用户名: 密码: 验证码:
超声波强化溶液冻结的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超声波辅助结晶技术以其促进固态晶核(一次晶核与二次晶核)生成、抑制晶体生长、控制结晶体粒径分布、提高结晶质量等优点,为溶液结晶以及新鲜食品冻结保存提供了一种理想的方法。但是,当前对超声波强化结晶的机理尚不清楚。本文以研究超声结晶的机理为目标,对液态溶液与固态马铃薯样品在超声场中的冻结现象进行了以下的实验研究工作:
     研究了超声波诱发冰晶成核的机理。将超声波分别应用到过冷的脱气纯水与未脱气纯水,每次实验中,水样品均以0.15℃/min的速度进行冷却;均当水样品温度降为0℃时开始施加超声波直至样品容器内生成冰晶核,测量此冰晶成核温度。脱气纯水与未脱气纯水在超声波作用下的冰晶成核温度均有上升,但未脱气纯水生成冰晶核所需的过冷度要比脱气水少的多。因而推断超声波在过冷水中引发的“空化”以及“密度、能量与温度的波动起伏”对冰晶成核均有影响,但空化效应是诱发冰晶成核的主要因素。
     研究了超声波促进冰晶分裂(二次结晶)的机理。利用自行研制的超声波冷却实验台,分别研究了超声波对脱气蔗糖稀溶液与未脱气蔗糖稀溶液中树枝状冰晶体的影响。实验结果表明,未脱气溶液中的树枝状冰晶体受超声波辐射2秒后已发生分裂,而脱气溶液中的树枝状冰晶体受功率相同的超声波辐射6秒后却仍未分裂。表明超声场中冰晶发生分裂的主要原因是空化效应,而不是超声波对传声介质所施加的声压。
     研究了超声波抑制冰晶生长的机理。运用自制的超声波冷却实验台分别研究了超声波对脱气蔗糖稀溶液与未脱气蔗糖稀溶液中树枝状冰晶生长的影响。实验结果显示,超声波对脱气蔗糖稀溶液与未脱气蔗糖稀溶液中树枝冰晶生长速度均有抑制作用,但未脱气蔗糖溶液中树枝冰晶的生长速度要大大低于脱气蔗糖溶液中树枝冰晶的生长速度。这表明超声波在溶液中引起的空化效应是抑制冰晶生长的主要因素。
     研究了超声波细化结晶体粒径尺寸的机理。分别研究了超声波对脱气饱和氯化铵溶液与未脱气饱和氯化铵溶液结晶的影响。结果显示,在相同超声波辐射下,脱气饱和氯化铵溶液与未脱气饱和氯化铵溶液的结晶均得到了强化,但未脱气饱和氯化铵溶液白浊化开始时间显著小于脱气饱和氯化铵溶液白浊化开始时间,未脱气氯化铵溶液结晶晶粒比脱气氯化铵溶液结晶晶粒更细小。这表明超声空化以及声场中溶液分子振动引起的能量、温度及密度的波动对饱和溶液的结晶均有影响,但空化是强化饱和溶液结晶的主要因素。
     研究了超声波对马铃薯中液态水结晶过程的影响。通过实验分别研究了超声波对脱气冷冻液与未脱气冷冻液中马铃薯样品冻结速度的影响,研究表明,超声波在乙二醇水溶液中引起的空化效应与液相分子振动均有助于促进马铃薯样品与冷冻剂间的热量交换,进而对固态食品冻结过程起到强化作用,但空化是强化沉冻结的主要因素;
     本文提出的超声波强化结晶的机理对优化超声波辅助结晶技术以及拓宽其应用领域具有重要的参考价值。
Ultrasound-assisted freezing is an excellent method for long preservation of someliquid and solid food products. With the enhancement by ultrasound during freezing,nucleation rate of crystal can be enhanced and crystal size can be reduced. Althoughultrasound has long been used to influence crystallisation of solution, the exactmechanism that explains this influence is still not clearly understood. In order to clarifyeffects of ultrasonic waves on supercoold water, the following studies were carried out:
     The mechanism of nucleation of ice induced by ultrasound was studied. Theultrasonic waves have been applied to supercooled pure water and degassed water,respectively. For each experiment, water sample is cooled at a constant cooling rate of0.15°C/min and the ultrasonic waves are applied from the water temperature of0°Cuntil the water in a sample vessel nucleates. This nucleation temperature is measured.The use of ultrasound increased the nucleation temperature of both degassed water andpure water. However, the undercooling temperature for pure water to nucleate is lessthan that of degassed water. It is concluded that cavitation and fluctuations of density,energy and temperature induced by ultrasound are factors that affect the nucleation ofwater. Cavitation is a major factor for sonocrystallisation of ice.
     The mechanism of secondary nucleation of ice induced by ultrasoundwasinvestigated. Experiments on ice crystals in degassed sucrose solutions and untreatedsolutions have been carried out using a novel ultrasonic cold stage device. For eachexperiment, the ultrasonic waves that are applied operated at a power output of120W.The results show that the ice dendrite crystals growing in a sucrose solution can bebroken up into smaller fragments when ultrasound was applied for2s, but thepre-existing ice dendrite crystals in a degassed sucrose solution are still unbroken whenultrasound was applied for6s. These findings confirm that cavitation induced byultrasound is a major factor for the fragmentation of ice crystals.
     The mechanism of ultrasound inhibition of dendritic ice growth was studied. Theeffect of ultrasonic waves on the growth of dendritic ice in degassed sucrose solutionsand untreated solutions was investigated using a novel ultrasonic cold stage device. Theresults show that the use of ultrasound could inhibit the growth of dendritic ice in bothuntreated and degassed solutions, but the growth velocity of dendritic ice in untreated sucrose solutions is much less than that in degassed solutions. It is concluded thatcavitation and heat effect induced by ultrasound are factors that affect the the growthprocess of ice crystal. But cavitation is a major factor for the inhibition of dendritic icegrowth.
     The mechanism of ultrasound reduction of crystal size was investigated. The effectsof ultrasonic waves on crystallization process of saturated ammonium chloride solutionand degassed solution are investigated by using a novel ultrasonic cold stage device.The results show that the use of ultrasound could accelerate the crystallization processof both ammonium chloride solution and degassed solution, but the cooling rate andcloudiness time of ammonium chloride solution are much less than those of degassedsolution. Furthermore, sonocrystallisation of ammonium chloride solution can result insmaller crystals than those induced by sonocrystallisation of degassed solution. It isconcluded that cavitation and fluctuations of density, energy and temperature inducedby ultrasound are factors that affect the crystallization process of saturated solutions.But cavitation is a major factor for the enhancement of saturated solution crystallization.
     Immersion freezing of potatoes with the aid of ultrasound was studied. The effect ofultrasonic waves on freezing rate of potatoes in degassed coolant and untreated coolantwas investigated. The results show that cavitation and vibrational motion of the coolantmolecules induced by ultrasound are factors that affect the heat transfer between thepotato samples being frozen and the refrigerating medium. But cavitation is a majorfactor for the enhancement of the heat transfer.
     The Mechanism of enhancement of solution crystallization by ultrasound putforward in this thesis could be valuable to optimization of sonocrystallisation.
引文
[1] T. M. Ngapo, I. H. Babare, J. Reynolds, et al. Freezing rate and frozen storageeffects on the ultrastructure of samples of pork. Meat Science,1999,53:159-168.
    [2] Bing Li, Da-Wen Sun. Novel methods for rapid freezing and thawing of foods–areview. Journal of Food Engineering,2002,54:175–182.
    [3] Tse-Chao Hua, Bao-Lin Liu and Hua Zhang. Freeze-drying of pharmaceutical andfood products. Science Press,2010,1-257.
    [4] M. N. Martino, L. Otero, P. D. Sanz, et al. Size and Location of Ice Crystals in PorkFrozen by High-Pressure-Assisted Freezing as Compared to Classical Methods.Meat Science,1998,50(3):303-313.
    [5] Ofelia Mendez Bustabad. Weight loss during freezing and the storage of frozen meat.Journal of Food Engineering,1999,41:1-11.
    [6] Bevilacqua A. E. and Zaritzky N. E. Ice morphology in frozen beef. Journal of FoodTechnology,1980,15:589-597.
    [7] Fuchigami, M., Teramoto, A. Structural and textural changes in kinu-tofu due tohigh-pressure-freezing. Journal of Food Science,1997,62(4):828–837.
    [8] Fuchigami M., Kato N., Teramoto A. High-pressure freezing effects on texturalquality of carrots. Journal of Food Science,1997,62(4):804–808.
    [9] Otero L., Martino M., Zaritzky N., et al. Preservation of microstructure in peach andmango during highpressure-shift freezing. Journal of Food Science,2000,65(3),466–470.
    [10] Fennema O. R., Powrie W. D., Marth, E. H. Lowtemperature preservation of foodsand living matter. New York, USA: Marcel Dekker,1973, p.598.
    [11] Dietrich Knorr, Marco Zenker, Volker Heinz, et al. Applications and potential ofultrasonics in food processing. Trends in Food Science&Technology,2004,15:261–266.
    [12] Ali A. Khan and F. V. Vincent. Mechanical damage induced by controlled freezingin apple and potato. Journal of Texture Studies,1996,27:143-157.
    [13] Ley, SandraJ. Foodservice Refrigeration. Boston. Massachusetts: CBIPress,1980
    [14] M.T. Kalichevslff, D. Knorr and P. J. LiUford. Potential food applications ofhigh-pressure effects on ice-water transitions. Trends in Food Science&Technology,1995,6:253-259.
    [15] L. OTERO, M. MARTINO, N. ZARITZKY, M. SOLAS, AND P.D. SANZ.Preservation of Microstructure in Peach and Mango during High-pressure-shiftFreezing.2000, Journal of Food Science,65(3):466-470.
    [16] Zheng L., Sun D. W. Ultrasonic assistance of food freezing. In D. W. Sun (Ed.),Emerging Technologies for Food Processing. Amsterdam; London: ElsevierAcademic Press.2005,603–626.
    [17] Sun, D. W., Zheng L. Innovations in freezing process. In D. W. Sun (Ed.),Handbook of frozen food processing and packaging. Boca Raton, Fla.; London:CRC/Taylor&Francis.2006.
    [18] Kiani H., Sun D. W. Water crystallization and its importance to freezing of foods:A review. Trends in Food Science&Technology,2011,22(8):407–426.
    [19] Calvelo, A.(1981). Recent studies on meat freezing. In R. Lawrie (Ed.),Developments in meat science. Barking, UK: Applied Science Publishers.
    [20] Chevalier, D., Le Bail, A.,&Ghoul, M.(2000a). Freezing and ice crystals formedin a cylindrical food model: part I. Freezing at atmospheric pressure. Journal ofFood Engineering,46,277-285.
    [21] Chevalier, D., Le Bail, A.,&Ghoul, M.(2000b). Freezing and ice crystals formedin a cylindrical food model: part II. Comparison between freezing at atmosphericpressure and pressure-shift freezing. Journal of Food Engineering,46,287e293.
    [22] Delgado, A. E.,&Rubiolo, A. C.(2005). Microstructural changes in strawberryafter freezing and thawing processes. Lwt-Food Science and Technology,38,135e142.
    [23] Fennema, O. R., Powrie, W. D.,&Marth, E. H.(1973). Low temperaturepreservation of foods and living matter. New York: Marcel Dekker.
    [24] Hagiwara, T., Wang, H. L., Suzuki, T.,&Takai, R.(2002). Fractal analysis of icecrystals in frozen food. Journal of Agricultural and Food Chemistry,50,3085-3089.
    [25] Fuller, M. P.,&Wisniewski, M.(1998). The use of infrared thermal imaging in thestudy of ice nucleation and freezing of plants. Journal of Thermal Biology,23,81e89.
    [26] Alberto Olmo, Roberto Baena, Ramon Risco. Use of a droplet nucleation analyzerin the study of water freezing kinetics under the influence of ultrasound waves.International Journal of Refrigeration,2008,31(2):262-269.
    [27] HANG Fang-xue, LU Qun, QIU Tai-qiu, et al. Effect of ultrasound on thenucleation of calcium carbonate during reactive crystallization. Journal of ShanxiUniversity of Technology&Technology,2007,25(1):26-31.
    [28] R Chow, R Blindt, R Chivers, et al. The sonocrystallisation of ice in sucrosesolutions: primary and secondary nucleation. Ultrasonics,2003,41(8):595–604.
    [29]华泽钊,李云飞,刘宝林.食品冷冻冷藏原理与设备.北京:机械工业出版社,2007:29-32.
    [30] K Nakagawa, Hottot Aurelie, Vessot Severine, et al. Influence of controllednucleation by ultrasounds on ice morphology of frozen formulations forpharmaceutical proteins freeze-drying. Chemical Engineering and Processing,2006,45:783-791.
    [31] Hottot Auérlie, Nakagawa Kyuya, Andrieu Julien. Effect of ultrasound-controllednucleation on structural and morphological properties of freeze-dried mannitolsolutions. chemical engineering research and design,2008,86:193-200.
    [32] R Chow, R Blindt, R Chivers, et al. A study on the primary and secondarynucleation of ice by power ultrasound. Ultrasonics,2005,43:227–230.
    [33] Takaaki Inada, Xu Zhang, Akira Yabe, et al. Active control of phase change fromsupercooled water to ice by ultrasonic vibration1.Control of freezing temperature.International Journal of Heat and Mass Transfer,2001,44:4523-4531.
    [34] Xu Zhang, Takaaki Inada, Akira Yabe, et al. Active control of phase change fromsupercooled water to ice by ultrasonic vibration2. Generation of ice slurries andeffect of bubble nuclei. International Journal of Heat and Mass Transfer,2001,44:4533-4539.
    [35] T. Hozumi, S. Saito, S. Okawa. Effect of ultrasonic waves on freezing ofsupercooled water. Advances in Cold-Region Thermal Engineering and Sciences,Springer, Berlin,1999, pp.65-72.
    [36] Rachel Chow, Robert Mettin, Bernhard Lindinger, et al. The importance of acousticcavitation in the sonocrystallisation of ice-high speed observations of a singleacoustic bubble.2003IEEE Ultrasonics Symposium,1447-1450.
    [37] M. J. W. Povey, D. J. McClements. Ultrasonics in Food Engineering. Part I:Introduction and Experimental Methods. Journal of food Engineering,1998,8:217-245.
    [38] Graham Ruecroft, David Hipkiss, Tuan Ly. Sonocrystallization: The Use ofUltrasound for Improved Industrial Crystallization. Organic Process Research&Development,2005,9:923-932.
    [39] Kiani, H., et al., Ultrasound assisted nucleation of some liquid and solid modelfoods during freezing, Food Research International (2011), doi:10.1016/j.foodrs.2011.06.051
    [40]金焱,毕学工,孔晶.超声波对NH4Cl结晶影响作用的机理研究.铸造技术,2010,31(8):988-990.
    [41]华泽钊,刘宝林,左建国.药品和食品的冷冻干燥.北京:科学出版社,2006:33-35.
    [42] Rachel Chow, Robert Mettin, Bernhard Lindinger, et al. The importance of acousticcavitation in the sonocrystallisation of ice-high speed observations of a singleacoustic bubble.2003IEEE Ultrasonics Symposium,1447-1450.
    [43] Muthupandian Ashokkumar. The characterization of acoustic cavitation bubbles–An overview. Ultrasonics Sonochemistry,2011,18:864-872.
    [44] L. H. Thompson, and L. K. Doraiswamy. Sonochemistry: Science and Engineering.Industrial&Engineering Chemistry Research,1999,38(4),1215-1249.
    [45] D. E. Hughes and W. L. Nyborg. Cell Disruption by Ultrasound. Streaming andother activity around sonically induced bubbles is a cause of damage to cells.Science,1962,138:108-114.
    [46] M. S. Doulah. Mechanism of disintegration of biological cells in ultrasonicCavitation. Biotechnology and bioengineering,1977, XIX:649-660.
    [47] S. Muthukumaran, S.E. Kentish, M. Ashokkumar, G.W. Stevens. Application ofultrasound in membrane separation processes: a review, Rev. Chem. Eng.2006,22:155–194.
    [48] R. Bhaskaracharya, S.E. Kentish, M. Ashokkumar. Selected applications ofultrasonics in food processing, Food Eng. Rev,2009,1:31–49.
    [49] M.J. Povey, T.J. Mason (Eds.). Ultrasound in Food Processing, Springer, New York,1998.
    [50] M. Ashokkumar, J. Lee, S. Kentish, F. Grieser. Bubbles in an ultrasonic field: anoverview, Ultrason. Sonochem.14(2007)470–475.
    [51] J. Lee, S. Kentish, M. Ashokkumar. The effect of surface-active solutes on bubblecoalescence in the presence of ultrasound. J. Phys. Chem. B,2005,109:5095–5099.
    [52] T. G. Leighton. The Acoustic Bubble, Academic Press, London,1994.
    [53] M. Ashokkumar, F. Grieser, A comparison between multibubble sonoluminescenceintensity and the temperature within cavitation bubbles. J. Am. Chem. Soc.2005,127:5326–5327.
    [54] J. Rae, M. Ashokkumar, O. Eulaerts, C. Von Sonntag, J. Reisse, F. Grieser,Estimation of ultrasound induced cavitation bubble temperatures in aqueoussolutions, Ultrason. Sonochem.2005,12:325–329.
    [55] F. Burdin, N. A. Tsochatzidis, P. Guiraud, A. M. Wilhelm, H. Delmas.Characterization of the acoustic cavitation cloud by two laser techniques.Ultrasonics Sonochemistry,1999,6:43–51.
    [56] W.S. Chen, T. Matula, L.A. Crum. The disappearance of ultrasound cavitationbubbles: observation of bubble dissolution and cavitation nuclei. Ultrasound Med.Biol.2002,28:793–803.
    [57] N.A. Tsochatzidis, P. Guiraud, A.M. Wilhelm, H. Delmas, Determination ofvelocity, size and concentration of ultrasonic cavitation bubbles by phase-Dopplertechnique, Chem. Eng. Sci.2001,56:1831–1840.
    [58] J. Lee, M. Ashokkumar, S. Kentish, F. Grieser, Determination of the sizedistribution of sonoluminescence bubbles in a pulsed acoustic field, J. Am. Chem.Soc.2005,127:16810–16811.
    [59] M. Ashokkumar, J. Lee, Y. Iida, K. Yasui, T. Kozuka, T. Tuziuti, A. Towata, Thedetection and control of stable and transient cavitation bubbles, Phys. Chem. Chem.Phys.2009,11:10118–10121.
    [60] D. Sunartio, M. Ashokkumar, F. Grieser, Study of the coalescence of acousticbubbles as a function of frequency, power and water soluble additives, J. Am.Chem. Soc.2007,129:6031–6036.
    [61] M. Ashokkumar, J. Lee, Y. Iida, K. Yasui, T. Kozuka, T. Tuziuti, A. Towata. Spatialdistribution of acoustic cavitation bubbles at different ultrasound frequencies,ChemPhysChem2010,11:1680–1684.
    [62] Y. Iida, M. Ashokkumar, T. Tuziuti, T. Kozuka, K. Yasui, A. Towata, J. Lee, Bubblepopulation phenomena in sonochemical reactor: I estimation of bubble sizedistribution and its number density with pulsed sonication–laser diffractionmethod, Ultrason. Sonochem.2010,17:473–479.
    [63] W. Lauterborn, T. Kurz, Physics of bubble oscillations, Rep. Prog. Phys.2010,73:1065011–1065088.
    [64] R. Mettin, A.A. Doinikov. Translational instability of a spherical bubble in astanding ultrasound wave, Appl. Acoustics.2009,70:1330–1339.
    [65] M. Arora, O.D. Ohl, D. Lohse, Effect of nuclei concentration on cavitation clusterdynamics, J. Acoust. Soc. Am.2007,121:3432–3436.
    [66] E. A. Neppiras. Acoustic cavitation. Physics Reports (Review Section of PhysicsLetters)1980,61(3):159-251.
    [67] Cuiling Gong and Douglas P. Hart. Ultrasound induced cavitation andsonochemical yields. J. Acoust. Soc. Am,1998,104(5):2675-2682.
    [68] T. J. Mason, L. Paniwnyk, J. P. Lorimer. The uses of ultrasound in food technology,Ultrasonics Sonochemistry,1996,3: s253-s260.
    [69] Muthupandian Ashokkumar and Franz Grieser. Ultrasound assisted chemiclprocesses. Reviews in chemical enginering,1999,15(1):41-251.
    [70] B. Chalmers. in: Principles of Solidification, John Wiley&SonsInc.1964, pp.62–90.
    [71] McCausland L. J., Cains P. W. Sonocrystallization–ultrasonically promotedcrystallization for the optimal isolation of drug actives. Drug Deliv. Syst. Sci,2002,2(2):47–51.
    [72] Lamer V.K., Yates J.W. Influence of ultrasonic irradiation upon the phasetransition in the formation of colloidal sulfur. Science,1947,106(2761):508.
    [73] Mason, T. J.(1998). Power ultrasound in food processing—the way forward. In M.J. W. Povey,&T. J. Mason (Eds.), Ultrasound in food processing (pp.105–126).London, UK: Blackie Academic&Professional.
    [74] Mason, T. J.,&Chemat, F.(2003). Ultrasound as a preservation technology. In P.Zeuthen,&L. Bgh-Srensen (Eds.), Food preservation techniques (pp.303–337).Cambridge, England:CRC.
    [75] X. Zhang, T. Inada, A. Tezuka. Ultrasonic-induced nucleation of ice in watercontaining air bubbles. Ultrasonics Sonochemistry,2003,10(2):71–76.
    [76] Maria Patrick, Renoo Blindt, Jo Janssen. The effect of ultrasonic intensity on thecrystal structure of palm oil. Ultrasonics Sonochemistry,2004,11:251–255.
    [77a] A Mortazavi, F Tabatabaie. Study of Ice Cream Freezing Process after Treatmentwith Ultrasound. World Applied Sciences Journal,2008,4(2):188-190.
    [77] Inada Takaaki, Zhang Xu, Yabe Akira,et al. Active control of phase change fromsupercooled water to ice by ultrasonic vibration1. Control of freezing temperature.International Journal of Heat and Mass Transfer,2001,44:4523-4531.
    [78] B. Chalmers, G. M. Research Laboratory Symposium (1963).
    [79] J D Hunt, K A Jackson. Nucleation of Solid in an Undercooled Liquid ByCavitation. Journal of Applied Physics,1966,37:234-257.
    [80] Liyun Zheng and Da-Wen Sun. Innovative applications of power ultrasound duringfood freezing process—a review. Trends in Food Science and Technology,2006,17:16–23.
    [81]王葳,张绍志,陈光明,等.超声波对水的过冷度影响的实验研究.制冷学报,2003,(1):6-8.
    [82] Robert Hickling. Transient High-pressure solidification associated with cavitationin water. Physical Review Letters,1994,73(21):2853-2856.
    [83] Robert Hickling. Nucleation of freezing by cavity collapse and its relation tocavitation damage. Nature,1965,206:915-917.
    [84] J D Hunt, K A Jackson. Nucleation of the Solid Phase by Cavitation in anUndercooled Liquid which expands on Freezing. Nature,1966,211:1080-1081.
    [85] K Ohsaka, E H Trinh. dynamic nucleation of ice induced by a single stablecavitation bubble. Applied physics Letters,1998,73(1):129-131.
    [86] R Chow, R Blindt, A Kamp, et al. Stimulation of ice crystallisation withultrasonic cavitation–microscopic studies. Ind. J. Phys,200377A (4),315–318.
    [87]莫润阳,林书玉,王成会.超声空化的研究方法及进展.应用声学,2009,28(5):389-400.
    [88] Rachel Chow, Renoo Blindt, Arnold Kamp, et al. The microscopic visualisationof the sonocrystallisation of ice using a novel ultrasonic cold stage. UltrasonicsSonochemistry,2004,11:245-250.
    [89]陈传宝,冼海珍,刘登赢.声空化外场对振荡流热管传热性能的影响.工程热物理学报,2009,30(5):831-833.
    [90]宋国胜,胡松青,李琳.功率超声在结晶过程中应用的进展.应用声学,2008,27(1):74-79.
    [91] K Ohsaka, E H Trinh. Apparatus for measuring the growth velocity of dendriticice in undercooled water. Journal of Crystal Growth,1998,194:138-142.
    [92]王光龙,张保林.超声对硫酸钙结晶过程影响的研究.应用声学,2003,22(4):21-24.
    [93] Y Furukawa, W Shimada. Three-dimensional pattern formation during growth ofice dendrites-its relation to universal law of dendritic growth. Journal of CrystalGrowth,1993,128:234-239.
    [94] Adriana E Delgado, Liyun Zheng, Da-Wen Sun. Influence of Ultrasound onFreezing Rate of Immersion-frozen Apples. Food Bioprocess Technol,2009,2:263-270.
    [95]李杰,陈伟庆,刘青.超声处理对饱和NH4Cl水溶液结晶过程的影响.安徽工业大学学报,2008,25(3):255-258.
    [96] Bing Li, Da-Wen Sun. Effect of power ultrasound on freezing rate duringimmersion freezing of potatoes. Journal of Food Engineering,2002,55:277–282.
    [97] Ratoarinoro F. Contamine, A. M. Wilhelm, J. Berlan, et al. Power measurement insonochemistry. Ultrasonics Sonochemistry,1995,2(1): s43-s47.
    [98] Li, B. Immersion Freezing of Potato Assisted by Power Ultrasound to ImproveFreezing Efficiency and Microstructure. M. Eng. Sc. Thesis,2001, NationUniversity of Ireland.
    [99] Kimura Takahide, Sakamoto Takashi, Leveque Jean-Marc, et al. Standardization ofultrasonic power for sonochemical reaction. Ultrasonics Sonochemistry,1996,3(3):S157-S161.
    [100] A Mortazavi, F Tabatabaie. Study of Ice Cream Freezing Process after Treatmentwith Ultrasound. World Applied Sciences Journal,2008,4(2):188-190.
    [101]李新涛,高学鹏,李廷举,等.连铸过程中超声细晶技术研究[J].稀有金属材料与工程,2007,36(3):377-380.
    [102]孙始财樊栓狮梁德青.气体水合物超声结晶实验.制冷学报,2004,4:10-14.
    [103]孙始财;刘玉峰;超声波作用于水结冰过程机理分析[A];2007年山东省制冷空调学术年会论文集[C];2007年.
    [104] Shinfuku NOMURA, Koichi MURAKAMI, Yuuichi SASAKI. Streaming Inducedby Ultrasonic Vibration in a Water Vessel. Jpn. J. Appl. Phys.,2000,39:3636-3640.
    [105] E. ul-Haq, D. A. white, S. A. Adeleye. Freezing in an ultrasonic bath as a methodfor the decontamination of aqueous effluents. The chemical Engineering Journal,1995,57(1):53-60.
    [106] Jean-louis Luche, Pedro Cintas. Can sonication modify the region-andstereoselectivities of organic reactions?. Advances in Sonochemistry,1999,5:147-174.
    [107] Tsutomu Hozumi, Akio Saito, Seiji Okawa, et al. Effect of bubble nuclei onfreezing of supercooled water. International Journal of Refrigeration,2002,25:243–249
    [108] Tsutomu Hozumi, Akio Saito, Seiji Okawa, et al. Freezing phenomena ofsupercooled water under impacts of ultrasonic waves. International Journal ofRefrigeration,2002,25:948–953.
    [109] Giancarlo Cravotto, Pedro Cintas. Molecular self-assembly and patterninginduced by sound waves.The case of gelation. Chemical Society Reviews,2009,38:2684–2697.
    [110] T. J. Mason. Practical Sonochemistry. User’s Guide to Applications in Chemicaland Chemical Engineering, Ellis Horwood, Chichester,1999, ch.1.
    [111]李争彩,林书玉.超声空化影响因素的数值模拟研究.陕西师范大学学报(自然科学版),2008,36(1):38-42.
    [112]刘庆文.超声强化超临界CO2萃取山楂果中原花青素的研究.食品研究与开发,2010,31(8):234-237.
    [113] D. Kashchiev, G.M. Rosmalen. Review: nucleation in solutions revisited. Cryst.Res. Technol.2003,38:555–574.
    [114] Mathieu Saclier, Roman Peczalski, Julien Andrieu. A theoretical model for iceprimary nucleation induced by acoustic cavitation.Ultrasonics Sonochemistry,2010,17:98–105.
    [115] C.P. Lee, T.G. Wang. The effects of pressure on the nucleation rate of anundercooled liquid, J. Appl. Phys.71(1992)5721–5723.
    [116] M. Choukroun, O. Grasset. Thermodynamic model for water and high-pressureices up to2.2GPa and down to the metastable domain, J. Chem. Phys.127(2007)1–11.
    [117]华泽钊,任何盛.低温生物医学技术.北京:科学出版社,1994:81-86.
    [118]王秋萍,刘瑞聪.超声清洗槽内声场分布的研究[J].兰州交通大学学报(自然科学版),2006,25(1):48-51.
    [119]于天来,雷俊卿,单思迪,等.春季流冰对桥墩产生动冰压力时冰抗压强度取值探讨[J].中外公路,2010,30(3):168-171.
    [120]林树枝,沈梧.冰块尺寸效应的分析和实验研究[J],力学与实践,1988,01:34-37.
    [121]陶乐仁.水溶液冻结过程的显微实验研究[D].上海:上海理工大学,2000.
    [122] K. Ohsaka, E. H. Ttinh. Apparatus for measuring the growth velocity of dendriticice in undercooled water[J]. Journal of Crystal Growth,1998,194:138-142.
    [123] Da-Wen Sun, Bing Li. Microstructural change of potato tissues frozen byultrasound-assisted immersion freezing. Journal of Food Engineering,2010,38(2):51-55.
    [124] Frank Lam, Stavros Avramidis, George Lee. Effect of ultrasonic viberation onconvective heat transfer between water and wood cylinders. Wood and FiberScience,1992,24(2):154-160.
    [125] Fairbanks H. V. Influence of ultrasound upon heat transfer systems. pages384-387in Proceedings of Ultrasonics Systems. New Orleans, LA. September26-28,1979.
    [126] Hoshino T., and H. Yukawa. Effect of ultrasonic waves on heat transfer fromcylinder to fluid. In Proceedings of Second Pacific Chemical EngineeringCongress. Denver, CO,August28-31,1977.1:66-71.
    [127] Hoshino T., H. Yukawa, and H. Saito. Effect of ultrasonic vibrations on freeconvective heat transfer from heat wire to water. Heat transfer Japanese Res.,1976,5(1):37-49.
    [128] Sastry S. K., G. Q. Shen, and J. L. Blaisdell. Effect of ultrasonic vibration onfluid-to-particle convective heat transfer coefficients. J. Food Science,1989,54(1):229-230.
    [129] Yukawa H., T. Hoshino, and H. Saito. Effect of ultrasonic vibrations on freeconvective heat transfer from an inclined plate in water. Heat Transfer JapaneseRes.,1976,5(4):1-16.
    [130] Markov A. V., Astashkin Y. S., and Sulimtsev, I.I. Influence of ultrasound on heattransfer under the conditions of forced flow of a high-temperature melt. J. Eng.Phys.,1985,48(2):242.
    [131] Smith C. W., Rooney J. A., and Carey R. F. Enhanced thermal conductance atcopper-liquid helium interface in the presence of acoustic streaming. Ultrasonics,1983,21(1):43.
    [132] J. H. Jeong and Y. C. Kwon. Effects of ultrasonic vibration on subcooled poolboiling critical heat flux. Heat Mass Transfer,2006,42:1155-1161.
    [133] Bergles AE. Enhancement of pool boiling. Int J Refrign,1977,20(8):545–551.
    [134] Wong SW, Chon WY (1969) Effects of ultrasonic vibration on heat transfer toliquids by natural convection and by boiling. AIChE J.,1969,15(2):281–288.
    [135] Park KA, Bergles AE Ultrasonic enhancement of saturated and subcooled poolboiling. Int J Heat Mass Transfer,1988,31:664–667.
    [136] Iida Y, Tsutsui K Effects of ultrasonic waves on natural convection, nucleateboiling and film boiling heat transfer from a wire to a saturated liquid. Exp ThermFluid Sci.,1992,5:108–115.
    [137] Nomura S, Nakagawa M.(1995) Heat transfer enhancement by ultrasonicvibration. ASME/JSME Therm Eng Joint Conf.
    [138] Kim YG, Kang SM, Kang BH, Kim HY (2002) Effect of ultrasonic vibration uponpool boiling heat transfer. Proceedings of the SAREK2002Summer AnnualConference, Yongpyong
    [139] Nomura S, Murakami K, Aoyama Y, Ochi J. Effects of changes in frequency ofultrasonic vibrations on heat transfer. Heat Transf—Asian Res.,2000,29(5):358–372.
    [140] Bonekamp S, Bier K Influence of ultrasound on pool boiling heat transfer tomixtures of the refrigerants R23and R134A. Int J Refrig.,1997,20(8):606–615.
    [141] Tiphaine Lucas, Jerome Francois, and Anne-Lucie Raoult-Wack. Transportphenomena in immersion-cooled apples. International Journal of Food Scienceand Technology,1998,33:489-499.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700