青萍,罗超云,廖红,严小龙,年海.2003.大豆不同品种对磷胁迫反应的研究.大豆科学,22 (2):108-114.
    107.许大全,丁勇,武海.田间小麦叶片光合效率日变化与光合“午睡”的关系.植物生理与分子生物学学报,1992,18(3):279-284.
    108.严小龙,廖红,戈振扬,罗锡文.2000.植物根构型特性与磷吸收效率.植物学通报,17(6):511-519.
    109.杨晴,韩金玲,李雁鸣.2006.不同施磷量对小麦旗叶光合性能和产量性状的影响.植物营养与肥料学报,12(6):816-821.
    110.杨卫韵,刘鹏,徐根,龚春风.2005.锰对大豆光合特性的影响.种子,24(12):80-81.
    111.余松烈.1980.作物栽培学(北方本).北京:农业出版社.PP102-108.
    112.袁新民,同延安,杨学云,李晓林,张福锁.2000.施用磷肥对土壤NO_3-N累积的影响.植物营养与肥料学报,6(4):397-403.
    113.曾韶西,王以柔,刘鸿先.1991.低温光照下与黄瓜子叶片叶绿素降低有关的酶促反应.植物生理与分子生学学报,(17):177-182.
    114.张福锁.1992.土壤与植物研究新动态(第一卷).北京:北京农业大学出版社.
    115.张福锁.1993植物营养生态生理学和遗传学.北京:中国科学技术出版社.
    116.张海伟,黄宇,叶祥盛,徐芳森.2008.甘蓝型油菜重组自交系苗期磷效率的评价.作物学报,34(12):2152-2159.
    117.张建恒,李宾兴,王斌,郭程谨,李雁鸣,肖凯.2006.不同磷效率小麦品种光合碳同化和物质生产特性研究.中国农业科学,39(11):2200-2207.
    118.张可炜,李坤朋,刘治刚,张举仁.2007.磷水平对不同基因型玉米苗期磷吸收利用的影响.植物营养与肥料学报,13(5):795-800.
    119.张文明,李亚娟,邱慧珍.2008.不同基因型春小麦磷效率差异的研究.土壤通报,39(1):106-108.
    120.张宪政.1986.植物组织中叶绿素含量的测定.辽宁农业科技.(3):19-21.
    121.张宪政.1992.作物生理研究法.农业出版社.pp:139-140.
    122.张晓红,韩胜芳,张振海,杨春燕,王冬梅.2008.不同大豆基因型耐低磷能力的评价.河北农业大学学报,31(2):6-10.
    123.张玉霞,李志刚,张玉玲,钟鹏.2004.缺磷胁迫对大豆膜脂过氧化及保护酶活性的影响.中国农学通报,20(4):196-198.
    124.赵春江.2004.数字农业信息标准研究-作物卷.中国农业出版社.pp356-370.
    125.赵华,徐森,石磊.2006.植物根系形态对低磷胁迫应答的研究进展.植物学通报,23(4):409-417.
    126.赵静,付家兵,廖红,何勇,年海,胡月明,邱丽娟,董英山,严小龙.2004.大豆磷效率应用核心种质的根构型性状评价.科学通报,49(13):1249-1257.
    127.赵丽琴,吉光明,邓永贵,焦峰.2005.施肥对大豆吸收氮磷钾的影响.黑龙江八一农垦大学学报报,17(3):29-31.
    128.赵小蓉,林启美.2001.徽生物解磷的意见进展.土壤肥力,(3):7-11.
    129.赵营,同延安,赵护兵.2006.不同供氮水平对夏玉米养分累积、转运及产量的影响.植物营养与肥料学报,12(5):622-627.
    130.钟鹏,吴俊江,刘丽君,林蔚刚,董德建,王建丽.2008.不同磷效率基因型大豆对干旱胁迫的反应.作物杂志,(5):58-61.
    131.钟鹏,朱占林,李志刚,王建丽,张玉玲.2005.干旱和低磷胁迫对大豆叶保护酶活性的影响.中国农业通报,2(21):153-154.
    132.朱广廉.1990.植物生理学实验.北京:北京大学出版社.
    133.邹琦.2000.植物生理实验指导.北京:中国农业出版社.
    134.Abel S,Ticconi CA,Delatorre CA.2002.Phosphate sensing in higher plant.Physiologia Plantarum,115:1-8.
    135.Betten GD.1992.A review of phosphorus efficiency in wheat.plant and soll,146:163-168.
    136.Bjorn M,Kebede H,Rilling C.1994.Photosynthetic differences among Lycopersicon species and Triticum aestivum cultivars.Crop Sci,34(1):113-118.
    137.Bowler C,Van Montagu M,Inze D.1992.Superoxide dismutase and stress tolerance.Annual Review of Plant Molecular Biology,43:86- 116.
    138.Bruetsch T F,Estes G O.1976.Genotype variation in nutrient uptake efficiency in com.Agron J,68:521-523.
    139.Cakrnak I,Hengeler C,Marschner H.1994a.Partitioning of shoot and root dry matter and carbohydrates in bean p leans suffering from phosphorus,potassium and magnesium deficiency.Journal of Experimental Botany,45(9):1245-1250.
    140.Cakmak I,Hengeler C,Marschner H.1994b.Changes in phloem export of sucrose in leaves in response to phosphorus,potassium and magnesium deficiency in bean plants.Journal of Experimental Botany,45(9):1251 - 1257.
    141.Ciereszko I,Henrik J,Leszek A K,leezkowski.2005.Interactive effects of phosphate deficiency, sucrose and light / dark conditions on gene expression of UDP-glucose pyrophosphorylase in Arabidopsis.J Plant Physio,162(3):343-353.
    142. Clark R B. 1983.Plant genotype differences in the uptake, translocation and use of mineral elements required for plant growth. Plant and Soil, 72:175 -196.
    143. Clark R B.1982. Plant responsetomineral element toxicity and deficiency. Breeding lants for Less favorable environments.Ed: Chistiansen MN and Lewis CF eds. New York pp:137-141.
    144. Clark RB, Borwn J C 1974, Differential phosphorus uptake by phosphorus-stressed corn inbreeds.Crop Sci,141:505-508.
    145. Clarkson DT, Sanderson J, Scattergood CB. 1978. Influence of phosphate-stress on phosphate absorption and translocation by various parts of the root system of hordeum vulgareL (barley).Planta, 139:47-53.
    146. Epstein E, Nugent J O ,Conner M.1983. Crop tolerance to salinity and other mineral stresses. In : Ciba Foundation symposium97. Better Crops for Food. Pitman Publishing Press, London, 61-68.
    147. Farquhar GD, Sharkey TD. 1982. Stomatal conductance and photosynthesis. Ann Rev Plant Physiol, 33: 317-345.
    148. Gahoonia TS, Nielsen NE. 2004.Root traits as tools for low phosphorus tolerance on tropical soils. Plant and soil, 260:47-57.
    149. George C, Elliott, Andr(?) L(?)uchl. 1985. Phosphorus efficiency and phosphate -iron interaction in maize. Agron J,77:399-403.
    150. Gerloff GC, Gabelman WH .1983.Genetic basis of inorganic plant nutrition. In: Lauchli A, Bieleski RL (eds), Encyclopedia of Plant Physiology, New Series, Vol. 15B, Springer-Verlag, Berlin.
    151. Gourley J P, Allan D L, Russelle M P. 1994.Plant nutrient efficiency: A comparison of definitions and suggested improvement. Plant Soil, 158: 29-37.
    152. Gourley J P, Allan D L, Russelle M P. 1993. Defining phosphorus efficiency in plants. Plant and Soil, 155/156:289-292.
    153. Graham R D, Gregorio G 1984.Breeding for nutrition characteristics in cereals. Adv plant Nutr, 1:57-102.
    154. Gstdiner DT, Christensen N W.1990. Characterization of phosphorus efficiencies of two winter wheat cultivators.Soil Sci Soc Am J,54:1337-1340.
    155. Gunes A, Inal A, Alpaslan M,Cakmak I. 2006.Genotypic variation in phosphorus efficiency between wheat cultivars grown under greenhouse and field conditions. Soil Science and Plant Nutrition, 52:1-9.
    156. Hammond JP, Broadley MB, White PJ.2004.Genetic responses to phosphorus deficiency .Annals of Botany, 94:323-332.
    157. Hocking PJ. 2001. Organic acids exuded from roots in phosphorus uptake and aluminum tolereance of plants in acid soils .Advances in Agornomy,74:63 -97.
    158. James E B. 2004.Soybean cultivar differences on light interception and leaf area index during seed filling.Agronomy Journal, 96:305-311.
    159. Kochian LV, Hoekenga OA, Pi(?)eros MA. 2004. How do crop plants tolerate acid soils: mechanisms of aluminum tolerance and phosphorous efficiency. Annual Review of Plant Biology, 55:459-493.
    160. Loughman B C, Roberts S C, Goodwin-bailey C I. 1983.Varietal difference in physiological and biochemical responses to changes in the ionic environment .Plant and Soil, 72:245-259.
    161. Longstreth D J, Nobel P S.1980.Nutrient influences on leaf photosynthesis. Plant physiol,65:541-543.
    162. Madhusudana R, Arthur L F, Norman T.1990. Leaf Phosphate Status, Photosynthesis, and Carbon Partitioning in Sugar Beet Ⅲ.Diurnal changes in carbon partitioning and carbon export.Plant Physiology,92:29-36.
    163. Marschner H E, Kirkby A, Engels C.1997.Importance of cycling and recycling of mineral nutrients within plants for growth and development. Bot Acta, 110:265-273.
    164. Marschner H, Kirkby E A,Cakmak I.1996.Effect of mineral nutritional status on shoot-root partitioning of potoassimilates and cycling of mineral nutrients . Journal of Experimental Botany,47:1255 -1263
    165. Marschner H. 1995.Mineral Nurtition of Higher Plants.2~(nd) edn. London: Academic Perss
    166. Miller C R, Ochoa I, Nielsen K L, Beck D, Lynch J P. 2003 .Genetic variation for adventitious rooting in response to low phosphorus availability: Potential utility for phosphorus acquisition from stratified soils. Func Plant Biol, 30: 973-985.
    167. Mollier A, Pellerin S. 1999.Maize root system growth and development as influenced by phosphorus deficiency. Journal of Experimental Botany, 50(333):487-497.
    168. Nielsen NE, Barber S A. 1978. Differences among genotypes of corn in the kinetics of P uptake. Agron J, 70:695-698.
    169. Pieters A J, Paul M J, Lawlor D W. 2001.Low sink demand limits photosynthesis under P_i deficiency. Journal of Experimental Botany, 52(358):1083-1091.
    170. Raven J A, Glidwell S M, Johnson C B. 1981.ProcessLiming Photosynthetic Conductance. In: Physiological Process Limiting Plant Productivity. London: Butterworths, pp 109-136.
    171. Read S M, Northcote D H. 1981. Minimization of variation in the response to different protein of the coomassie blue G dye-binding: Assay for protein. Anal Biochen, 116(1):53-64.
    172. Smith S N. 1934.Response of inbred lines and crosses in maize to variations of mitrogen and phosphorus supplied as nutricnts.J am Soc Agron , 15:171-173.
    173. Terry N, Ulrich A.1973.Effects of Potassium Deficiency on the Photosynthesis and Respiration of Leaves of Sugar Beet under Conditions of Low Sodium Supply. Plant Physiol, 51(6): 1099-1101.
    174. Ullrich-Eberius C I, Novacky A, Van Bel A J E. 1984.Phosphate uptake in Lemna gibba GI: energetics and kinetics .Planta, 161:46-52.
    175. Usuda H, Shimogawara K. 1991.Phosphate deficiency in maize. I .Leaf phosphate status, growth, photosynthesis and carbon partitioning. Plant and Cell Physiology, 32(4): 497-504.
    176. Vance C P, Uhde-Stone C, Allan D L. 2003.Phosphorus acquisition and use:Critical adaptations by plants for securing a nonrenewable resource. New Phytologist, 157(3):423-447.
    177. Wieneke J.1990.Phosphorus efficiency and phosphorus remobilization in two sorghum (Sorghum bicolor(L.) Moench) cultivars. Plant and Soil,123(2):139-145.
    178. Wilcox J R.1987.Soybeans:improvement production and uses. Madison WIsonsIn. American Society of Agronomy Inc, 362-363.
    179. Wissuwa M. 2003.How do plants achieve tolerance to phosphorus deficiency? Small causes with big effects.Plant physiol, 133:1947-1958.
    180. Youngdabl J. 1990.Differences in phosphorus efficiency in bean genotype. J Plant Nutr, 13
    181. Zaheer A, Maqsood AG, Riaz HQ. 2001. Genotypic variations of phosphoruse utilization efficiency of crops. Jounral of Plant Nutrition, 24:1149-1171.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700