用户名: 密码: 验证码:
基于取代芳香羧酸配体的配位聚合物构筑
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文运用晶体工程的经验和构筑策略,选用了含有取代芳香羧酸有机配体,并以之为构筑块在适当的条件下与金属离子组装制备出具有新颖网络结构的金属基超分子配合物。重点研究了这类配合物的合成条件,其取代基团对配体构型的定向调控,分析网络拓扑形成的规律以及辅助配体对于整个结构的影响等方面。全文共分为五章:
     第一章首先介绍了此项工作的研究背景,重点介绍了基于芳香羧酸类配体的配位聚合物的研究进展及其在吸附和催化等方面的应用;并在此基础上提出了本论文选题的依据、目的及所取得的进展。
     第二章我们首次利用2,3,5,6-四溴代对苯二甲酸(H2TBTA)与ZnII, CoII, AgI和PbII反应成功得到五个从一维到三维的配位聚合物,包括一维聚合链,二维kgd,二维CdCl2,三维多节点的(4~2.8~4)(4~3)2(4~4.6~4.8~2)2(4~5.6~3.8~2)2(4~6.6~3.8)2复杂拓扑结构。晶体结构研究表明在与ZnII的组装过程中,溶剂分子所体现出来的结构导向和模板化效应对于形成的配位聚合物的结构产生了非常大的影响。
     第三章在H2TBTA的基础上,我们首次将共配体2,5-双(4-吡啶)-1,3,4-噁二唑(4-bpo)及其3-吡啶衍生物(3-bpo)引入到金属离子(CoII, NiII, CuII, ZnII, AgI, CdII和PbII)的超分子组装体系中,得到了结构各异的金属基超分子配合物6-17。对于另一种衍生物H2BTA与金属ZnII和CdII在3-bpo的存在下所形成的配合物18和19的结构分析表明,由于取代基空间位阻的减弱,对于羧基的配位能力也有一定影响,进而对最终形成的超分子网络产生了显著的结构差异。
     第四章为了进一步研究共配体对于取代的芳香羧酸配体所形成的配合物网络结构的影响,我们引入了5-磺酸基代间苯二甲酸(H3SIP),将之与3-/4-bpo和金属离子反应得到20?27。其中,在H3SIP, CdII以及3-/4-bpo的反应体系中通过调节反应体系的pH值,不仅可以对其中参与配位的3-bpo配体的构型起到了调控效应,还对于最终形成结构网络的维度有决定性的影响。
     第五章设计了具有配位惰性基团取代的烟酸衍生物,5-溴代烟酸(5-HBN)及其衍生物5-溴代烟酸氮氧化合物(5-HBNO),并将之与CoII, CuII, ZnII和CdII进行了自组装,分别得到了八个结构新颖的配合物28?35,其中包括未报道过的(3,5)-连接和(3,6)-连接聚合网络结构。另外,在CuII(28和29)和CdII(30?32)配合聚合物中,溶剂分子的选用对于最终的配位聚合网络产生了重要的结构导向作用和模板化效应。
On the basis of the policy of crystal engineering and constructing strategy, a va-riety of substituted aromatic carboxylic acids were chosen as the building blocks to assembly with metal ions to afford novel topological metallosupramolecular com-plexes. The key points of our research are on the emphasis of synthetic methodology of interesting metallosupramolecular complexes, directional regulation of ligation fa-shion from substituents to ligand, analysis of assembly discipline of topological net-work, and impact of co-ligand to the resultant framework. This thesis consists of five chapters.
     In chapter 1, the recent research progress of coordination polymers based on aromatic carboxylates was represented and their useful properties on catalysis ability and microporosity were also demonstrated. Then the research significance and main conclusion of this thesis were summarized.
     In chapter 2, five novel ZnII, CoII, AgI and PbII coordination polymers based on a versatile building block 2,3,5,6-tetrabromoterephthalic acid (H2TBTA) have been successfully assembled, including 1-D polymeric chain motif, 2-D kgd and CdCl2, as well as 3-D (42.84)(43)2(44.64.82)2(45.63.82)2(46.63.8)2 network. In these complexes, all the carboxyl groups were appeared as the deprotonized fashion in a vertical pattern to the central aromatic ring. Single crystal X-ray diffraction studies revealed that mod-ulation of solvent choice made the significant impact on the resultant ZnII networks in the structural direction and template effect function.
     In chapter 3, on the basis of H2TBTA, by employment of 2,5-bi(4-pyridyl)- 1,3,4-oxadiazole (4-bpo) and its 3-N-donor analogue (3-bpo) into the supramolecular assembly system with metal ions (CoII, NiII, CuII, ZnII, AgI, CdII and PbII), complexes 6-17 featured a variety of interesting structures. Furthermore, analysis of another de-rivative H2BTA related complexes 18 and 19 revealed that the discrepancy of the re-sultant networks may arise from the spatial effect distinction of the substituent at-tached to the aromatic ring and then the coordination modes of the carboxylates.
     In chapter 4, in order to further study the influence of co-ligands upon the coor-dination network from substituted aromatic carboxylates, 5-sulfoisophthalic acid (5-H3SIP) was utilized to react with metal ions, in virtue of 3-/4-bpo, to afford com-plexes 20?27. Notably, in the self-assembly of 5-H3SIP, CdII and 3-/4-bpo, pH value played the vital role not only to the regulated configuration of 3-bpo, but also to the structural dimension of the resultant frameworks.
     In chapter 5, 5-bromonicotinic acid (5-BN) and 5-bromonicotinic acid N-oxide (5-HBNO), derivatives of nicotinic acid with 5-Br substituent, were employed to react with CoII, CuII, ZnII and CdII to afford eight novel complexes 28?35, including two unprecedented architectures with (3,5)- and (3,6)-connected net topology. In the po-lymers 28?29 and 30?32, manipulation of specific solvents shows a significant struc-tural direction and template effect to the resultant frameworks, respectively.
引文
[1] Kitagawa, S.; Kitaura, R.; Noro, S. Functional Porous Coordination Polymers, Angew. Chem. Int. Ed., 2004, 43: 2334~2375.
    [2] Wernsdorfer, W.; Aliaga-Alcalde, N.; Hendrickson, D. N. et al., Ex-change-biased quantum tunnelling in a supramolecular dimer of sin-gle-molecule magnets, Nature 2002, 416: 406?409.
    [3] Leuenberger, M. N.; Loss, D. Quantum computing in molecular magnets, Nature 2001, 410: 789?793.
    [4] Wernsdorfer, W.; Sessoli, R. Quantum phase interference and parity effects in magnetic molecular clusters, Science 1999, 284: 133?135.
    [5] Werner, A. Beitrag zur Konstitution anorganischer Verbindungen, Zeitschr. Anorg. Chem., 1893, 3: 267~330.
    [6] Bailar, Jr. J. C. Coordination Polymers, Prep. Inorg. React. 1964, 1?6.
    [7] Wells, A. F. Three-Dimensional Nets and Polyhedra; Wiley: New York, 1977.
    [8] Hoskins, B. F.; Robson. R. Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments, J. Am. Chem. Soc., 1989, 111: 5962~5964.
    [9] Withersby, M. A.; Blake, A. J.; Champness, N. R. et al., Assembly of a three-dimensional polykontted coordination polymer, J. Am. Chem. Soc., 2000, 122: 4044~4046.
    [10] Chen, Z. F.; Xiong, R. G.; Zheng, J. et al., The first chiral 2-D molecular trian-gular grid, J. Chem. Soc. Dalton Tran., 2000, 4010~4012.
    [11] Barnett, S. A.; Blake, A. J.; Champness, N. R. et al., Synthesis and structural characterization of cadmium(II) and zinc(II) coordination polymers with an angular dipyridyl bridging ligand: parallel interpenetration of two dimensional sheet with 4.82 topology, J. Chem. Soc. Dalton Tran., 2001, 567~573.
    [12] Suenaga, Y.; Kuroda-Sowa, T.; Munakata, M. et al., Synthesis and structure of a two-dimensional copper(II) coordination polymer with 3,4,9,10- perylenete-tracarboxylic acid and ethylenediamine, Polyhedron, 1998, 17: 2207~2210.
    
    [13] Hoskins, B. F.; Robson, R., Design and construction of a new class of scaf-folding-like materials comprising infinite polymeric frameworks of 3d-linked molecular rods. a reappraisal of the Zn(CN)2 and Cd(CN)2 structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][Cu[I]Zn[II](CN)4] and Cu[I] [4, 4', 4'', 4'''-tetracyanotetra- phenyl-methane]BF4 C6H5NO2, J. Am. Chem. Soc., 1990, 112: 1546~1554.
    [14] Fujita, M.; Kwon, Y. J.; Washizu, S. et al., Preparation, clathration ability, and catalysis of a two-dimensional square network material composed of cad-mium(ii) and 4,4'-bipyridine, J. Am. Chem. Soc., 1994, 116: 1151~1152.
    [15] Adeline, Y. R.; Katharina, M. F. Coordination polymer networks with O- and N-donors: What they are, why and how they are made, Coord. Chem. Rev., 2006, 250: 2127~2157.
    [16] Ezuhara, T.; Endo, K.; Aoyama, Y. Helical coordination polymer from achiral components in crystals. Homochiral crystallization, homochiral helix winding in the solid state, and chirality control by seeding, J. Am. Chem. Soc., 1999, 121: 3279~3283.
    [17] Biradha, K.; Seward, C.; Zaworotko, M. J. Helical coordination polymers with large chiral cavities, Angew. Chem. Int. Ed., 1999, 38: 492~495.
    [18] Siemeling, U.; Scheppelmann, I.; Neumann, B. et al., Spontaneous chiral reso-lution of a coordination polymer with distorted helical structure consisting of achiral building blocks, Chem. Commun., 2003, 2236~2237.
    [19] Horn, C. J. K.; Blake, A. J.; Champness, N. R. et al., Construction of the first cross-linked double helical polyiodide, Chem. Commun., 2003, 1488~1489
    [20] Consable, E. C.; Walker, J. V. the systematic synthesis of heterobimetallic double-helical complexes of 2,2:6’,2’’:6’’,2’’’:6’’’,2’’’’-quinquepyridines, J. Chem. Soc., Chem. Commun., 1992, 884~886.
    [21] Goodgame, D. M.; Hill, S. P. W.; Williams, D. J. Ligand-induced formation of a triple helical bridge involving O-donor ligands in dimeric lanthanide com-plexes, J. Chem. Soc., Chem. Commun., 1992, 1019~1021.
    [22] Zhang, J.-P.; Lin, Y.-Y.; Huang, X.-C. et al., Molecular chairs, zippers, zigzag and helical chains: chemical enumeration of supramolecular isomerism based on a predesigned metal-organic building-block, Chem. Commun., 2005, 1258~1260.
    [23] Du, M.; Zhang, Z.-H.; Tang, L.-F.; Wang, X.-G.; Zhao, X.-J.; Batten, S. R. Molecular tectonics of metal-organic frameworks (MOFs): a rational design strategy for unusual mixed-connected network topologies, Chem. Eur. J., 2007, 13: 2578~2586.
    [24] Long, D.-L.; Hill, R. J.; Blake, A. J. et al., Non-natural eight-connected sol-id-state materials: a new coordination chemistry, Angew. Chem., Int. Ed., 2004, 43: 1851~1854.
    [25] Hill, R. J.; Long, D.-L.; Turvey, M. S. et al., Unprecedented bilayer topologies in 5- and 6-connected framework polymers, Chem. Commun., 2004, 1792~1793.
    [26] Zaworotko, M. J. Superstructural diversity in two dimensions: crystal engi-neering of laminated solids, Chem. Commun., 2001, 1~9.
    [27] O'Keeffe, M.; Eddaoudi, M.; Li, H. et al., Frameworks for Extended Solids: Geometrical Design Principles, J. Solid State Chem., 2000, 152: 3~20.
    [28] Férey, G. Building units design and scale chemistry, J. Solid State Chem., 2000, 152: 37~53.
    [29] Ockwig, N. W.; Delgado-Friedrichs, O.; O'Keeffe, M. et al., Reticular chemi-stry: occurrence and taxonomy of nets and grammar for the design of frame-works, Acc. Chem. Res., 2005, 38: 176~182.
    [30] Delgado-Friedrichs, O., Foster, M. D., O'Keeffe, M., et al., What do we know about three-periodic nets? J. Solid State Chem., 2005, 178: 2533~2554.
    [31] Férey G. Hybrid porous solids: past, present, future, Chem. Soc. Rev., 2008, 37: 191~214, and references therein.
    [32] Férey, G.; Serre, C.; Mellot-Draznieks, C. et al., A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder dif-fraction, Angew. Chem., Int. Ed., 2004, 43: 6296~6301.
    [33] Férey, G.; Mellot-Draznieks, C.; Serre, C. et al., Crystallized frameworks with giant pores: are there limits to the possible? Acc. Chem. Res., 2005, 38: 217~225.
    [34] Férey, G.; Mellot-Draznieks, C.; Serre, C. et al., A chromium terephtha-late-based solid with unusually large pore volumes and surface area, Science, 2005, 309: 2040~2042.
    [35] Serre, C.; Mellot-Draznieks, C. Surblé, S. et al., Role of solvent-host interac-tions that lead to very large swelling of hybrid frameworks, Science, 2007, 315: 1828~1831.
    [36] Beitone, L.; Huguenard, C.; Gansmuller, A. et al., Order-disorder in the su-per-sodalite Zn3Al6(PO4)12, 4tren, 17H2O (MIL-74): A combined XRD-NMR assessment, J. Am. Chem. Soc., 2003, 125: 9102~9110.
    [37] Rosi, N. L.; Kim, J.; Eddaoudi, M. et al., Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units, J. Am. Chem. Soc., 2005, 127: 1504~1518.
    [38] Tidmarsh, I. S.; laye, R. H.; Brearley, P. R. et al., Highly reduced, polyox-o(alkoxo)vanadium(III/IV) cluster, Chem. Eur. J., 2007, 13: 6329~6338.
    [39] Jones, L. F.; Batsanov, A.; Brechin, E. K. et al., Octametallic and hexadecame-tallic ferric wheels, Angew. Chem., Int. Ed., 2002, 41: 4138~4121.
    [40] Evans, O. R.; Xiong, R.-G.; Wang, Z. et al., Crystal engineering of noncentro-symmetric diamondoid metal-organic coordination networks. Angew. Chem., Int. Ed. Engl. 1999, 38: 536-538.
    [41] Li, H.; Eddaoudi, M.; O'Keeffe, M. et al., Design and synthesis of an excep-tionally stable and highly porous metal-organic framework, Nature, 1999, 402: 276~279.
    [42] Eddaoudi, M.; Kim, J.; Rosi, M. et al., Systematic design of pore size and fu-tionality in isoreticular MOFs and their application in methane storage, Science, 2002, 295: 469~472.
    [43] Millange, F.; Serre, C.; Férey, G. Synthesis, structure determination and prop-erties of MIL-53as and MIL-53ht: the first CrIII hybrid in inorganic-organic mircroporous solids: CrIII(OH){O2C-C6H4-CO2}{HO2C- C6H4-CO2H}x, Chem. Comm., 2002, 822~823.
    [44] Serre, C.; Millange, F.; Thouvenot, C. et al., Very large breathing effect in the first nanoporous chromium (III)-based solids: MIL-53 or CrIII(OH){O2C-C6H4-CO2}{HO2C-C6H4-CO2H}x H2Oy, J. Am. Chem. Soc., 2002, 124: 13519~13526.
    [45] Férey, G.; Latroche, M.; Serre, C. et al., Hydrogen adsorption in the nanopor-ous metal-benzenedicarboxylate M(OH)(O2C–C6H4–CO2)(M = Al3+, Cr3+), MIL-53, Chem. Commun., 2003, 2976~2977.
    [46] Horcajada, P.; Serre, C.; V-Regi, M. et al., Metal-organic frameworks as effi-cient materials for drug delivery, Angew. Chem. Int. Ed., 2006, 45: 5974~5978.
    [47] Liang, Y.; Cao, R.; Su, W. et al., Syhtheses, structures and magnetic properties of two gadolinium(III)-copper(II) coordination polymers by a hydrothermal reaction, Angew. Chem. Int. Ed., 2000, 39: 3304~3307.
    [48] Zhao, B.; Cheng, P.; Dai, Y. et al., A nanotubular 3D coordination polymer based on a 3d-4f heterometallic assembly, Angew. Chem. Int. Ed., 2003, 42: 934~936.
    [49] Zhao, B.; Cheng, P.; Chen, X.-Y. et al., Design and synthesis of 3d-4f met-al-based zeolite-type materials with a 3D nanotubular structure encapsulated“water”pipe, J. Am. Chem. Soc., 2004, 126: 3012~3013.
    [50] Kitaura, R.; Kitagawa, S.; Kubota, Y. et al., Formation of a one-dimensional array of oxygen in a microporous metal-organic solid, Science, 2002, 298: 2358~2361.
    [51] Chui, S. S.-Y.; Lo, S. M.-F.; Chamant, J. P. H. et al., A chemically functiona-lizable nanoporous material [Cu3(TMA)2(H2O)3]n, Science, 1999, 283: 1148~1150.
    [52] Kepert, C. J.; Rosseinsky, M. J. A porous chiral framework of coordinated 1,3,5-benzenetricarboxylate: quadruple interpenetration of the (10,3)-a network, Chem. Comm., 1998, 31~32.
    [53] Kim, J.; Chen, B.; Reineke, T. M. et al., Assembly of metal-organic frame-works from large organic and inorganic secondary building units: new exam-ples and simplifying principles for complex structures, J. Am. Chem. Soc., 2001, 123: 8239~8247.
    [54] Chen, B.; Eddaoudi, M.; Hyde, S. T. et al., Interwoven metal-organic frame-work on a periodic minimal surface with extra-large pores, Science, 2001, 291: 1021~1023.
    [55] Chae, H. K.; Siberio-Pérez, D. Y.; Kim, J. et al., A route to high surface area porosity and inclusion of large molecules in crystals, Nature, 2004, 427: 523~527.
    [56] Chen, B.; Ockwig, N. W.; Fronczek, F. R. et al., Tansformation of a met-al-organic framework from the NbO to PtS net, Inorg. Chem., 2005, 44: 181~183.
    [57] Kenie, K.; Birkedal, N.; Kjell, O. K. et al., Syntheses, crystal structures and thermal properties of 3D coordination polymers assembled from 1,4,5,8-naphthalenetetracarboxylic acid, Solid State Sci., 2006, 8: 1237~1242.
    [58] Férey, G.; Cheetham, A. K. Porous materials: prospects for giant pores, Science, 1999, 283: 1125~1126.
    [59] Kitagawa, S.; Kondo, M. Functional micropore chemistry of crystalline metal complex-assembled compounds, Bull. Chem. Soc. Jpn., 1998, 71: 1739~1753.
    [60] Kitagawa, S.; Uemura, K. Flexible microporous coordination polymers, J. Solid State Chem., 2005, 178: 2420~2429.
    [61] Kesanli, B.; Lin, W. Chiral porous coordination networks: rational design and applications in enantioselective processes, Coord. Chem. Rev., 2003, 246: 305~326.
    [62] Zhou, Y.-P.; Jia, C.-X.; Zhang, Y. et al., Experimental study on a new process of producing hydrogen in consumption of water and coal, AIChe. J., 2008, 54: 1388~1395.
    [63] Su, W.; Zhou, Y.-P.; Wei, L.-F. et al., Effect of microstructure and surface modification on the hydrogen adsorption capacity of active carbons, New Car-bon Mater., 2007, 22: 135~140.
    [64] Chu, X.-Z.; Zhou, Y.-P.; Zhang, Y.-Z. et al., Adsorption of hydrogen isotopes on micro- and mesoporous adsorbents with orderly structure, J. Phys. Chem., 2006, 110: 22596~22600.
    [65] Mueller, U.; Schubert, M.; Teich, F. et al., Metal–organic frameworks—pros-pective industrial applications, J. Mater. Chem., 2006, 16: 626~636.
    [66] Férey, G. Some Suggested perspectives for multifunctional hybrid porous Solid, Dalton Trans., 2009, DOI: 10.1039/b817360p.
    [67] Seo, J. S.; Whang, D.; Lee, H. et al., A homochiral metal–organic porous material for enantioselective separation and catalysis, Nature, 2000, 404: 982~986.
    [68] Dybtsev, D. N.; Nuzhdin, A. L.; Chun, H. et al., A homochiral metal-organic material with permanent porosity, enantioselective sorption properties, and cat-alytic activity, Angew. Chem., Int. Ed., 2006, 45: 916~920.
    [69] Zhang, J.; Liu, R.; Feng, P.-Y. et al., Organic cation and chiral anion templated 3d homochiral open-framework materials with unusual square-planar {M4(OH)} units, Angew. Chem., Int. Ed., 2007, 46: 8388~8391.
    [70] Zhang, J.; Bu, X.-H., Chiralization of diamond nets: stretchable helices and chiral and achiral nets with neraly identical unit cells, Angew. Chem., Int. Ed., 2007, 46: 6115~6118.
    [71] Zhang, J.; Bu, X.-H., A New Enantiopure unsaturated dicarboxylate as a 4-connected unit in a flexible homochiral PtS-type framework, Chem. Com-mun., 2008, 1756~1758.
    [72] Zhang, J.; Chen, S.-M.; Bu, X.-H., Multiple functions of ionic liquids in the synthesis of three-dimensional low-connectivity homochiral and achiral frameworks, Angew. Chem., Int. Ed., 2008, 47: 5434~5437.
    [73] Chen, S.-M.; Zhang, J.; Bu, X.-H., Ionothermal synthesis of homochiral framework with acetate-pillared cobalt-camphorate architecture, Inorg. Chem., 2008, 47: 5434~5437.
    [74] Zhang, J.; Bu, X.-H., Temperature dependent charge distribution in three-dimensional homochiral cadmium camphorates, Chem. Commun., 2008, 444~446.
    [75] Uemura, T.; Horike, S.; Kitagawa, K., Polymerization in coordination nanos-paces, Chem. Asian. J., 2006, 1–2: 36~44.
    [76] Uemura, T.; Kitaura, R.; Ohta, Y. et al., Nanochannel-promoted polymerization of substituted acetylenes in porous coordination polymers, Angew. Chem., Int. Ed., 2006, 45: 4112~4116.
    [77] Uemura, T.; Kitagawa, K.; Horike, S.; et al., Radical polymerization of styrene in porous coordination polymer, Chem. Commun., 2005, 5968~5970.
    [78] Uppuluri, S.; Piehler, L. T.; Li, J. et al., Core-shell tecto(dendrimers): I. synthe-sis and characterization of saturated shell models, Adv. Mater., 2000, 12: 796~800.
    [79] Haupt, K. Imprinted polymers-tailor-made mimics of antibodies and receptors, Chem. Commun., 2003, 171~178.
    [80] Kitagawa, S.; Uemura, K. Dynamic Porous properties of coordination polymers inspired by hydrogen bonds, Chem. Soc. Rev., 2005, 34: 109~119.
    [81] Sekiya, R.; Nishikiori, S. A preparative strategy for supramolecular inclusion compounds by combination of dimer formation of isonicotinic acid and coor-dination bonding, Chem. Commun., 2001, 2612~2613.
    [82] Edgar, M.; Mitchell, R.; Slawin, A. M. Z. et al., Solid-state transformations of zinc 1,4-benzenedicarboxylates mediated by hydrogen-bond-forming molecules, Chem. Eur. J., 2001, 7: 5168~5175.
    [83] Holman, K. T.; Pivovar, A. M.; Swift, J. A. et al., Metric engineering of soft molecular host frameworks, Acc. Chem. Res. 2001, 34: 107~118.
    [84] Zhang, J.-P.; Wang, Y.-B.; Huang, X.-C. et al., Metallophilicity versusπ-πin-teractions: ligand-unsupported argentophilicity/cuprophilicity in oligo-mers-of-dimers [M2L2]n (M = CuI or AgI, L = tridentate ligand), Chem. Eur. J., 2005, 11: 552~561.
    [85] Moliner, N.; Mu?oz, M. C.; Real, J. A. Two-dimensional assembling of 4,4′-bipyridine and 4,4′-azopyridine bridged iron (II) linear coordination poly-mers via hydrogen bond, Inorg. Chem. Commun., 1999, 2: 25~27.
    [86] Du, M.; Li, C.-P.; Zhao, X.-J. et al., Interplay of coordinative and supramole-cular interactions in engineering unusual crystalline architectures of low-dimensional metal–pamoate complexes under co-ligand intervention, CrystEngComm, 2007, 9: 1011~1028.
    [87] Hoskins, B. F.; Robson, R., Design and construction of a new class of scaf-folding-like materials comprising infinite polymeric frameworks of 3d-linked molecular rods. a reappraisal of the Zn(CN)2 and Cd(CN)2 structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][Cu[I]Zn[II](CN)4] and Cu[I] [4, 4', 4'', 4'''-tetracyanotetraphenylmethane]BF4 C6H5NO2, J. Am. Chem. Soc., 1990, 112: 1546~1554.
    [88] Kondo, M.; Yoshitomi, T.; Seki, K. et al., Three-dimensional framework with channeling cavities for small molecules: {[M2(4, 4 -bpy)3(NO3)4]·xH2O}n (M = Co, Ni, Zn), Angew. Chem. Int. Ed. Engl. 1997, 36: 1725~1727.
    [89] Dong, Y.-B.; Ma, J. P.; Huang, R.-Q. et al., Synthesis and characterization of new coordination polymers generated from oxadiazole-containing organic li-gands and inorganic silver(i) salts, Inorg. Chem., 2003, 42: 294~300.
    [90] Du, M.; Bu, X.-H.; Guo, Y.-M. et al., First CuII diamondoid net with 2-fold in-terpenetrating frameworks. the role of anions in the construction of the supra-molecular arrays, Inorg. Chem., 2002, 41: 4904~4908.
    [91] Du, M.; Guo, Y.-M.; Chen, S.-T. et al., Preparation of acentric porous coordi-nation frameworks from an interpenetrated diamondoid array through anion-exchange procedures: crystal structures and properties, Inorg. Chem., 2004, 43: 1287~1293.
    [92] Du, M.; Zhao, X.-J.; Guo, J.-H. et al., Direction of topological isomers of sil-ver(I) coordination polymers induced by solvent, and selective anion-exchange of a class of PtS-type host frameworks, Chem. Commun., 2005, 4836~4838.
    [93] Dong, Y.-B.; Cheng, J.-Y.; Huang, R.-Q. et al., Self-assembly of coordination polymers from AgX (X = SbF6-, PF6-, and CF3SO3-) and oxadiazole-containing ligands, Inorg. Chem., 2003, 42: 5699~5706.
    [94] Song, J.; Cheng, Y.; Chen, L. et a1., Synthesis and characterization of polybi-naphthalene incorporating chiral (R) or (S)-1,1'-binaphthalene and oxadiazole units by Heck reaction, Eur. Polym. J., 2006, 42: 663~669.
    [95] Mochizuki, H.; Hasui, T.; Ikeda, T. Morphology control of oxadiazole compounds by introduction of amine moieties, Appl. Phys. Express, 2005, 44: 485~490.
    [96] Tang, C. W.; Vanslyke, S. A. Organic electroluminescent diodes, Appl. Phys. Lett., 1987, 51(12): 913~915.
    [97] Shoustikov, A.; You, Y. J. Orange and red organic light-emitting devices using aluminum tris(5-hydroxyquinoxaline), Synth. Metal., 1997, 91: 217~221.
    [98] Li, Y. Q.; Liu, Y.; Bu, W. M. Hydroxyphenyl-pyridine beryllium complex (bepp2) as a blue electroluminescent material, Chem. Mater., 2000, 12: 2672~2675.
    [99]王广,王立祥,景遐,含萘嗯二唑铍配合物的合成及光致发光和电致发光性能研究,高等学校化学学报,2003, 24(7): 1158~1160.
    [100] Tanaka, H.; Tokito, S.; Taga, Y. et a1., Novel metal-chem emitting materials based on polycyclic anomic ligands for electroluminescent device, J. Mater. Chem., 1998, 8(9): 1999~2001.
    [101] Du, M.; Jiang, X.-J.; Zhao, X.-J. Direction of unusual mixed-ligand met-al–organic frameworks: a new type of 3-D polythreading involving 1-D and 2-D structural motifs and a 2-fold interpenetrating porous network, Chem. Commun., 2005, 5521~5523.
    [102] Surble, S.; Serre, C.; Mellot-Draznieks, C. et al., A new isoreticular class of metal-organic-frameworks with the MIL-88 topology. Chem. Commun., 2006, 284~286.
    [103] Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W. et al., Reticular synthesis and the design of new materials, Nature, 2003, 423: 705~714.
    [104] Krawiec, P.; Kramer, M.; Sabo, M. et al., Improved hydrogen storage in the metal-organic framework Cu3(BTC)2, Adv. Eng. Mater., 2006, 8: 293~296.
    [105] Cavellec, M.; Riou, D.; Férey, G. Magnetic iron phosphates with an open framework, Inorg. Chim. Acta, 1999, 291: 317~325 and refs therein.
    [106] Barthelet, K., Riou, D.; Férey, G. [VIII(H2O)]3O(O2CC6H4CO2)3·(Cl,9H2O) (MIL-59): a rare example of vanadocarboxylate with a magnetically frustrated three-dimensional hybrid framework, Chem. Commun., 2002, 1492~1493.
    [107] Wu, D.-D.; Hu, A.; Zhang, L. et al., A Homochiral porous metal-organic framework for highly enantioselective heterogeneous asymmetric catalysis, J. Am. Chem. Soc., 2005, 127: 8940~8941.
    [108] Barthelet, K.; Marrot, J.; Riou, D. et al., A breathing hybrid organic-inorganic solid with very large pores and high magnetic characteristics, Angew. Chem., Int. Ed., 2002, 41: 281~284.
    [109] Huang, Y.-G., Wu, B.-L., Yuan, D.-Q. et al., New lanthanide hybrid as clus-tered infinite nanotunnel with 3D Ln-O-Ln framework and (3,4)-connected net, Inorg. Chem. 2007, 46: 1171~1176.
    [110] Huang Y-Q, Ding B, Song H-B, et al., A novel 3D porous metal–organic framework based on trinuclear cadmium clusters as a promising luminescent material exhibiting tunable emissions between UV and visible wavelengths, Chem. Commun., 2006, 4906~4908.
    [111] Yang, Y.; Clearfield, A. The preparation and ion-exchange properties of zirco-nium sulfophosphonates, React. Polymer, 1987, 5: 13~21.
    [112] Mori, W.; Takamizawa, S.; Kato, C. N. et al., Molecular-level design of effi-cient microporous materials containing metal carboxylates: inclusion complex formation with organic polymer, gas-occlusion properties, and catalytic activi-ties for hydrogenation of olefins, Microporous Mesoporous Mater., 2004, 73: 31~46.
    [113] Wang, S. Luminescence and electroluminescence of Al(III), B(III), Be(II) and Zn(II) complexes with nitrogen donors, Coord. Chem. Rev., 2001, 215: 79~98.
    [114] Wang, S., Hou, Y., Wang, E., et al., A novel organic-inorganic hybrid material with fluorescent emission: [Cd(PT)(H2O)]n (PT=phthalate), New J. Chem., 2003, 27: 1144~1147.
    [115] Maspoch, D.; Ruiz-Molina, D.; Wurtz, K. et al., Synthesis, structural and mag-netic properties of a series of copper(II) complexes containing a monocarbox-ylated perchlorotriphenylmethyl radical as a coordinationg open-shell ligand, Dalton Trans., 2004, 43: 1073~1082.
    [116] Lu, J., Li, Y., Zhao, K., et al., Novel oxalate coordination mode and roles: syn-thesis, structure and fluorescence property of [Cd2(μ5-ox)(μ3-OH)2] with 3-D structure, Inorg. Chem. Commun., 2004, 7: 1154~1156.
    [117] Xamena, F. X. L.; Corma, A.; Garcia, H. applications for metal-organic frameworks (MOFs) as quantum dot semiconductors, J. Phys. Chem. C, 2007, 111: 80~85.
    [118] Vaidhyanathan, R., Natarajan, S.; Rao, C. N. R. A chiral mixed carboxylate, [Nd4(H2O)2(OOC(CH2)3COO)4(C2O4)2], exhibiting NLO properties, J. Solid State Chem., 2004, 177: 1444~1448.
    [119] Zhou, G.-W., Lan, Y.-Z., Zheng, F.-K., et al., [Zn(C7H3O5N)]n·nH2O: A third-order NLO Zn coordination polymer with spiroconjugated structure, Chem. Phys. Lett., 2006, 426: 341~344.
    [120] Holman, K. T., Ward, M. D. Engineering crystal symmetry and polar order in molecular host frameworks, Science, 2001, 294: 1907~1911.
    [121] Forster, P. M.; Cheetham, A. K. Hybrid inorganic–organic solids: an emerging class of nanoporous catalysts, Top. Catal., 2003, 24: 79~86.
    [122] Clearfield, A.; Wang Z. K. Organically pillared microporous zirconium phos-phonates, J. Chem. Soc., Dalton Trans., 2002, 2937~2947.
    [123] Clearfield, A.; Wang Z. K.; Bellinghausen, P. Highly porous zirconium aryldi-phosphonates and their conversion to strong bronsted acids, J. Solid State Chem., 2002, 167: 376~385.
    [124] Evans, O. R.; Ngo, H. L.; Lin, W. Chiral porous solids based on lamellar lan-thanide phosphonates, J. Am. Chem. Soc., 2001, 123: 10395~10396.
    [125] Sawaki, T.; Aoyama, Y. Immobilization of a soluble metal complex in an or-ganic network. remarkable catalytic performance of a porous dialkoxyzirco-nium polyphenoxide as a functional organic zeolite analogue, J. Am. Chem. Soc., 1999, 121: 4793~4798.
    [126] Gomez-Lor, B.; Gutierrez-Puebla, E.; Iglesias, M. et al., In2(OH)3(BDC)1.5 (BDC = 1,4-benzendicarboxylate): an In(III) aupramolecular 3D framework with catalytic activity, Inorg. Chem., 2002, 41: 2429~2432.
    [127] Zou, R.-Q.; Sakurai, H.; Xu, Q. Preparation, adsorption properties, and catalyt-ic activity of 3D porous metal-organic frameworks composed of cubic building blocks and alkali-metal ions, Angew. Chem., Int. Ed., 2006, 45: 2542~2546.
    [128] Rowsell, J. L. C. Yaghi, O. M. Metal–organic frameworks: a new class of por-ous materials, Microporous Mesoporous Mater., 2004, 73: 3~14.
    [129] Férey, G.; Millange, F.; Morcrette, O. et al., Mixed-valence Li/Fe-based met-al-organic frameworks with both reversible redox and sorption properties, An-gew. Chem., Int. Ed., 2007, 46: 3259~3263.
    [130] Ahnfeldt, T.; Gunzelmann, D.; Loiseau, T. et al., Synthesis and modification of a functionalized 3d open-framework structure with MIL-53 topology. Inorg. Chem., 2009, 48: 3057~3064.
    [131] Manna, S. C.; Zangrando, E.; Ribas, J. et al., Cobalt(II)–(dpyo)–dicarboxylate networks: unique H-bonded assembly and rare bridging mode of dpyo in one of them [dpyo = 4,4’-dipyridyl N,N’-dioxide], Dalton Trans., 2007, 1383~1391.
    [132] Banerjee, S.; Lassahn, P.-G.; Janiak, C. et al., Supramolecular architecture of cadmium(II)-terephthalate complexes having a tridentate or tetradentate schiff base as blocking coligand, Polyhedron, 2005, 24: 2963~2971.
    [133] Choi, K.-Y.; Chun, K.-M.; Lee, K.-C. et al., Synthesis and characterization of nickel(II) complexes of hexaazamacrotetracyclic ligand containing organic li-gands, Polyhedron, 2002, 21: 1913~1920.
    [134] Zhang, H.-X.; Kang, B.-S.; Xu, A.-W. et al., Supramolecular architectures from the self-assembly of trans-oxamidato-bridged dicopper(II) building blocks and phenyldicarboxylates, J. Chem. Soc., Dalton Trans., 2001, 2559~2566.
    [135] Chen, B.-L.; Mok, K.-F.; Ng, S.-C. et al., Thiophene-2,5-dicarboxylic acid in-corporated self-assembly of one-, two- and three-dimensional coordination po-lymers, New. J. Chem., 1999, 23: 877~883.
    [136] Fun, H.-K.; Raj, S.S.S.; Xiong, R.-G. et al., A three-dimensional network coor-dination polymer, (terephthalato)(pyridine)cadmium, with blue fluorescent emission, J. Chem. Soc., Dalton Trans., 1999, 1915~1916.
    [137] Cano, J.; Munno, G.D.; Sanz, J.L. et al., Ability of terephthalate (ta) to mediate exchange coupling in ta-bridged copper(II), nickel(II), cobalt(II) and manga-nese(II) dinuclear complexes, J. Chem. Soc., Dalton Trans., 1997, 1915~1924.
    [138] Hong, C.S; Do, Y., A Magnetically coupled three-dimensional (terephthalato) manganese (II) network, Inorg. Chem., 1997, 36: 5684~5685.
    [139] Loiseau, T.; Serre, C.; Huguenard, C. et al., A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration, Chem. Eur. J., 2004, 10: 1373~1382.
    [140] Chen, S.-C.; Zhang, Z.-H.; Huang, K.-L. et al., Solvent-controlled assembly of manganese(II) tetrachloroterephthalates with 1D chain, 2D layer, and 3D coor-dination architectures, Cryst. Growth Des., 2008, 8: 3437–3445.
    [141] SAINT Software reference manual; Bruker AXS: Madison, WI, 1998.
    [142] Sheldrick, G. M. SHELXTL NT, Program for solution and refinement of crys-tal structures, version 5.1; University of G?ttingen: G?ttingen, Germany, 1997.
    [143] Addison, A. W.; Rao, T. N.; Reedijk, J. et al., Synthesis, structure, and spec-troscopic properties of copper(II) compounds containing nitrogen–sulphur do-nor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2-yl)-2,6-dithiaheptane]copper(II) per-chlorate, J. Chem. Soc., Dalton Trans., 1984, 1349~1356.
    [144] Perry, J. J.; McManus, G.; Zaworotko, M. J. Sextuplet phenyl embrace in a metal–organic Kagomélattice, Chem. Commun., 2004, 2534~2535.
    [145] Behera, J. N.; Paul, G.; Choudhury, A. et al., An organically templated Co(II) sulfate with the kagome lattice, Chem. Commun., 2004, 456~457.
    [146] Mahata, P.; Sen, D.; Natarajan, S. A three-dimensional metal–organic frame-work with a distorted Kagome related layer showing canted antiferromagnetic behaviour, Chem. Commun., 2008, 1278~1280.
    [147] Venkataraman, D.; Du, Y.; Wilson, S. R. et al., A coordination geometry table of the d-block elements and their Ions, J. Chem. Educ., 1997 74: 915~918.
    [148] Fitchett, C. M.; Steel, P. J. Chiral Heterocyclic Ligands. XIII. syhthesisi and X-ray crystal structure of a chiral, unidirectional silver coordination polymer, Aust. J. Chem., 2006, 59: 19~21.
    [149] Dorn, T.; Fromm, K. M.; Janiak, C. [Ag(isonicotinamide)2NO3]2-a satble form of silver nitrate, Aust. J. Chem., 2006, 59: 22~25.
    [150] Duriska, M. B.; Batten, S. R.; Price, D. J. An interpenetrating coordination po-lymer containing weak hydrogen bonds and argentophilic interactions, Aust. J. Chem., 2006, 59: 26~33.
    [151] Xie, Y.-B.; Li, J.-R.; Bu, X.-H. New coordination architectures of dithioether ligand with silver salts: effect of anions on complex structures, Aust. J. Chem., 2006, 59: 34~39.
    [152] Cunha-Silva, L.; Ahmad, R.; Hardie, M. J. coordination networks with carbo-rane anions: Ag(I) and nitrogen bridging ligands, Aust. J. Chem., 2006, 59: 40~48.
    [153] Zheng, S.-L.; Tong, M.-L.; Chen, X.-M. Silver(I)-hexamethylenetetramine mo-lecular architectures: from self-assembly to designed assembly, Coord. Chem. Rev., 2003, 246: 185~202.
    [154] Oxtoby, N. S.; Blake, A. J.; Champness, N. R. et al., Using multimodal ligands to influence network topology in silver(I) coordination polymers, PNAS, 2002, 99: 4905~4910.
    [155] Wu, H.-P.; Janiak, C.; Rheinwald, G. et al., 5,5’-Dicyano-2,2’-bipyridine silver complexes: discrete units or co-ordination polymers through a chelating and/or bridging metal–ligand interaction, J. Chem. Soc., Dalton Trans., 1999, 183~190.
    [156] Janiak, C.; Uehlin, L.; Wu, H.-P. et al., Coordination engineering: when can one speak of an“understanding”? case study of the multidentate ligand 2,2’-dimethyl-4,4’-bipyrimidine, J. Chem. Soc., Dalton Trans., 1999, 3121~3131.
    [157] Shimoni-Livny, L.; Glusker, J. P.; Bock, C. W. Lone pair functionality in diva-lent lead compounds, Inorg. Chem., 1998, 37: 1853~1867.
    [158] Pellissier, A.; Bretonnière, Y.; Chatterton, N. Relating structural and thermody-namic effects of the Pb(II) lone pair: a new picolinate ligand designed to ac-commodate the Pb(II) lone pair leads to high stability and selectivity, Inorg. Chem., 2007, 46: 3714~3725.
    [159] Reger, D. L.; Huff, M. F.; Rheingold, A. L. Reexamination of Lead(II) coordi-nation preferences in sulfur-rich sites: implications for a critical mechanism of lead poisoning, J. Am. Chem. Soc., 1992, 114: 579~9505.
    [160] Guilera, G.; Steed, J. W. Topological control in coordination polymers by non-covalent forces, Chem. Commun., 1999, 1563~1564.
    [161] Li, H.; Eddaoudi, M.; Groy, T. L. Establishing microporosity in open met-al-organic frameworks: gas sorption Isotherms for Zn(BDC) (BDC=1,4-benzenedicarboxylate), J. Am. Chem. Soc., 1998, 120: 8571~8572.
    [162] Li, H.; Davis, C. E.; Groy, T. L. et al., Coordinatively unsaturated metal centers in the extended porous framework of Zn3(BDC)36CH3OH (BDC = 1,4-Benzenedicarboxylate), J. Am. Chem. Soc. 1998, 120: 2186~2187.
    [163] Kurmoo, M.; Kumagai, H.; Green, M. A. et al., Two modifications of layered cobaltous terephthalate: crystal structures and magnetic properties, J. Solid State Chem., 2001, 159: 343~351.
    [164] Kaduk, J. A. Terephthalate salts of dipositive cations, Acta Cryst., 2002, B58: 815~822.
    [165] Fu, Y.-L.; Ren, J.-L.; Ng, S.W. The 1:2/3 adduct of manganese(II) terephthalate with N,N-dimethylformamide, Acta Cryst., 2004, E60: m1507~1509.
    [166] Huang, Z.-L.; Drillon, M.; Masciocchi, N. et al., Ab-initio XRPD crystal Structure and Giant Hysteretic Effect (Hc = 5.9 T) of a new hybrid terephtha-late-based cobalt(II) magnet, Chem. Mater., 2000, 12: 2805~2812.
    [167] Poulsen, R. D.; Bentien, A.; Christensen, M. et al., Solvothermal synthesis, multi-temperature crystal structures and physical properties of isostructural coordination polymers, 2C4H12N+[M3(C8H4O4)4]2-·3C5H11NO, M = Co, Zn, Ac-ta Cryst., 2006, B62: 245~254..
    [168] Jia, C. X. catena-Poly[[[diaquabis(N,N-dimethylformamide)cobalt(II)]-μ-1,4- benzenedicarboxylato-k2O:O'] N,N-dimethylformamide solvate monohydrate], Acta Cryst., 2007, E63: m615~m616.
    [169] Sun, D.-F.; Cao, R.; Bi, W.-H. et al., Syntheses and characterizations of a series of silver-carboxylate polymers, Inorg. Chim. Acta, 2004, 357: 991~1001.
    [170] Dale, S. H.; Elsegood, M. R. J.; Kainth, S. Poly[lead(II)-μ2-aqua-μ4 -terephthalato], Acta Cryst., 2004, C60: m76~m78.
    [171] Yang, J.; Li, G.-D.; Cao, J.-J. et al., Structural variation from 1D to 3D: effects of ligands and solvents on the construction of lead(II)-organic coordination po-lymers, Chem. Eur. J., 2007, 13: 3248~3261.
    [172] Schuy, A.; Ruschewitz, U. Z. Pb2(OH)2[p-O2C-C6H4-CO2]: Synthese und kris-tallstruktur, Anorg. Allg. Chem., 2005, 631: 659~662.
    [173] Etter, M. C. Encoding and decoding hydrogen-bond patterns of organic com-pounds, Acc. Chem. Res., 1990, 23: 120~126.
    [174] Spek, A. L. Single-crystal structure validation with the program PLATON, J. Appl. Crystallogr., 2003, 36: 7~13.
    [175] Liu, Q.-Y.; Wang, Y.-L.; Zhao, J. et al., Syntheses, crystal structures, and magnetic properties of copper(II) and manganese(II) compounds constructed from 5-sulfoisophthalic acid (H3SIP) and 2,2’-Bipyridine (bpy) Ligands, Eur. J. Inorg. Chem., 2008, 1157~1163.
    [176] Liu, Q.-Y.; Xu, L. (H2O)12-containing infinite chain encapsulated in supramo-lecular open framework built of cadmium(II), 1,3-di(4-pyridyl)propane and 5-sulfoisophthalic acid monosodium salt, CrystEngComm, 2005,7: 87~89.
    [177] Liu, Q.-Y.; Xu, L. Novel Structure evolution of lanthanide–sip coordination polymers (NaH2SIP = 5-sulfoisophthalic acid monosodium salt) from a 1D chain to a 3D network as a consequence of the lanthanide contraction effect, Eur. J. Inorg. Chem., 2005, 3458~3466.
    [178] Liu, Q.-Y.; Xu, L. Synthesis, crystal structures, and photophysical properties of two novel lead(II)–SIP coordination polymers (NaH2SIP = 5-sulfoisophthalic acid monosodium salt) containing tetranuclear lead(II) units, Eur. J. Inorg. Chem. 2006, 1620–1628.
    [179] Ludwig, R. Water: from clusters to the bulk, Angew. Chem., Int. Ed., 2001, 40: 1808~1827.
    [180] Etter, M. C. Encoding and decoding hydrogen-bond patterns of organic com-pounds, Acc. Chem. Res., 1990, 23: 120~126.
    [181] Vittal, J. J. Supramolecular structural transformations involving coordination polymers in the solid state, Coord. Chem. Rev., 2007, 251: 1781~1795.
    [182] Halder, G. J.; Kepert, C. J., Single-crystal-to-single-crystal structural transfor-mations in molecular framework materials, Aust. J. Chem., 2006, 59: 597~604.
    [183] Dybtsev, D. N.; Chun, H.; Kim, K., Rigid and flexible: a highly porous met-al-organic framework with unusual guest-dependent dynamic behavior, Angew. Chem., Int. Ed., 2004, 43: 5033~5036.
    [184] Chen, C.-L.; Goforth, A. M.; Smith, M. D. et al., Co2(ppca)2(H2O)(V4O12)0.5]: A framework material exhibiting reversible shrinkage and expansion through a single-crystal-to-single-crystal transformation involving a change in the cobalt coordination environment, Angew. Chem., Int. Ed., 2005, 44. 6673~6677.
    [185] Biradha, K.; Fujita, M., A springlike 3D-coordination network that shrinks or swells in a crystal-to-crystal manner upon guest removal or readsorption, An-gew. Chem., Int. Ed., 2002, 41: 3392~3395.
    [186] Abrahams, B. F.; Hardie, M. J.; Hoskins, B. F. et al., Topological rearrangement within a single crystal from a honeycomb cadmium cyanide [Cd(CN)2]n 3D net to a diamond net, J. Am. Chem. Soc., 1992, 114: 10641~10643.
    [187] Kepert, C. J.; Rosseinsky, M. J. Zeolite-like crystal structure of an empty mi-croporous molecular framework, Chem. Commun., 1999, 375~376.
    [188] Maji, T. K.; Uemura, K.; Chang, H.-C. et al., Expanding and shrinking porous modulation based on pillared-layer coordination polymers showing selective guest adsorption, Angew. Chem., Int. Ed., 2004, 43: 3269~3272.
    [189] Cheng, X.-N.; Zhang, W.-X.; Lin, Y.-Y. et al., A dynamic porous magnet exhi-biting reversible guest-induced magnetic behavior modulation, Adv. Mater., 2007, 19, 1494~1498.
    [190] Xue, D.-X.; Lin, Y.-Y.; Cheng, X.-N. et al., A tetracarboxylate?bridged dicop-per(ii) paddle-wheel-based 2-D porous coordination polymer with gas sorption properties, Cryst. Growth Des., 2007, 7, 1332~1336.
    [191] Suh, M. P.; Ko, J. W.; Choi, H. J., A metal?organic bilayer open framework with a dynamic component: single-crystal-to-single-crystal transformations, J. Am. Chem. Soc., 2002, 124, 10976~10977.
    [192] Zeng, M.-H.; Feng, X.-L.; Chen, X.-M., Crystal-to-crystal transformations of a microporous metal–organic laminated framework triggered by guest exchange, dehydration and readsorption, Dalton Trans., 2004, 2217~2223.
    [193] Bradshaw, D.; Warren, J. E.; Rosseinsky, M. J. Reversible concerted ligand substitution at alternating metal sites in an extended solid, Science, 2007, 315: 977~980.
    [194] Takaoka, K.; Kawano, M.; Tominaga, M., In situ observation of a reversible single-crystal-to-single-crystal apical-ligand-exchange reaction in a hydro-gen-bonded 2D coordination network, Angew. Chem., Int. Ed., 2005, 44: 2151~2154.
    [195] Hu, C.-H.; Englert, U., Crystal-to-crystal transformation from a chain polymer to a two-dimensional network at low temperatures, Angew. Chem., Int. Ed., 2005, 44: 2281~2283.
    [196] Zhang, J.-P.; Lin, Y.-Y.; Zhang, W.-X., Temperature- or guest-induced drastic single-crystal-to-single-crystal transformations of a nanoporous coordination polymer, J. Am. Chem. Soc., 2005, 127, 14162~14163.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700