用户名: 密码: 验证码:
应用多参数示踪方法研究黄河口湿地沉积有机质来源和分布
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河口湿地是陆海相互作用的重要地带,由于与周边环境频繁的物质交换,其生态系统中的生物地球化学循环过程复杂多变。作为全球碳循环研究的重要内容之一,河口湿地沉积有机质的生物地球化学过程是湿地研究的重要命题,一直备受关注。湿地沉积有机质来源的示踪,是了解有机质在湿地分布、迁移、降解和转化等行为机制的基础,对于其了解的深入,有助于加强对河口湿地在陆源有机质向外海输送过程中的作用的认识。
     黄河口湿地是一个典型的滨海河口湿地,由黄河携带的大量泥沙在河口淤积而成,是中国暖温带保存最完整、最广阔、最年轻的湿地生态系统,是我国及世界上研究河口新生湿地生态系统形成、演化及发展规律的最佳场所之一。本文以黄河口湿地为研究对象,分别于2009年4月和6月采集了不同区域的表层沉积物和柱状沉积物样品,进行了粒度、总有机碳(TOC),总氮(TN)、稳定碳同位素(δ~(13)C)和生物标志物(正构烷烃和四醚膜脂)等参数的分析,在此基础上计算了相关的有机地球化学指标(如C/N比、碳优势指数(CPI)、支链与类异戊二烯四醚指标(BIT)等)用来指示沉积有机质的来源,并建立了基于δ~(13)C和BIT等指标的端元混合模型用来区分不同来源对黄河口湿地沉积有机质的贡献;通过上述多种参数的分析,结合两个采样时间前后水文和环境条件的变化,以及不同采样区域的位置、植被等的差异,探讨不同环境条件对各参数和指标时空分布的影响。
     研究结果表明,黄河口湿地沉积物粒度组成主要为粉砂,平均比例为75%。全样分析参数TOC、TN、C/N比和δ~(13)C的含量有比较明显的区域和季节分布特征。C/N比和δ~(13)C值显示,处于黄河口湿地核心恢复区的A区域和处于黄河入海前的最后一个浮桥下方的B区域沉积有机质以陆源输入占优势,处于黄河故道的C区域沉积有机质主要来源于海源,并呈现从近黄河河岸的采样点向远离的方向,陆源输入的影响逐渐降低,而海源输入的影响逐渐升高的特点。2009年4月份与6月份具有明显不同的有机质含量和分布特点。C/N比显示6月份有较强的陆源输入,但是并没有在δ~(13)C上得到证实。基于δ~(13)C的双端元模型计算结果表明A区域陆源有机质的平均贡献率为52%,B和C区域的贡献率分别为44%和34%。
     对沉积物中正构烷烃的分析表明,黄河口湿地正构烷烃以高碳数烷烃为主,具有明显的奇碳优势,各指标均显示沉积有机质的陆源高等植物输入优势。与全样分析参数一样,正构烷烃分子指标也有明显的季节和区域变化趋势。2009年4月份的正构烷烃分子指标数值要普遍高于6月份,显示有更高的陆源输入影响,与δ~(13)C所揭示的相一致,并且从近黄河河岸的站位向远离的方向,陆源输入的影响逐渐降低,而海源输入的影响逐渐升高。
     黄河口湿地表层沉积物中检测到大量的代表海洋来源的泉古菌醇(Crenarchaeol)和代表陆地土壤有机质来源的支链四醚膜脂,BIT指标显示了明显的区域和季节分布。2009年4月的BIT值要高于6月份,尤其是A区域,指示了土壤对此区域沉积有机质贡献较大;B区域BIT值指示土壤有机质的贡献在中等水平;而C区域BIT值较小,表明沉积有机质来源于土壤的贡献很小。利用包含δ~(13)C、C/N比和BIT指标在内的三端元混合模型计算了海源、陆地植物、土壤对沉积有机质的贡献,结果表明A区域和B区域沉积物中土壤有机质的贡献率较大,平均分别为89%和68%,而C区域是海源贡献的有机质相对较大,贡献率为39%。双端元和三端元混合模型计算得到的陆源和海源贡献率不同,三端元模型得到的陆源贡献率要大于双端元模型,表明双端元模型可能忽略了来自土壤有机质的贡献。
Coastal wetlands are located at the boundary between ocean and land.The biogeochemical process in the coastal wetland is complicated and volatile due to the frequently exchange of materials between the adjacent ecosystems. Being an important part of global carbon cycle, the biogeochemical process of sedimentary organic matters in estuary wetlands is an important proposition in Wetland Research and has been focused on for the recent decades. The source of sedimentary organic matters is essential for understanding their distribution, migration, degradation and transformation. It will help us insight the knowlogement of the role which estuary wetlands in translating the terrestrial organic matter to open sea.
     As a typical coastal wetlands, the Yellow River Estuarine Wetland (YREW) is accumulated by massive amount of mud and sand which arise from the Yellow River, is the most integrated, broadest and youngest wetland ecological system in warm temperate zone of China, and is one of the best areas for studying the formation, evolution and development of new coastal wetlands in the world. Surface sediments, six sediment cores were collected from different areas of the YREW in different seasons. Grain size, Total organic carbon (TOC), Total nitrogen (TN) and stable carbon (δ~(13)C) compositions, as well as biomakers (n-alkanes and GDGTs) were measured. C/N ratio, Carbon Preference Index (CPI), four Branched and Isoprenoid ether Index (BIT) which been used to indicate the source of sedimentary organic matters were calculated. Two and three end-member mixing models which were established based onδ~(13)C and BIT respectively, were used to distinguish the contribution of different source to sedimentary organic matters. The influences of environment conditions on the spatial and temporal distribution of indexes were discussed based on the analysis of various parameters, as well as on the combination of hydrological and environmental difference between sample time. The vegetation differences among sample sites were also taken into consideration.
     Experimental data indicated that silt was the predominant composition of sediments, and the average percentage was 75%. Spatial and temporal variations of the TOC, TN, C/N ratios andδ~(13)C of sediments were significantly different. C/N ratios andδ~(13)C indicated that the predominate source of sedimentary organic matters was terrestrial in area A (located at the area of core recovery in the YREW) and B (below the pontoon which is the last pontoon before The Yellow River enters the sea), but in area C (near the countryhero) was marine. From near river bank sampling point to the far river bank direction, the influence of terrestrial inputs reduced gradually, but the influence of sea source inputs elevated gradually. The content and distribution of organic matters were significantly different between the month April and June. C/N ratio showed a strong terrestrial inputs in June, but not consistent withδ~(13)C. Quantification of terrestrial OC in surface sediments was calculated by two end-member mixing models based onδ~(13)C, the results showed that terrestrial OC accounts for 52% in area A, and in area B and C accounts for 44% and 34%, respectively.
     The predominant composition of n-alkanes was high molecular weight and strong odd-even carbon preference. Similar to bulk chemical parameters, the n-alkane proxies had different area and season variation tendency. The n-alkane proxies in April were higher than in June, 2009, demonstrated that had higher terrestrial inputs in June, which consistented withδ~(13)C. From near river bank sampling point to the far river bank direction, the influence of terrestrial inputs reduced gradually, but the influence of sea source inputs elevated gradually.
     GDGTs analysis showed that there were amount of Crenarchaeol (produced by marine planktonic Crenarchaeota) and Branch-GDGTs (derived from presumably anaerobic bacteria) in surface sediments of YREW. The BIT value was higher in April than in June 2009, especially in area A, indicated the proportion of soil organic matter was high in area A, intermediate in area B, and low in area C. Application of three end-member mixing model including C/N ratios,δ~(13)C and BIT, suggested that the proportion of soil organic matter was higher in area A and B, their accounts for 89% and 68%, respectively, while in area C the proportion of marine organic matter was higher which accounts for 39%. The contribution of terrestrial sources calculated from three end-member mixing model was greater than that from two end-member mixing model, indicating that the contribution of soil organic matter may been ignored by two end-member mixing model.
引文
[1]杨永兴.国际湿地科学研究的主要特点、进展与展望.地理科学进展, 2002, 21(2): 111-120
    [2] William J, James G G. Wetlands. New York: John Wiley, 2000
    [3]殷康前,倪晋仁.湿地研究综述.生态学报, 1998, 18 (5): 539-546
    [4]余国营.湿地研究进展与展望.世界科技研究与发展, 1999, 22 (3): 61-66
    [5] Brinson M M. Changes in the functioning of wetlands along environmental gradients. Wetlands, 1993, 13: 65-74
    [6]黄桂林,何平,侯盟.中国河口湿地研究现状及展望.应用生态学报, 2006, 17 (9): 1751-1756
    [7]许学工.黄河三角洲生态环境的评估和预警研究.生态学报, 1996, 16(5): 461-468
    [8]戴祥,朱继业,窦贻俭.中外大河河口湿地保护与利用初探.环境科学与技术, 2001, 24(s2): 11-14
    [9]埃塞林顿J R (曲仲湘译).环境和植物生态学.北京:科学出版社, 1989
    [10]王将克.生物地球化学.广州:广东科学技术出版社, 1999
    [11]陈为峰.黄河三角洲新生湿地生态过程研究.泰安:山东农业大学博士学位论文, 2005
    [12] Chmura G L, Chase P, Bercovitch J. Climatic controls on the middle marsh zone in Fundy salt marshes. Estuaries, 1997, 20: 689-699
    [13] Portnoy J W, Giblin A E. Effects of historic tidal restrictions on salt marsh sediment chemistry. Biogeochemistry, 1997, 36, 275-303
    [14] Wang X C, Chen R F, Berry A. Sources and preservation of organic matter in Plum Island salt marsh sediments (MA, USA): long-chain n-alkanes and stable carbon isotope compositions. Estuarine, Coastal and Shelf Science, 2003, 58: 917-928
    [15] Hernninga M A, Cattrijsse A, Wielemaker A. Bedload and neabred detrtutss transport in a tidal salt marsh creek. Estuarine, Coastal and Shelf Science, 1996, 42: 55-62
    [16] Wolvaer T G, Spurrier J D. Carbon transport between a euhaline vegetated Marsh in South Carolina and the adjacent tidal creek: contribution via tidal inundation, runoff and seepage. Marine Eeology Porgerss Series, 1988, 42: 53-62
    [17] Meyers P A. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology, 1994, 114 (3-4): 289-302
    [18]胡建芳,彭平安,麦碧娴,等.珠江口不同沉积有机质的来源及相对含量.热带海洋学报, 2005, 24(1): 15-20
    [19]周俊丽.长江口湿地生态系统中有机质的生物地球化学研究: [博士学位论文].上海:华东师范大学, 2005
    [20] Volkman J K, Rohjans D, Rullkotter J, et al. Sources and diagenesis of organic matter in tidal flat sediments from the German Wadden Sea. Continental Shelf Research, 2000, 20:1139-1158
    [21] Waterson E J, Canuel E A. Sources of sedimentary organic matter in the Mississippi River and adjacent Gulf of Mexico as revealed by lipid biomarker. Organic Geochemistry, 2008, 39(4): 422-439
    [22] Yu F, Zong Y Q, Lloyd J M, et al. Bulk organicδ13C and C/N as indicators for sediment sources in the Pearl River delta and estuary, southern China. Estuarine, Coastal and Shelf Science, 2010, 87: 618-630
    [23]张凌,陈繁荣,杨永强,等.珠江口外近海沉积有机质化学及稳定位素组成的早期成岩改变.海洋学报, 2008, 30(5): 45-53
    [24] Freudenthal T, Wagner T, Wenzhfer F, et al. Early diagenesis of organic matter from the eastern Atlantic: evidence from stable nitrogen and carbon isotopes. Geochimica et Cosmo chimica Acta, 2001, 65(11): 1795-1808
    [25] Grutters M, Raaphorst W V, Helde R. Total hydrolysable amino acid mineralization in sediments across the Atlantic continental slope Goban Spur. Deep-Sea Research (I), 2001, 48(3): 811-832
    [26] Hayes J M. Factors controllingδ13C contents of sedimentary organic compounds: principles and evidence. Marine Geology, 1993, 113(1-2): 111-125
    [27] O'Leary M H. Carbon isotopes in photosynthesis. Bioscience, 1988, 38: 328-336
    [28] Schubert C J, Calvert S E. Nitrogen and carbon isotopic composition of marine and terrestrial organic matter in Arctic Ocean sediments: implications for nutrient utilization and organic matter composition. Deep-Sea Research, 2001, 48(3): 789-810
    [29] Lamb A L ,Vane C H, Wilson G P, et al. Assessingδ13C and C/N ratios from organic material in archived coresas Holocene sea level and palaeoenvironmental indicators in the Humber Estuary, UK. Marine Geology, 2007, 244:109-128
    [30]刘敏,侯立军,许世远,等.长江口潮滩有机质来源的C、N稳定同位素示踪.地理学报, 2004, 59(6): 919-925
    [31]高建华,杨桂山,欧维新.苏北潮滩湿地不同生态带有机质来源辨析与定量估算.环境科学, 2005, 26(6):51-56
    [32] Zhou J L, Wu Y, Zhang J, et al. Carbon and nitrogen composition and stable isotope as potential indicators of source and fate of organic matter in the salt marsh of the Changjiang Estuary, China. Chemosphere, 2006, 65(2): 310-317
    [33] Cowie G L, Hedges J I, Calvert S E. Sources and relative reactivities of amino-acids, neutral sugars, and lignin in an intermittently anoxic marine environment. Geochimica et Cosmochimica Acta, 1992, 56(5): 1963-1978
    [34]贾国东,彭平安.有机生物地球化学与晚新生代古全球变化研究.地学前缘, 2005, 12(2): 181-189
    [35]谢树成,梁斌,郭建秋,等.生物标志化合物与相关的全球变化.第四纪研究, 2003, 23(5): 66-73
    [36]戚艳平.长江口及邻近海域颗粒态及溶解态正构烷烃的分布: [硕士学位论文].上海:华东师范大学, 2006
    [37] Matteus R T, Ignal X P, Jackson R T, et al. Hydrocarbons and fatty acids in the Evergreen Shale, Suret Basin, Queensland, Australia. Geochimica et Cosmochimica Acta, 1972, 36(8): 885-896
    [38]陈骏,王鹤年.地球化学.北京:科学出版社, 2004. 249-250
    [39] Lecaros O P, Alberti P, Astorga M S. Hydrocarbons Parafinicos en agues del Eserteho de Magallnaes. Revista de Biologia Marina, 1991, 26(l): 61-74
    [40] Volkman J K, Kearney P, Jeffrey S W. A new source of 4 -methylsterols and 5a (H)-stanols in sediments: prymnesiophyte microalgae of the genus pavlova. Organic Geochemistry, 1990, 15(5): 489-497
    [41] Volkman J K. A review of sterol markers for marine and terrigenous organic matter. Organic Geochemistry, 1986, 9(2): 83-99
    [42] Volkman J K, Barrett S M, Blackburn S L, et al. Microalgal biomarkers: a review of recent research developments. Organic Geochemistry, 1998, 29(5-7): 1163-1179
    [43] Dahl K A, Repeta D J, Goericke R. Reconstructing the phytoplankton community of the Cariaco Basin during the Younger Dryas cold event using chlorinesterylesters. Paleoceanography, 2004, 19(1): 9-29
    [44] Zhao M X, Mercer J L, Eglioton G, et al. Comparative molecular biomarker assessment of phytoplankton paleoproductivity for the last 160 kyr off Cap Blanc, NW Africa. Organic Geochemistry, 2006, 37(1): 72-97
    [45]张海龙,邢磊,赵美训,等.东海和黄海表层沉积物生物标志物的分布特征及古生态重建潜力.中国海洋大学报, 2008, 36(6): 992-996
    [46]邢磊,赵美训,张海龙,等.二百年来黄海浮游植物群落结构变化的生物标志物记录.中国海洋大学学报, 2009, 39(2): 317-322
    [47]段毅,崔明中,马兰华.南沙海域中大陆坡沉积物中甾醇的地球化学研究.地球化学, 1998, 27(1): 74-80
    [48]卢冰,张海生,武光海,等.楚科奇海和白令海沉积地层中甾醇的物源组成及其周边气候效应.极地研究, 2005, 17(3): 183-192
    [49]吕晓霞,翟世奎.长江口柱状沉积物中甾醇的组成特征及其地球化学意义.海洋学报, 2006, 28(4): 96-101
    [50]马海青.渤海湾和胶州湾表层沉积物中甾醇的分布和来源: [硕士学位论文].青岛:中国科学院海洋研究所, 2009
    [51] Gaskell S J, Eglintion G. Rapid hydrogenation of sterols in a contemporary lacustrine sediment. Nature, 1975, 254: 209-211
    [52] Tian R C, Sicre M A, Saliot A. Aspects of the geochemistry of sedimentary sterols in the Changjiang Estuary. Organic Geochemistry, 1992, 18(6): 843 -850
    [53]杨庶.典型海洋沉积物中脂类生物标志物的形态分布及来源分析: [硕士学位论文].青岛:中国海洋大学, 2009
    [54] Duna Y, Song J M, Cui M Z, et al. Orgnaic geoehemical studies of Sikning Particulate material in China Sea aera I: organic matter fluxes and Distributional features of hydrocarbon compounds and fatty acids. Science in China Series D-Earth Sciences, 1998, 41(2): 208-214
    [55] Perry G J, Volkman J K, Johnson R B, et al. Fatty acids of bacterial Origin in contemporary marine sediment. Geochim Cosmochim Acta, 1979, 43(11): 1715-1725
    [56] Volkman J K, Hohns R B, Gillna E T, et al. Microbial lipids of an intertidal sediment-I. Fatty acids and hydrocarbons. Geochim Cosmochim Acta, 1980, 44(8): 1133-1143
    [57]张龙军,宫萍,张向上.河口有机碳研究综述.中国海洋大学学报, 2005, 35(5): 737-744
    [58] Sikes E L, Uhle M E, Nodder S D, et al. Sources of organic matter in a coastal marine environment: Evidence from n-alkanes and theirδ13C distributions in the Hauraki Gulf, New Zealand. Marine Chemistry, 2009, 113(3-4): 149-163
    [59]郭志刚,杨作升,林田,等.东海泥质区单体正构烷烃的碳同位素组成及物源分析.第四纪研究, 2006, 26(3): 384-390
    [60] Keely B J. Geochemistry of Chlorophylls. in: Grimm B, Porra R J, Rudiger W, et al. Chlorophylls and Bacteriochlorophylls. Dordrecht: Springer, 2006: 535-561
    [61] Scheer H. An Overview of Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications. in: Grimm B, Porra RJ, Rudiger W, et al. Chlorophylls and Bacteriochlorophylls. Netherlands: Springer, 2006: 1-26
    [62]邓春梅,姚鹏,刘淑霞,等.海洋浮游藻色素分析和化学分类研究进展.中国海洋大学学报, 2010, 40(4): 91-98
    [63]赵军,姚鹏,于志刚.海洋沉积物中色素生物标志物研究进展.地球科学进展, 2010,已接收
    [64] Bianchi T S, Johansson B, Elmgren R. Breakdown of phytoplankton pigments in Baltic sediments: effects of anoxia and loss of deposit-feeding macrofauna. Journal of Experimental Marine Biology and Ecology, 2000, 251(2): 161-183
    [65] Louda J W, Liu L, BakerE W. Senescence and death-related alteration of chlorophylls and carotenoids in marine phytoplankton. Organic Geochemistry, 2002, 33(12): 1635-1653
    [66] Hedges J I, Ertelj R. Characterization of lignin by Gas Capillary Chromatograhy of Cupric Oxide Oxidation Products. Analytical Chemistry, 1982, 54(2): 174-178
    [67] Fu T B, Chen S, Jiang S C. Gas chromatographic determination of lignin in sediment. Acta Oceanologica Sinica, 1993, 12 (3): 417-423
    [68] Wysocki L A, Filley T R, Bianchi T S. Comparison of two methods for the analysis of lignin in marine sediments: CuO oxidation versus tetramethylammonium hydroxide (TMAH) thermochemolysis. Org anic Geochemistry, 2008, 39(10): 1454-1461
    [69]杨丽阳,吴莹,黄俊华,等.大九湖泥炭柱样的木质素特征.地球化学, 2009, 38(2):133-139
    [70] Go?i M A, Ruttenberg K C, Eglinton T I. A reassessment of the sources and importance of land-derived organic matter in surface sediments from the Gulf of Mexico. Geochim Cosmochim Acta, 1998, 62(18): 3055-3075
    [71] Bianchi T S, Wysocki L A, Stewart M, et al. Temporal variability in terrestrially-derived sources of particulate organic carbon in the lower Mississippi River and its upper tributaries. Geochimica et Cosmochimica Acta, 2007, 71(18): 4425-4437
    [72]杨丽阳,吴莹,张经,等.长江口邻近陆架区表层沉积物的木质素分布和有机物来源分析.海洋学报, 2008, 30(5): 37-44
    [73]刘星,吴莹,张经.木质素在河口与陆架海洋环境中的示踪.海洋环境科学, 2001, 20(4): 62-67
    [74] Hedges J I, Oades J M. Comparative organic geochemistries of soils and marine sediments. Organic Geochemistry, 1997, 27(7-8): 319-361
    [75] Hopmans E C, Weijers J W H, Schefu? E, et al. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth and Planetary Science Letters, 2004, 224(1-2): 107-116
    [76] Herfort L, Schouten S, Boon J P, et al. Characterization of transport and deposition of terrestrial organic matter in the southern North Sea using the BIT index . Limnology Oceanography, 2006, 51(5): 2196-2205
    [77] Kim J H, Schouten S, BUSCAIL R, et al. Origin and distribution of terrestrial organic matter in the NW Mediterranean (Gulf of Lions): Exploring the newly developed BIT index. Geochemistry, Geophysics, Geosystem, 2006, 7:Q11017.doi: 10.1029/2006GC00130
    [78] Kim J H, Ludwig W, Schouten S, et al. Impact of ?ood events on the transport of terrestrial organic matter to the ocean: A study of the Têt River (SW France) using the BIT index. Organic Geochemistry, 2007, 38(10): 1593-1606
    [79] Kim J H, Zarzycka B, Buscail B, et al. Contribution of river-borne soil organic carbon to the Gulf of Lions (NW Mediterranean). Limnology Oceanography, 2010, 55(2): 507-518
    [80] Walsh E M, Ingalls A E, Keilr G. Sources and transport of terrestrial organic matter in Vancouver Island fjords and the Vancouver–Washinghton Margin: a multiproxy approach usingδ13Corg, lignin phenols, and the ether lipid BIT index. Limnology Oceanography, 2008, 53(3): 1054-1063
    [81] Peterse F, Schouten S, Meer J, et al. Distribution of branched tetraether lipids in geothermally heated soils: Implications for the MBT/CBT temperature proxy. Organic Geochemistry, 2009, 40(2): 201-205
    [82] Smith R W, Bianchi T S, Savage C. Comparison of lignin phenols and branched/isoprenoid tetraethers (BIT index) as indices of terrestrial organic matter in Doubtful Sound, Fiordland, New Zealand. Organic Geochemistry, 2010, 41(3): 281-290
    [83] Weijers J W H, Schouten S, Enno S, et al. Disentangling marine, soil and plant organiccarbon contributions to continental margin sediments: A multi-proxy approach in a 20,000 year sediment record from the Congo deep-sea fan. Geochimica et Cosmochimica Acta, 2009, 73(1): 119-132
    [84]邢磊,赵美训,张海龙,等.东海和黄海沉积有机物来源指标分析及沉积有机物的演变.第八届海峡两岸海洋科学研讨会, 2010, 09,台湾花莲
    [85] Yao P, Keely B J, Yu Z G, et al. Proxies based on archaeal and bacterial GDGTs in surface sediments of Yangtze River Estuary, China: implications for marine organic biogeochemistry. Organic Geochemistry, 2011, submitted
    [86] Hu L M, Guo Z G, Feng J L, et al. Distributions and sources of bulk organic matter and aliphatic hydrocarbons in surface sediments of the Bohai Sea, China. Marine Chemistry, 2009, 113 (3-4): 197-211
    [87] organic matter in sediments of the Pearl River estuary and adjacent South China Sea. Applied Geochemistry, 2009, 24(9): 1666-1676
    [88] Tanner B R, Uhle M E, Mora C L, et al. Comparison of bulk and compound-specificδ13C analyses and determination of carbon sources to salt marsh sediments using n-alkane distributions (Maine, USA). Estuarine, Coastal and Shelf Science, 2010, 86: 283-291
    [89]薛博.漳江口红树林湿地沉积物有机质来源追溯: [博士学位论文].厦门:厦门大学, 2007
    [90]邢尚军,郗金标,张建锋,等.黄河三角洲植被基本特征及其主要类型.东北林业大学学报, 2003, 30(6): 85-86
    [91]郗金标,宋玉民,邢尚军,等.黄河三角洲生态系统特征与演替规律.东北林业大学学报, 2002, 30(6): 111-114
    [92]尹延鸿,周永青,丁东.现代黄河三角洲海岸演化研究.海洋通报, 2004, 23(2) : 32-40
    [93]侯本栋,马风云,邢尚军,等.黄河三角洲不同演替阶段湿地群落的土壤和植被特征.浙江林学院学报, 2007, 24(3): 313-318
    [94]时连强,李九发,应铭,等.近、现代黄河三角洲发育演变研究进展.海洋科学进展, 2005, 23(1): 96-104
    [95]陈为峰,史衍玺,田素锋,等.黄河口新生湿地土壤氮磷分布特征研究.水土保持学报, 2008, 22(1): 69-73
    [96]牟晓杰,孙志高,王玲玲,等.黄河口滨岸潮滩不同生境下翅碱蓬氮的累积与分配特征.湿地科学, 2010, 8(1): 57-66
    [97]于君宝,陈小兵,毛培利,等.新生滨海湿地土壤微量营养元素空间分异特征.湿地科学, 2010, 8(3): 213-219
    [98]李任伟,李原,张淑坤,等.黄河三角洲沉积物烃类污染及来源.中国环境科学, 2001, 21(4) : 301-305
    [99]罗雪梅,何孟常,刘昌明.黄河三角洲地区湿地土壤对多环芳烃的吸附特征.环境化学,2007, 26(2): 125-129
    [100]袁红明,赵广明,庞守吉,等.黄河三角洲北部湿地多环芳烃分布与来源.海洋地质与第四纪地质, 2008, 28(6): 57-62
    [101]崔保山,贺强,赵欣胜.水盐环境梯度下翅碱蓬( Suaeda salsa)的生态阈值.生态学报, 2008, 28 (4): 408-1418.
    [102]王玉珍.黄河三角洲湿地资源及生物多样性研究.安徽农业科学, 2007, 35(6): 1745-1746, 1787
    [103]徐健民.黄河口三角洲(东营市)湿地评价与可持续利用研究: [博士学位论文].北京:中国农业科学院农业经济研究所, 2001
    [104]张晓龙,李培英,刘月良,等.黄河三角洲湿地研究进展.海洋科学, 2007, 31(7): 81-85
    [105] Hu J F, Peng P A, Jia G D, et al. Distribution and sources of organic carbon, nitrogen and their isotopes in sediments of the subtropical Pearl River estuary and adjacent shelf, Southern China. Marine Chemistry. 2006, 98: 274-285
    [106]张海龙.东海和黄海表层沉积物中类脂生物标志物的分布特征和古生态重建: [硕士学位论文].青岛:中国海洋大学, 2008
    [107] Knappy C S, Chong J P J, Keely B J. Rapid discrimination of archaeal tetraether lipid cores by liquid chromatography–tandem mass spectrometry. Journal of the American Society for Mass Spectrometry 2009, 20: 51-59
    [108] Müller P J. C/ N ratios in Pacific deep-sea sediments: effect ofinorganic ammonium and organic nitrogen compounds sorbed by clays. Geochimica et C osmochimica Acta, 1977, 41: 765-776
    [109] Datta D K, Gupta L P, Subramanian V. Distribution of C, N, and P in the sediments of the Ganges-Brahmaputra-Meghna river system in the Bengal basin. Organic G eochemistry, 1999, 30: 75-82
    [110] Goni M A, Ruttenberg K C, Eglinton T I. A reassessment of the sources and importance of land derived organic matter in sur face sediments from the Gulf of Mexico. Geochimica et Cosmochimica Acta, 1998, 62: 3055-3075
    [111] Schubert C J, Calvert S E. Nitrogen and carbon isotopic composition of marine and terrestrial organic matter in Arctic Ocean sediments: implications for nutrient utilization and organic matter composition. Deep-Sea Research- I.2001, 48, 789-810
    [112] Goni M A , Cathey M W, K im Y H , et al . Fluxes and s ources ofsuspended organic matter in an estuarine tubidity maximum region during low discharge conditions. Estuarine C oastal and Shelf Science, 2005, 63: 683-700
    [113]蔡德陵,蔡爱智.黄河口区有机碳同位素地球化学研究.中国科学(B辑), 1993, 23(l): 1105-1113
    [114] Ganeshram RS, Culvert S E, Pedersen T F, et al. Fators controlling the burial of organic carbon in laminated and bioturbated Sediments off NW Mexieo:Implications for hydroearbonpreservation.Geoehimiea et Cosmoehimiea Aeta, 1999, 63: 1723-1734
    [115] Zhou J L, Wu Y, Kang Q S, et al. Spatial variations of carbon, nitrogen, phosphorous and sulfur in the salt marsh sediments of the Yangtze Estuary in China. Estuarine, Coastal and Shelf Science, 2007, 71, 47-59
    [116] Cui C Q, Sun X X, Shi JT, et al. Coastal development system of the modern Huanghe River Delta—research: II. On the space–time lineage of the coastal tidal-flat of the Huanghe River Delta. Marine Science Bulletin, 2001, 20 (5): 31-39
    [117]陈小英,陈沈良,刘勇胜.黄河三角洲滨海区沉积物的分异特征与规律.沉积学报, 2006, 24(5): 714-721
    [118] Cloern J E, Canuel E A, Harris D. Stable carbon and nitrogen isotope composition of aquatic and terrestrial plants of the San Francisco Bay estuarine system. Limnology and Oceanography, 2002, 43 (3):713-729
    [119] Middelburg J J, Nieuwenhuize J. Carbon and nitrogen stable isotopes in suspended matter and sediments from the Scheldt Estuary .Marine Chemistry, 1998, 60: 217-225
    [120] Owens N J P. Variation in the natural abundance of 15N in estuarine suspended particulate matter: a specific indicator of biological processing. Estuarine, Coastal and Shelf Science, 1985, 20: 820-825
    [121] Graham M C, Eaves M A, Farmer JG, et al. A study of carbon and nitrogen stable isotope and elemental ratios as potential indicators of source and fate of organic matter in sediments of the Forth Estuary, Scotland. Estuarine, Coastal and Shelf Science, 2001, 52: 375-380
    [122]吴莹,张经,张再峰,等.长江悬浮颗粒物中稳定碳、氮同位素的季节分布.海洋与湖沼, 2002, 33( 5): 546-552
    [123] Meyers P A. Organic geochemical proxies of paleoceanographic, paleolimnlogic, and paleoclimatic processes. Organic Geochemistry, 1997, 27, 213-250.
    [124] Middelburg J J, Nieuwenhuize J. Carbon and nitrogen stable isotopes in suspended matter and sediments from the Scheldt Estuary .Marine Chemistry, 1997, 60: 217-225
    [125] Chen F, Zhang L, Yang Y, et al. Chemical and isotopic alteration oforganic matter during early diagenesis: evidence from the coastal area off-shore the Pearl River estuary, south China. Journal of Marine Systems, 2008, 74: 372-380
    [126] Alongi D M. Coastal Ecosystem Processes. New York: CRC Press, 1997, pp: 448
    [127] Valiela I, Teal J M. The nitrogen budget of a salt marsh ecosystem. Nature, 1979, 280: 652-656
    [128] Vernberg F J. Salt-marsh processes: a review. Environmental Toxicology and Chemistry, 1993, 12: 2167-2182
    [129] Peterson B J, Howarth R W, Garritt R H. Multiple stable isotopes used to t race the flow of organic matter in estuarine food webs. Science, 1985, 227:1361-1363
    [130]宫萍.黄河及河口区颗粒物中正构烷烃和正脂肪酸的分布特征分析: [硕士学位论文],青岛:中国海洋大学, 2005
    [131]李双林,张生银,赵青芳,等.南黄海海底沉积物饱和烃类地球化学特征及其指示意义.海洋地质动态, 2009, 25(12): 1-7
    [132]王海梅,李政海,宋国宝等.黄河三角洲植被分布、土地利用类型与土壤理化性状关系的初步研究.内蒙古大学学报(自然科学版), 2006, 37(1): 69-75
    [133] Silliman J E, Schelske C L. Saturated hydrocarbons in the sediments of Lake Apopka, Florida. Organic Geochemistry, 2003, 34(2): 253-260
    [134] Tolosa I, Bayona J M, Albaiges J. Aliphatic and polycyclicaromatic hydrocarbons and sulfur/oxygen derivatives in NW Mediterranean sediments: spatial and temporal variability, ?uxes and budgets. Environmental Science and Technology, 1996, 30, 2495-2503
    [135] Jeng W L, Huh C A. A comparison of sedimentary aliphatic hydrocarbon distribution between East China Sea and southern Okinawa Trough. Continental Shelf Research, 2008, 28, 582-592
    [136] DUAN Y. Organic geochemisty of recent marine sediments from the Nansha Sea China. Organic Geochemistry, 2000, 31(2-3): 159-167
    [137] Meyers P A. Applications of organic geochemistry to palolimnlogical restructions: A summary of examples from the Laurentian Great Lakes. Organic Geochemistry, 2003, 34(2): 261-289
    [138]宋创业,刘高焕,刘庆生,等.黄河三角洲植物群落分布格局及其影响因素.生态学杂志, 2008, 27 (12): 2042-2048
    [139] Bouloubassi I, Fillaux J, Saliot A. Hydrocarbons in surface sediments from the Changjiang(Yangtze River)Estuary, East China Sea. Marine Pollution Bulletin, 2001, 2: 1335-1346
    [140]陈为峰,周维芝,史衍玺.黄河三角洲湿地面临的问题及其保护.农业环境科学学报, 2003, 22(4): 499-502
    [141] Hedges J I, Oades J M. Comparative organic geochemistries of soils and marine sediments. Org anic Geochemistry, 1997, 27(7-8): 319-361
    [142]蔡德陵,李红燕,周卫键,等.无定河流域碳氮稳定同位素研究.地球化学, 2004, 33(6): 619-626
    [143]魏秀国,卓慕宁,郭治兴,等.东江流域土壤、植被和悬浮物的碳、氮同位素组成.生态环境学报2010, 19(5): 1186-1190
    [144]蔡德陵,石学法,周卫健,等.南黄海悬浮体和沉积物的物质来源和运移:来自碳稳定同位素组成的证据.科学通报, 2001, 46(增刊):16-23
    [145]唐艳凌,章光新.基于稳定同位素示踪的流域颗粒有机物质来源辨析.中国环境科学, 2010, 30(9): 1257-1267
    [146] Zhu C, Weijers J W H, Wagner T, et al. Sources and distributions of tetraetherlipids in surface sediments across a large river-dominated continental margin. Organic Geochemistry, 2011. In press

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700