用户名: 密码: 验证码:
汶川地震强震动记录分析及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震工程的研究手段主要包括:震害调查、强震观测、模型试验和数值分析,由于大地震本身较少,同时造成严重震害并且获得强震动记录的大地震就更少,一般的研究就更多的集中在利用模型试验和数值分析方面,而基于震害调查和强震观测的研究较少,在国内这一点更为突出,我国虽然是一个遭受地震灾害非常严重并且对地震进行记录和研究最早的国家,但是在汶川地震之前近断层强震动记录一直非常匮乏。2008年5月12日发生在四川省的汶川8.0级大地震震动强度大、影响范围广,对我国造成了巨大的经济损失和人员伤亡,再一次表明了抗震减灾工作的必要性和重要性。这一次地震中收集到了大量的近断层强震动记录,并且在震后进行了大量的震害调查工作,这两项资料极大的丰富了我国大地震和震害的研究素材,为对汶川地震展开科学研究工作奠定了基础。本文利用近断层强震动记录和建筑物的现场调查资料,以强震记录为主线首先对近断层强震动记录进行了校正处理、分析了速度和位移特征,然后利用强震动记录估算了地面倾斜情况,接着利用近断层强震动记录反演了本次地震的震源破裂分布情况,最后分析了震害分布的特征及其和强震动参数之间的相关性,得到了以下一些认识和成果:
     1.系统回顾了自强震动仪发明和应用以来,在模拟记录和数字记录两阶段对近断层加速度记录进行校正的发展历程和方法,分析了六类噪音源的影响,把校正方法分成两类5种,分析了每种方法的要点,并明确提出了评估校正结合合理性的6条准则。指出了汶川地震中记录漂移的复杂性,把漂移类型分成了6大类,其中起始漂移和复杂漂移为首次提出。分析了零线调整数据选取不同造成的校正误差,明确指出应使用地震波到达之前部分要优于整个事前部分。根据漂移特征,改进了单段式和双段式校正方法,并提出了分部校正方法。研究了校正前后加速度的差异,指出对峰值影响很小,而傅里叶谱和反应谱在长周期部分(约15s以上)可能会有极大差异。根据校正结果研究了速度脉冲的单双侧性和周期特征,给出了脉冲幅值在14cm/s以上的存在区域,分析了上下盘、方向性效应对速度脉冲的影响。并通过PGV/PGA的比值来分析了对脉冲的判断,指出存在脉冲时该比值要明显大于没有脉冲时的情况。利用小波分析方法给出了控制速度和位移的加速度成分,显示了三者不同的频段特性。结合GPS结果指出了位移场的特征,并统计了永久位移同断层距之间的关系。比较了PGA、PGV、PGD以及RGD之间的关系,对定性判断各个值的大小提供了基本参考。最后分析了单、双侧滤波的影响,结果表明滤波后的PGV、PGD和RGD同真实结果会有很大的差异。
     2.根据传感器摆的运动方程,分析了地面倾斜对三分量加速度记录影响的差异,表明地面倾斜对水平向记录可能产生明显的影响,影响的频段主要集中在低频部分。介绍了基于傅里叶谱比和小波变换来从加速度记录中估算地面倾斜值的方法,并使用谱比法计算了主震中近断层36个台站和6个余震中12个台站处的地面倾斜值,结果表明主震中的地面倾斜基本在1.0°以下,部分台站处存在地面残余倾斜值。倾斜结果表明发生0.1°倾斜的地方基本在断层距30km以内,在断层距100km以外或者均方根加速度值小于200cm/s2时则很少发生0.01°以上的地面倾斜情况。根据主震倾斜结果分析了离中央地表破裂迹线和前山地表破裂迹线最近的两个台站倾斜、断层法线和平行向倾斜、上下盘地面倾斜以及逆冲段和走滑段倾斜、谱比与倾斜等情况的特征和差异。余震倾斜结果表明很少出现大于0.001°以上的地面倾斜值,在5.3级以下地震引发0.001°以上倾斜的可能性非常低。进一步分析了水平向记录地面倾斜和积分漂移之间的关系,结果表明倾斜对应的低频段积分结果基本上与整个记录的积分重合,但是相对于漂移的普遍性,估算出存在明显倾斜的台站要少很多,并根据校正前后傅里叶谱比的差异探讨了特征频率的合理取值。
     3.总结回顾了基于观测记录反演震源过程的研究进展,分析了使用远场测震记录和近场强震记录进行反演之间的差异。系统的阐述了使用近断层强震记录进行反演中涉及的震源理论、模型离散和方程形成、相关约束、反演理论以及多时间窗反演等相关内容,提出了使用条件数来确定约束因子的方法并使用数值算例进行了验证。结合汶川地震的地质构造背景、地表破裂调查数据和既有的反演结果,建立了单一平面破裂模型,对比选择了适当的发震时刻作为起始时刻,指出了强震记录地震波初到时的选取方法并校正了选取的120km以内的44个台站记录的到时。根据反演能力把子断层划分为5km*5km,共计512个子源,结合分辨能力的要求和记录中噪音的特征,确定了用于反演的速度时程的频段为0.05~1hz。利用程序包COMPSYN计算理论地震图,并对其进行了适当的修改以便于进行反演方程的形成,利用非负最小二乘方法计算了1~4个时间窗下不同约束权重和数据组时断层面上滑动量的分布,结果同地表破裂调查结果和既有的反演结果之间的主要特征符合得较好。
     4.回顾了我国震害评估的历史和发展,介绍了震害指数的提出和使用方法,并总结对比了其在行业标准和国家标准中的发展过程。介绍了汶川地震中使用震害指数对170个调查场点五类建筑物的调查结果,结合实际震害分析了断层、地形和土层对建筑震害的影响情况。统计给出了5类建筑的震害指数和烈度区的关系,结果显示了2008版中国地震烈度表中对建筑分类的合理性,分析了在Ⅵ度和Ⅺ度区内平均震害指数异常的原因。分析了震害指数离断层距增加而衰减的特点,指出使用双对数线性关系可以较好的表示这种衰减关系,给出了相关的拟合参数。利用震害指数对比和衰减特征分析了
     5类建筑的抗震能力的差异,并指出建筑震害之间具有高度线性相关性。提出了归一化方法来对分析PGA和震害指数之间的关系,指出归一化后的水平向记录的PGA衰减曲线和砖混建筑的比较接近,而竖向偏低。选用与强震台站相距在0.1°以内的调查点分析了震害指数与PGA、PGV,以及反应谱峰值之间的线性相关性,结果表明砖混和砖木建筑同PGA、PGV的线性相关系数在0.7~0.8之间,而老旧建筑与其相关系数基本在0.3以下,并且总体上与PGA和PGV的相关性没有明显区别。建筑震害指数与反应谱峰值的线性相关性与此前两类比较接近,总体上来说使用时程峰值或者反应谱峰值来预测砖混和砖木建筑的震害情况会更为可靠。
Field investigation, strong motion observation, model testing and numerical simulation are major research methodologies in earthquake engineering. For great earthquake in concerning area is infrequent, the later two methods are dominated in most time, especially in China, which suffered from many great earthquake, but lacking strong motion recordings before Wenchuan earthquake. The Ms8.0 Wenchuan earthquake in 2008 caused strong ground shake in large area and resulted in tremendous economic loss and more than 80 thousand people injured or killed. Thousands of strong ground motions were recorded in near-fault area during the main shock and dense field investigations were conducted in damaged area. Based on the recordings, the baseline correction, characteristics of velocity and displacement and ground surface tilt in near-fault area and source process were studied. The distribution and comparison of buildings damage data were analyzed and the relationship between buildings damage and strong motion parameters were also studied in this dissertation.
     1. The history of baseline correction for near-fault strong motion recordings in analog and digital recording phases was detailed systematically revised. The influence of six noise resources was analyzed. Correction methods were divided into two categories and five models and the essentials of each method were analyzed. A test criterion for corrected results was proposed. Based on the complexity, the drifting phenomenon in Wenchuan earthquake was divided in six types, including two unreported types. A better data selection for zero-line adjustment was put forward. Common single segment and two segments correction methods were modified and a new two-phase method was proposed to correct the recordings. The changes caused by correction in peak acceleration, Fourier spectrum and response spectrum were analyzed. Based the corrected results, the period of velocity pulse and its single or double sides characteristics were studied. The distribution area of pulse amplitude more than 14cm/s was displayed. The influence of hanging/foot wall and directivity effects to analyzed. The PGV/PGA was recommended to identify velocity pulse. Wavelet transform was employed to study the different dominant frequency in acceleration for velocity and displacement. Combined with GPS results, the displacement field and the attenuation of permanent displacement were analyzed. The PGA, PGV, PGD and RGD (residual ground displacement) were compared to give preliminary judgment. The great effect of filtering on PGV, PGD and RGD was demonstrated
     2. According to the dynamic equation of sensor pendulum, discrepancy of influence on three components of acceleration imposed by ground surface tilt was analyzed. Results demonstrate that the ground surface tilt may have obvious influence on horizontal components, especially on the low-frequency band. The estimate method of ground surface tilt by acceleration based on Fourier spectrum ratio and wavelet transform were introduced. The ground surface tilt of near-fault 36 stations during main shock and 12 stations from 6 postshocks by spectrum ratio method were calculated. Main shock results demonstrated that the tilt was mainly less than 1.0°and residual tilt existed in some stations, and the tilt larger than 0.1°was within 30km to rupture trace, and the tilt of 0.01°rarely happened where the rupture distance was more than 100km or the root-mean-square of accerleration is less than 200cm/ s2. The characteristics of tilt of two station nearest to central and front rupture trace, and tilt of normal and parallel to fault, tilt in hanging wall/footwall, tilt in thrust and strike-slip segment, and relationship between spectrum ration were discussed. The results of postshocks showed that the tilt larger than 0.001°was seldom observed, and hardly in Ms≤5.3 earthquakes. Furthermore, the relevance of integration drifting and ground surface tilt of horizontal components was investigated, which showed that the former had a predominant influence on the accelerogram: the integration result of low-frequency stage affected by the ground surface tilt coincided with that of whole accelerogram. But the tilt is not as common as drifting. The discrepancy of Fourier spectrum ratio of uncorrected and corrected accelerogram and optimum value of characteristic frequency were discussed.
     3. The history of seismic source process inversion using seismic recordings was reviewed and discrepancy using far-field and near-fault recordings was discussed. Based on the systematic description of Seismic source theory, model discretization, mathematic equation assembling, constraint, inversion theory and multiple-time-window inversion method were systematic stated to conduct rupture process inversion using near-fault strong recordings. A method based on condition number to determine optimal constraint factor was put forward and testified by numerical examples. Combing with the tectonic background, surface rupture investigation and existing inversion results, a single-plane rupture model was set up. An appropriate occurrence time was chosen as the origin time, and first time of 44 stations within 120km to rupture trace was picked and corrected. The fault plane was divided into 512 sub-faults with the size of 5km*5km. According to the characteristics of noise in the record and requirements of resolution, the velocity was filtered to 0.05Hz~1Hz to be used in inversion. The theoretical seismograms were calculated by software package COMPSYN, which was modified in favor of formation of inversion equation. The fault slips under 1~4 time windows with different constraint factors and data were calculated using nonnegative least squares. The results fitted well field investigation and other inversion results.
     4. Seismic damage evaluation development in China was reviewed, and initiation and application of earthquake damage index were introduced. Its development in industrial and national standards was compared. Field investigation on 170 spots about 5 building types using damage index in the WenChuan Earthquake were introduced. Influence of fault, geography and soil condition to damage was demonstrated with specific spots. Statistical relation between damage indexes and intensity zones were brought out, which confirmed the classification of buildings in the Chinese Seismic Intensity Scale (2008). Reasons for average damage index exception inⅥandⅪzones were presented. The characteristics of damage index attenuation with fault distance were analyzed and double-log-linear function was proposed to fit their relation1. The fitting parameters were given. Based on the comparison and attenuation characteristic, earthquake resistance capability and correlation of 5 building types were studied. A normalization method was proposed to analyze the relation between PGA and damage index. It showed normalized horizontal PGA was close to brick-concrete building damage index in attenuation and the vertical would underestimate. Pairs of strong motion station and filed investigation spot whose distance was less than 0.1°were chosen to analyze the correlation between earthquake damage index and seismic parameters, including PGA, PGV and response spectrum amplitude. Results showed that the linear correlation coefficient between damage index of brick-concrete building and brick-timber building and PGA, PGV lied in 0.7 to 0.8, but its bellow 0.3 for old buildings, and there was no significant difference between PGA and PGV. The correlation between damage index and response spectrum amplitude was similar to the above two. Generally, it would be more reliable to predict earthquake damage of brick-concrete and brick-timber buildings those strong motion parameters.
引文
[1] Aki K,Richard P.定量地震学:理论和方法,第1卷[M].北京:地震出版社,1986
    [2]蔡学林,曹家敏,朱介寿等.龙门山岩石圈地壳三维结构及汶川大地震成因浅析[J].成都理工大学学报(自然科学版),2008,35(4):357~365
    [3]曹振中,侯龙清等.汶川8.0级地震液化震害及特征[J].岩土力学,2010,31(11):3549~3555
    [4]陈学波,吴跃强,杜平山等.龙门山构造带两侧地壳速度结构特征[M].国家地震局科技监测司编,中国大陆深部构造的研究与进展,北京:地震出版社,1988
    [5]陈运泰,顾浩鼎.震源理论[M].北京:中国科学技大学研究生院讲义,1990
    [6]陈运泰,黄立人,林邦慧等.用大地测量资料反演的1976年唐山地震的位错模式[J].地球物理学报,1997,22(3):201~217
    [7]陈运泰,许力生,张勇等.2008年5月12日汶川特大地震震源特性分析报告,2008,available at: http://www.csi.ac.cn/sichuan/chenyuntai.pdf
    [8]大崎顺彦著,田琪译.地震动的谱分析入门(第二版)[M].北京:地震出版社,2008
    [9]邓起东,陈社发.龙门山及其邻区的构造和地震活动及动力学[J].地震地质,1994,16(4):389~403
    [10] GB/T17742-1999,中国地震烈度表[S]
    [11] GB/T17742-2008,中国地震烈度表[S]
    [12]刁桂苓,蔡华昌,刁坚信等.1998年张北6.2级地震宏观烈度[J].华北地震科学,2001,19(1):23~30
    [13]丁海平,刘启方等.三维地震动场数值模拟并行计算系统[J].地震工程与工程振动,2004,24(2):19~22
    [14]非明伦,崔建文,赵永庆等.施甸地震震害分析[J].地震研究,2002,25(2):192~199
    [15]葛新权.应用数理统计[M].北京:中国铁道出版社,1995.
    [16]郭子雄,刘阳,杨勇.结构震害指数研究评述[J].地震工程与工程振动,2004,24(5):56~61
    [17]高孟潭,陈学良,俞言祥等.汉源烈度异常机理的初步探讨[J].震害防御技术,2008,3(3):216~223
    [18]谷军明,缪升,杨海名.云南地区穿斗木结构抗震研究[J].工程抗震与加固改造,2005,27(s):205~210
    [19]国务院新闻办,四川汶川地震及灾害损失评估,2008,http://news.xinhuanet.com/video/ 2008-09/04/content_9772489.htm
    [20]郝敏,谢礼立,李伟.从集集地震看建筑物震害与地震动参数的关系[J].地震工程与工程振动,2005,25(6):12~15
    [21]何旭初,1985.广义逆矩阵的基本理论和计算方法[M],上海:上海科学技术出版社,109~143
    [22]胡进军.近断层地震动方向性效应及超剪切破裂研究[D].中国地震局工程力学研究所博士论文, 2009
    [23]胡聿贤.地震安全性评价技术教程[M].北京:地震出版社,1999
    [24]胡聿贤.地震工程学[M].北京:地震出版社,2006
    [25]刘鹏程,纪晨,Hartzell SH.改进的模拟退火-单纯※综合反演方法[J].地球物理学报,1995,38(2):199~204
    [26]李传友,叶建青,谢福仁等.汶川Ms8.0地震地表破裂带北川以北段的基本特征[J].地震地质,2008,30(3):485~496
    [27]李杰.与震害指数相联系的地震损失估计公式[J].世界地震工程,1992,8(1):45~47.
    [28]李立,金国元.攀西裂谷带及龙门山断裂带地壳、上地幔的大地电磁测深研究[J].物探与化探,1987,11(3):12~19
    [29]李启成,景立平.经验格林函数方法的理论探讨[J].地震工程与工程真的,2010,30(3):39~44
    [30]李勇,黄润秋,周荣军等.龙门山地震带的地质背景与汶川地震的地表破裂[J].工程地质学报,2009,17(1):3~16
    [31]李勇,孙爱珍.龙门山造山带构造地层学研究[J].沉积学杂志,2000,24(3):201~206
    [32]廖振鹏.工程波动理论导论(第二版).北京:科学出版社,2002
    [33]林旭川,潘鹏,叶列平等.汶川地震中典型RC框架的震害仿真与分析[J].土木工程学报,2009,42(5):13~20
    [34]叶列平,陆新征,赵世春等.框架结构地震倒塌能力的研究—汶川地震极震区几个框架结构震害案例的分析[J].建筑结构学报,2009,30(6):67~76
    [35]刘良林,王全凤,林煌斌.基于震害指数地震灾害预测方法的可行性[J].江西科学,2007,25(3):330~333
    [36]刘启方,丁海平等.三维地震断层动力破裂的显式并行有限元解法[J].地震工程与工程振动,2003,23(004):22~28
    [37]刘启方.基于运动学和动力学震源模型的近断层地震动研究[D].中国地震局工程力学研究所博士论文,2005
    [38]刘如山,张美晶等.汶川地震四川电网震害及功能失效研究[J].应用基础与工程学报,2010,S1:27~35
    [39]江汶香.近场强震动加速度记录的校正处理方法[D].中国地震局工程力学研究所硕士论文,2009
    [40] Mozaffari M,吴忠良,陈运泰.用经验格林函数方法研究澜沧-耿马Ms=7.6地震的破裂过程[J].地震学报,1998,20(1):1~11
    [41]吕西林,程海江,卢文胜等.两层轻型木结构足尺房屋模型模拟地震振动台试验研究[J].土木工程学报,2007,40(10):41~49
    [42]彭小波,李小军,刘启方等.汶川8级地震的震害指数特性分析[C].纪念汶川地震一周年研讨会论文集,地震出版社,2009a
    [43]彭小波,刘浪,李小军等.汶川地震中震害指数和地震动相关性分析[C].全国土木工程博士生学术论坛优秀论文集,长沙:中南大学出版社,2009b,420~425
    [44]彭小波,李小军,刘泉.数字加速度记录基线校正相关问题的初步研究[J].世界地震工程,2010a,26(s):101~106
    [45]彭小波,李小军.基于强震动记录的汶川地震中主震和余震地面倾斜分析[J].土木建筑与环境工程,2010b,32(s)
    [46]清华大学、西南交通大学、北京交通大学土木工程结构专家组.汶川地震建筑震害分析[J].建筑结构学报,2008,29(4):1~9
    [47]任俊杰,张世民.汶川8级地震地表破裂带特征及其构造意义[J].大地测量与地球动力学,2008,28(6):47~52
    [48]施伟华,陈坤华,李善等.2007年宁洱6.4级地震的震害指数与烈度[J].地震研究,2007,30(4):379~383.
    [49]施伟华,崔建文,包一峰等.姚安6.5级地震场地与震害的关系[J].地震研究,2003,26(1),86~91.
    [50]宋鸿彪.龙门山造山带地质和地球物理资料的综合解释[J].成都理工学院学报,1994,21(2):79~88
    [51]孙景江,唐玉红,孙忠贤等.汶川地震Ⅷ度和Ⅶ度区城市房屋震害及若干典型震害讨论[J].地震工程与工程振动,2009,29(6):65~73.
    [52]通海地震影响场调查组.通海地震的烈度分布与场地影响[A].地震工程研究报告集.北京:科学出版社,1977.
    [53]王椿镛,Mooney WD,王溪莉等.川滇地区地壳上地幔三维速度结构研究[J].地震学报,2002,24(2):1~16
    [54]王东升,郭迅等.汶川大地震公路桥梁震害初步调查[J].地震工程与工程振动,2009,29(3):84~94
    [55]王国权.921台湾集集地震近断层地面运动特征[D].中国地震局地质研究所博士论文,2001
    [56]王国权,周锡元.921台湾集集地震近断层强震记录的基线校正[J].地震地质,2004,26(1):1~14
    [57]王家映.地球物理反演理论[M].北京:高等教育出版社,2002
    [58]王京哲,朱晞.近场地震速度脉冲下的反应谱加速度敏感区[J].中国铁道科学,2003,24(6):27~30
    [59]王卫民,赵连锋,李娟等.四川汶川8.0级地震震源过程[J].地球物理学报,2008,51(5):1403~1410
    [60]王锡财,崔建文,施伟华等.施甸5.9级地震房屋震害分析[J].自然灾害学报,2002,11(1):74~80
    [61]王彦飞.反演问题的计算方法及其应用[M].北京:高等教育出版社,2007
    [62]吴建平,明跃红,王椿镛.川滇地区速度结构的区域地震波形反演研究[J].地球物理学报,2006,49(5):1367~1376
    [63]吴树仁,石菊松等.四川汶川地震地质灾害活动强度分析评价[J].地质通报,2008,27(11):1900~1906
    [64]夏珊,刘爱文.抗震设防地区评定地震烈度的平均震害指数法[J].地震学报,31(1):92~99
    [65]谢毓寿.新的中国地震烈度表[J].地球物理学报,1957,6(1):35~47
    [66]熊力红,杜修力,陆鸣等.5.12汶川地震中多层房屋典型震害规律研究[J].北京工业大学学报,2008,34(11):1166~1172.
    [67]胥颐,黄润秋,李志伟等.龙门山构造带及汶川震源区的S波速度结构[J].地球物理学报,2009,52(2):329~338
    [68]徐锡伟,闻学泽,叶建青.汶川Ms8.0地震地表破裂带及其构造[J].地震地质,2008,30(3):894~926
    [69]徐锡伟,陈桂华,于贵华等.5.12汶川地震地表破裂基本参数的再论证及其构造内涵分析[J].地球物理学报,2010,53(10):2321~2336
    [70]许才军,刘洋,温扬茂.利用GPS资料反演汶川Mw7.9级地震滑动分布[J].测绘学报,2009,38(3):195~215
    [71]闫伟,牛安福,汶川8.0级地震前后全国倾斜场变化初步分析[J].国际地震动态,2009,4:87~47
    [72]殷跃平.汶川八级地震地质灾害研究[J].工程地质学报,2008,16(4):433~444
    [73]于海英,江汶香,谢全才等.近场数字强震记录误差分析与零线校正方法[J].地震工程与工程振动,2009,29(6):1~12.
    [74]袁一凡.四川汶川8.0级地震损失评估[J] .地震工程与工程振动,2008,28(5):10~19
    [75]张创军,牛福安.汶川8.0级地震前后陕西地区地倾斜特征迁移分析[J].大地测量与地球动力学,2009(Supp.):11~15
    [76]中国科学院工程力学研究所.《中国地震烈度表(1980)》说明书,1980
    [77]张敏政,汶川地震中都江堰市的房屋震害[J].地震工程与工程振动,2008,28(3):1~6
    [78]张建毅,薄景山等.玉树地震地表破裂对建筑物影响的分析[J].地震工程与工程振动,2010,30(6):24~31
    [79]张培震.GPS测定的2008年汶川Ms8.0级地震的同震位移场[J].中国科学(D辑):地球科学,2008,38(10):1195~1206
    [80]张勇,冯万鹏,许力生等.2008年汶川大地震的时空破裂过程[J].中国科学(D辑):地球科学,2008a,38(10):1186~1194
    [81]张勇.震源破裂过程反演方法研究[D].北京大学博士学位论文,2008b
    [82]张勇,许力生,陈运泰.2008年汶川大地震震源机制的时空变化[J].地球物理学报,2009,52(2):379~389
    [83]赵斌,吕品姬等.汶川Ms8.0地震同震倾斜应变变化分析[J].大地测量与地球动力学,2010,30(3):17~21
    [84]赵珠,范军,郑斯华等.龙门山断裂带地壳速度结构和震源位置的精确修定[J].地震学报,1997,19(6):615~622
    [85]赵珠,陈农.龙门山断裂带四川北段震源位置的精确修定[J].四川地震,1995,4:19~30
    [86]周荣军,黄润秋,雷建成等.四川汶川8.0级地震地表破裂与震害特点[J].岩石力学与工程学报,2008,27(11):2173~2175
    [87]周仕勇,陈晓非等.近震源破裂过程反演研究—I方法和数字试验[J].中国科学(D辑):地球科学,2003,36(1):49~58.
    [88]周仕勇,陈晓非.近震源破裂过程反演研究Ⅱ. 9.21中国台湾集集地震破裂过程的近场反演[J].中国科学(D辑):地球科学,2006,36(1):49~58
    [89]周雍年.中国大陆的强震动观测[J].国际地震动态,2006,11:1~6
    [90]周正华,温瑞智,卢大伟等.汶川地震中强震动台基墩引起的记录异常分析[J].应用基础与工程科学学报,2010,18(2):304~312
    [91] Abrahamson NA. Near fault ground motions. Available at: http://civil.eng.buffalo.edu/webcast/abrahamson/presentation_files/frame.htm, 2001
    [92] Aki K. Seismic displacement near a fault[J]. J. Geophys. Res., 1968, 73: 5359~5376
    [93] Akkar S, Boore D M. On baseline corrections and uncertainty in response spectra for baseline variations commonly encountered [J]. Bulletin of the Seismological Society of Ameirca, 2009, 99(3):1671~1690
    [94] Alavi B, Krawinkler H. Consideration of near fault ground motion effects in seismic design[C]. Proceeding 12th World Conference on Earthquake Engineering, New Zealand, 2000.
    [95] Anderson J and Richards P. Comparison of strong ground motion from severaldislocation models[J].Geophysical Journal International, 1975, 42(2): 347~373.
    [96] Ansare A, Noorzad A, Zafarani N and et al. Correction of highly noisy strong motion records using a modified wavelet de-noising method [J]. Soil Dynamic and Earthquake Engineering, 2010, 30(11):1168~1181
    [97] Berg G V and Housner G W. Integrated velocity and displacement of strong earthquake ground motion [J]. Bulletin of the Seismological Society of America,1961,51(2):175~189
    [98] Boore D M. Effect of baseline corrections on displacements and response spectra for several recordings of the 1999 Chi-Chi, Taiwan, earthquake [J]. Bulletin of the Seismological Society of America,2001,91(5): 1199~1211
    [99] Boore D M, Stephens C D, Joyner W B. Comments on baseline correction of digital strong-motion data: examples from the 1999 Hector Mine, California, earthquake [J]. Bulletin of the Seismological Society of America, 2002, 92(4): 1543~1560
    [100] Boore D M. Analog-to-digital conversion as a source of drifts in displacements derived from digital recordings of ground acceleration [J]. Bulletin of the Seismological Society of America, 2003, 93(2):674~693
    [101] Boore D M, Bommer J J. Processing of strong-motion accelerograms: needs, options and consequences [J]. Soil Dynamics and Earthquake Engineering, 2005, 25(2): 93~115
    [102] Bouchon, M. and AKI K. Simulation of long-period, near-field motion for the great California earthquake of 1857[J]. Bulletin of the Seismological Society of America, 1980, 70(5): 1669~1682.
    [103] Boyce W H. Integration of accelerograms [J]. Bulletin of the Seismological Society of America, 1970,60(1):261~263
    [104] Bray J D, Rodriguez-Marek A. Characterization of forward-directivity ground motions in the near-fault region[J]. Soil Dynamics and Earthquake Engineering, 2004, 24(1): 815~828
    [105] Burridge R and Knopoff L. Body force equivalents for seismic dislocations. Bulletin of the Seismological Society of America, 1964, 54(6A): 1875~1888.
    [106] Chanerley A A, Alexander N A and Halldorsson B. On fling and baseline correction using quadrature mirror filters [J]. Proceedings of the 12th International Conference on Civil, Structure and Environmental Engineering Computing, Paper 177, Madeira, Portugal, 1~4 Sept. 2009.
    [107] Chanerley A A, Alexander N A, Halldorsson B and et al. Baseline correction made easier using an automated method based on the wavelet transform[C]. 9th US National and 10th Canadian Conference on Earthquake Engineering,Paper 358,2010a, Toronto, Canada.
    [108] Chanerley A A, Alexander N A. Obtaining estimates of the low-frequency‘fling’instrument tilts and displacement timeseries using wavelet decomposition [J]. Bulletin of Earthquake Engineering, 2010b, 8(2): 231~255
    [109] Chao W A, Wu Y W and Zhao L. An automatic scheme for baseline correction of strong-motion records in coseismic deformation determination [J]. Journal of Seismology, 2010, 14(3): 195~504
    [110] Chen S M, Loh C H. Estimating permanent ground displacement from near-fault strong-motion accelerograms [J]. Bulletin of the Seismological Society of America, 2007, 97(1): 63~75
    [111] Chen X. F., Seismolograms synthesis in multi-layered half-space(Ⅰ): theoretical formulation[J]. Earthquake Res. in China,1999a 13: 1~11
    [112] Chen X F., Seismogram synthesis for multi-layered media with irregular interfaces by global generalized reflection/transmission matrices method. I. Theory of two-dimensional SH case." Bulletin of the Seismological Society of America, 1999b, 80(6A): 1696~1724.
    [113] Chen X F. and Zhang H M. An Efficient Method for Computing Green's Functions for a Layered Half-Space at Large Epicentral Distances. Bulletin of the Seismological Society of America, 2001, 91(4): 858~869.
    [114] Chiu H. Stable baseline correction of digital strong-motion data[J]. Bulletin of the Seismological Society of America, 1997, 87(4): 932~944
    [115] Chiu H. Recovery of near-fault ground motions from the strong-motion records of the 2008 Wenchuan China earthquake[C]. American Geophysical Union, Fall Meeting 2009, abstract #S33A-1747.
    [116] Delouis, B., Giardini, D., Lundgren, P., et al., Joint inversion of InSAR, GPS, teleseismic, and strong-motion data for the spatial and temporal distribution of earthquake slip: application to the 1999 Izmit mainshock[J]. Bull. Seism. Soc. Am., 2002, 92(1):278~299
    [117] Douglas J. What is a poor quality strong-motion record? [J]. Bulletin of Earthquake Engineering, 2003,1(1):141~156
    [118] Emore G L, Haase J S, Choi K, et al. Recovering seismic displacements through combined use of 1-Hz GPS and strong-motion accelerometers [J]. Bulletin of the Seismological Society of America, 2007, 97(2):357~378
    [119] Fukuyama E, Irikura, K, 1986. Rupture process of the 1983 Japan sea (Akita-Oki) earthquake using a waveform inversion method[J]. Bull. Seism. Soc. Am. ,76(6):1623~1640
    [120] Ge L L, Zhang K, et al. Preliminary results of satellite radar differential interferometry for the co-seismic deformation of the 12 May 2008 Ms8.0 Wenchuan earthquake[J]. Geographic Information Sciences, 2008, 14(1):12~19
    [121] Geller R J. Scaling realation for earthquake source parameters and magnitudes[J]. Bull. Seism. Soc. Am., 1976, 66(5), 1501~1523.
    [122] Graizer V. On Inertial Seismometry [J]. Izvestiya, Physics of the Solid Earth, 1989, 25(1):26~29
    [123] Graizer V. Inertial Seismometry Methods [J]. Izvestiya, Physics of the Solid Earth, 1991, 27(1):51~61
    [124] Graizer V M. Effect of tilt on strong motion data processing [J]. Soil dynamics and earthquake engineering, 2005, 25(3):197~204
    [125] Graizer V M. Tilts in strong ground motion [J]. Bulletin of the Seismological Society of America, 2006, 96(6):2090~2102
    [126] Graizer V M, Kalkan E. Resoponse of pendulums to complex input ground motion[J]. Soil Dynamics and Earthquake Engineering, 2008, 28(8): 621~631
    [127] Graizer V. Strong motion recordings and residual displacements: What are we actually recording in strong motion seismology?[J]. Seismological Research Letters, 2010, 81(4): 635~639
    [128] Hanks T C. Strong ground motion of the San Fernando, California earthquake: ground displacements [J]. Bulletin of the Seismological Society of America, 1975, 65(1),193~225
    [129] Hartzell S H, Earthquake aftershocks as green’s function, Geophys Res Lett, 1978, 5: 1~5
    [130] Hartzell.S H, Helmberger D V. Strong-motion modeling of the imperial valleyearthquake of 1979[J],Bulletin of the Seismological Society of American,1982,72(2),571~596
    [131] Hartzell,S H, Liu P C, et al. Stability and Uncertainty of Finite-Fault Slip Inversions: Application to the 2004 Parkfield, California, Earthquake, Bull. Seismol. Soc. Am.2007, 97, 1911~1934
    [132] Haskell N A. Elastic displacements in the near-field of a propagating fault. Bulletin of the Seismological Society of America,1969, 59(2): 865~908
    [133] He C R, Zhang R, Chen Q, et al. Earthquake characteristics and building damage in high-intensity areas of Wenchuan earthquake I: Yingxiu town[J]. Natural Harards,2010,55(1): 1~17.
    [134] Heaton T and Helmberger D, Generalized ray models of the San Fernando earthquake. Bulletin of the Seismological Society of America, 1979, 69(5): 1311.
    [135] Hernandez B, Cocco M, Cotton F, et al, Rupture history of the 1997 Umbria-Marche (central Italy) main shocks from the inversion of GPS, DInSAR and near field strong motion data[J]. Ann. Geophys., 2004, 47(4):1355~1376
    [136] Hershberger J. Recent developments in strong motion analysis [J]. Bulletin of the Seismological Society of America,1955, 45(1):11~21
    [137] Housner G W. Ground displacement computed from strong-motion accelerograms[J]. Bulletin of the Seismological Society of America, 1947, 37(4): 299~305
    [138] Hu J C, Cheng L W, Chen H Y and et al. Coseismic deformation revealed by inversion of strong motion and GPS data: the 2003 Chengkung earthquake in eastern Taiwan[J]. Geophysical Journal International, 2007, 169(2):667~674
    [139] Hubbard J, Shaw J. Uplift of the Longmen Shan and Tibetan plateau, and the 2008 Wenchuan(M=7.9) earthquake[J]. Nature, 2009,458: 194~197
    [140] International Association of Seismology and Physics of the Earth’s Interior, International handbook of earthquake and engineering seismology, Academic Press, 2002
    [141] Iwan W D, Moser M A and Peng C Y. Some observations on strong-motion earthquake measurement using a digital accelrograph [J]. Bulletin of the Seismological Society of America, 1985, 75(5):1225~1246
    [142] Jackson D D, Matsura M. A Bayesian Approach to Nonlinear Inversion. J. Geophys. Res.1985, 90(B1): 581~591
    [143] Jafarzadeh F, Khatam H and Jahromi H F. Application of base-line correction methods to obtain permanent displacements of a near-source ground motion: the 2003 Bam earthquake [J].Journal of Earthquake Engineering,2009,13(3): 313~327
    [144] Ji C, Hayes G, Preliminary result of the May 12,2008 Mw7.9 eastern Sichuan, China earthquake, http://earthquake.usgs.gov/earthquakes/eqinthenews/2008/us2008ryan/finite_fault.php
    [145] Kanamori H. The energy release in great earthquakes[J]. J. Geophys. Res., 1977, 82: 2981~2987
    [146] Konca, A O, Leprince S, Avouac J P, et al, 2010. Rupture process of 1999 Mw 7.1 Duzce earthquake from joint analysis of SPOT, GPS, InSAR, strong-motion and teleseismic data: a supershear rupture with variable rupture velocity[J]. Bull. Seism. Soc .Am. , 100(1):267~288.
    [147] Lawson C L,Hansan R J. Solving Least Squares Problems[M],Prentice Hall Inc,Englewood Cliffs, New Jersey, 1974
    [148] Lee, S J, Ma K F, et at. Three-dimensional dense strong motion waveform inversion for the rupture process of the 1999 Chi-Chi, Taiwan, earthquake [J]. J. Geophys. Res.2006,111,B11308, doi: 10.1029/2005JB004097
    [149] Lin A M, Ren Z K, Jia D. Co-Seismic ground-shortening structures produced by the 2008 Mw 7.9 Wenchuan earthquake, China[J]. Tectonophysics, 2010, 491: 21~34
    [150] Liu G X, Li Jonathan, Xu Z, et al. Surface deformation associated with the 2008 Ms8.0 Wenchuan earthquake from ALOS L-band SAR interferometry[J]. Int. J. Appl. Earth Observ. Geoinf., 2010,12(6): 496~505
    [151] Liu Q F, Li X J. Preliminary analysis of the hanging wall effect and velocity pulse of the 5.12 Wenchuan earthquake[J]. Earthquake Engineering and Engineering Vibration, 2009, 8(2): 1655~177.
    [152] Li X J, Zhou Z H, et al,Preliminary analysis of strong-motion recordings from the magnitude 8.0 Wenchuan, China, earthquake of 12 May 2008[J].Seismological Research Letters, 2008, 79(6):844~854.
    [153] Li X J, Liu L, et al. Analysis of horizontal strong-motion attenuation in the Great 2008 Wenchuan earthquake[J]. Bull. Seism. Soc. Am., 2010, 100(5B): 2440~2449
    [154] Liu P C, and Archuleta R J, A new nonlinear finite fault inversion with three-dimensional Green’s functions: application to the 1989 Loma Prieta, California, earthquake [J], J. Geophys. Res. 2004,109, B02318, doi:10.1029/2003JB002625
    [155] Liu,P C, Susanna Custodio and Archuleta R J. Kinematic Inversion of the 2004 M6.0 Parkfield Eearthquake Including an Approximation to Site Effects[J], Bull. Seismol. Soc. Am., 2006, 96(4B):143~158
    [156] Mai Martin P, Beroza G C. Source scaling properties from finite-fault-rupture models[J]. Bulletin of the Seismological Society of American, 2000, 90(3), 604~615
    [157] Mavroeidis G P and Papageorgiou A S. A mathematical representation of near-fault ground motions[J]. Bull. Seism. Soc .Am., 2003, 96(3): 1099~1131
    [158] Minowa C. Development of a new method of baseline correction on earthquake strong motions and its application to long period sloshing responses of liquid storage tanks during strong earthquake[C]. ASME Proceedings of PVP2003, 466:203~210
    [159] Minowa C, Yamaguchi N. Baseline correction method and strong motion in 2003 Off Tokachi[C]. ASME Proceedings of PVP, 2005, 709~716
    [160] Nakamura T, Tsuboi S, Kaneda Y, et al. Rupture process of the 2008 Wenchuan, China earthquake inferred from teleseismic waveform inversion and forward modeling of broadband seismic waves[J]. Tectonophysics, 2010,491: 72~84
    [161] Norton S J.Iterative seismic inversion.Geophysical Journal, 1988, 94(3): 457~468.
    [162] Olson A H, Apsel R J. Finite faults and inverse theory with applications to the 1979 Imperial valley earthquake[J], Bulletin of the Seismological Society of American, 1982, 72(6), 1969~2001
    [163] Olson A, Orcutt J, Frazier G. The discrete wavenumber/finite element method for synthetic seismograms [J], Geophys. J. R. Astr. Soc. 1984, 77:421~460
    [164] Olson,A.H, J.G.Anderson. Implications of frequency-domain inversion of earthquake ground motions for resolving the space-time dependence of slip on an extended fault[J]. Geophysical Journal, 1988,443~455
    [165] Rodriguez-Marek A. Near-fault seismic site response[D]. PhD dissertation of University of California at Berkeley, 2000
    [166] Rupakhety R, Halldorsson B and Sigbj?rnsson R. Estimating coseismic deformations from near source strong motion records: methods and case studies [J]. Bulletin of earthquake engineering, 2010a, 8(4):787~811
    [167] Rupakhety R, Sigbj?rnsson R. A note on the L’Aquila earthquake of 6 April 2009: permanent ground displacements obtained from strong-motion accelerograms[J]. SoilDynamic and Earthquake Engineering, 2010b, 30(4): 215~220
    [168] Sambridge M. Geophysical inversion with a neighbourhood algorithm—I. Searching a parameter space[J]. Geophys. J. Int., 1999, 138: 479~494
    [169] Santamarina J C, Fratta D. Discrete Signals and Inverse Problems[M], John Wiley & Sons Ltd, West Sussex, England, 2005
    [170] Schiff A and Bogdanoff J L. Analysis of current methods of interpreting strong-motion accelerograms[J]. Bulletin of the Seismological Society of America, 1967, 57(5):857~874
    [171] Sekiguchi H.,Irikura K.,Iwata T. Fault geometry at the rupture termination of the 1995 Hyogo-ken Nanbu earthquake[J]. Bull. Seism. Soc. Am., 2000, 90(1):117~133
    [172] Shen Z K, Sun J B, et al. Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake[J]. Nature Geosience, 2009, 2: 718~724
    [173] Someville P., Irikura K., Graves R., et al, Characterizing crustal earthquake slip models for the prediction of strong ground motion, Seis. Res. Lett., 1999, 70(1), 59~80
    [174] Spudich P, Archuleta R. Techniques for earthquake ground motion calculation with applications to source parameterization of finite faults, In: Seismic Strong Motion Synthetics(Bolt B.A. Ed.)[M]. 1987,205~265, Academic Press, Orlando
    [175] Spudich P, Xu L. Software for calculating earthquake ground motions from finite faults in vertically varying media, in International Handbook of Earthquake and Engineering Seismology[M], W.H.K. Lee, H. Kanamori, P.C. Jennings, and C. Kisslinger(editors), Academic Press, New York, Part B, ch.85.14, 2002, 1633~1634
    [176] Trifunac M. Low frequency errors and a new method for zero baseline correction of strong-motion accelerograms [R]. Earthquake engineering research laboratory, 1970a,70-07:1~57,California Institute of Technology, Pasadena
    [177] Trifunac M, Udvadia F and Brady A. High frequency errors and instrument corrections of strong-motion accelerograms [R]. Earthquake engineering research laboratory, 1970b, 70-07:1~51,California Institute of Technology, Pasadena
    [178] Trifunac M. Zero baseline correction of strong-motion accelerograms [J]. Bulletin of the Seismological Society of America, 1971,61(5):1201~1211
    [179] Trifunac M. A note on correction of strong-motion accelerograms for instrument reponse[J]. Bulletin of Seismology Society of America,1972,62:401~409
    [180] Trifunac, M., 1974. A three-dimensional dislocation model for the San Fernando, California, earthquake of February 9,1971 [J]. Bull. Seism. Soc .Am., 1974a, 64(1):149~172
    [181] Trifunac M and Lee V. A note on the accuracy of computed ground displacements from strong-motion accelerograms[J]. Bulletin of the Seismological Society of America, 1974b,64(4):1209~1219
    [182] Trifunac M. A note on rotational component of earthquake motions for incident body waves[J]. Soil Dynamic and Earthquake Engineering, 1982, 1(1): 11~19
    [183] Trifunac M, Todorovska M. A note on the useable dynamic range of accelerographs recording translation [J]. Soil Dynamics and Earthquake Egnineering, 2001, 21(4):275~286
    [184] Trifunac M. 75th Anniversary of strong motion observation-A historical review [J]. Soil Dynamic and Earthquake Engineering, 2009, 29(4): 591~606
    [185] Wang D., Attenuation of peak ground accelerations from the great Wenchuan earthquake[J]. Earthquake Engineering and Engineering Vibration, 2009,8(2):179~188
    [186] Wang G Q, Boore D M, Igel H and et al. Some observations on collocated and closely spaced strong ground motion records of the 1999 Chi-Chi, Taiwan, earthquake [J]. Bulletin of the Seismological Society of America, 2003, 93(2): 674~693
    [187] Wells, D L, Coppersmith K J. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement[J].Bulletin of the Seismological Society of America,1994, 84(4): 974~1002
    [188] Wu Y M, Wu C F. Approximate recovery of coseismic deformation from Taiwan strong-motion records [J]. Journal of Seismology, 2007, 11(2):159~170
    [189] Wu, CJ, Takeo, M., Ide, S.,.Source process of the Chi-Chi earthquake: a joint inversion of strong motion data and global positioning system data with a multifault model[J]. Bull. Seism. Soc. Am.,2001, 91(5):1128~1143
    [190] Xu Y, Koper KD, Sufre O, et al. Rupture imaging of the Mw 7.9 12 May 2008 Wenchuan earthquake from back projection of teleseismic P waves[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(4), Q04006
    [191] Xu Z Q, Ji S C, et al. Uplift of the Longmen Shan and the Wenchuan earthquake[J]. Episodes, 2008, 31(3):291~301
    [192] Zhang M, Jin Y,Building damage in Dujiangyan during Wenchuan earthquake [J],Earthquake Engineering and Engineering Vibration, 2008,7(3):263~269.
    [193] Zhao CP, Chen Z.L. at al, Rupture process of the 8.0 Wenchuan earthquake of Sichuan, China: the segmentation feature, Chinese Sci Bull, 2009, 1~9
    [194] Zhao B, Taucer F and Rossetto T. Field investigation on the performance of building structures during the 12 May 208 Wenchuan earthquake in China[J]. Engineering Structures,2009, 31: 1707~1723
    [195] Shi C, Lou Y, Zhang H, et al. Seismic deformation of the Mw 8.0 Wenchuan earthquake from high-rate GPS observations[J]. Advances in Space Research, 2010, 46: 228~235
    [196] Zahradnik J and Plesinger A. Long-period pulses in broadband records of near earthquakes[J]. Bull. Seism. Soc. Am., 2005, 95(5): 1928~1939

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700