用户名: 密码: 验证码:
微波碳热还原—超声波强化浸出富铟锌渣的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
闪锌矿是湿法炼锌最主要的原料,闪锌矿中常伴生有铁和铟,在焙烧工序时铁与锌结合生成含铟的铁酸锌大量存在于焙砂中。然而,焙砂经现有酸浸工艺处理后浸出渣中仍常含有大量的锌、铟等有价金属,目前传统处理此类浸出渣的方法是采用回转窑烟化后进行再酸浸。但经回转窑挥发的烟尘物相非常复杂,且烟尘中仍有大量的硫酸铅及脉石难溶物,导致再酸浸时锌和铟的回收率仍然较低,使得锌、铟资源损失与此类烟尘浸出渣中。
     本研究针对以上传统工艺回收铟、锌时存在的问题,以此类锌烟尘浸出渣为原料。利用微波碳热还原使烟尘浸出渣中存在的绝大多数铁酸锌被还原;利用超声波强化浸出过程破坏浸出渣颗粒表面的不溶物PbSO4及SiO2等脉石成分形成的包覆层,大大提高了锌和铟的回收率,具体研究如下:
     1.开展了常规及微波碳热还原铁酸锌的动力学实验研究,在常规加热950℃,碳和铁酸锌的配比(摩尔比)为1:3,粒径74-61μm,加热时间90min的条件下,铁酸锌的最大还原率达到80%;而在微波加热850℃C,碳和铁酸锌的配比(摩尔比)为1:4,粒径89-74gm,微波功率1800W,加热时间60min的条件下铁酸锌的还原率达到85%,虽然微波加热仅提高了5%的还原率,但其不仅降低了反应温度,还大大缩短了反应时间,同时降低了粒度对还原率的影响,且降低了碳的用量。根据动力学分析可知,常规碳热还原的表观活化能大约为11.47kJ/mol,主要控制步骤为扩散控制;而微波碳热还原的表观活化能为31.40kJ/mol,主要控制步骤为化学反应控制。
     2.对超声波场特征量分布、浸出液中超声空化效果及矿物颗粒受超声波力的作用变化进行了计算机数值模拟,得到主要结论为:提高浸出液中空化效果所需的较佳工艺条件为超声频率20KHz、声强40w/cm2、气泡初始平衡半径5×10-Sm、环境压力1×10SPa、环境温度70℃。
     3.通过常规及超声波强化浸出的动力学实验研究发现,在常规浸出硫酸初始酸度170g/L、颗粒粒径61-53μm、固液比1:5、温度85℃、浸出时间240min条件下,锌的浸出率达到82%,钢的浸出率达到80%。在超声波强化浸出超声波超声波频率20kHz、功率260W、硫酸初始酸度140g/L、颗粒粒径74-61μm、固液比1:4、反应温度75℃、浸出时间180min的条件下,锌、钢的浸出率都超过了90%。通过动力学的研究可知,常规浸出锌、铟过程的表观活化能为15.46kJ/mol和19.09kJ/mol,扩散控制为反应的主要控制步骤;超声波强化浸出锌、铟过程的表观活化能为33.90kJ/mol和46.70kJ/mol,表面化学反应控制为反应的主要控制步骤。
     4.为了得到优化的实验工艺参数,采用响应曲面法分别对常规及特中场强化实验进行优化,得到以下结果:常规加热在92min,904℃时就能够获得最大铁酸锌还原率81.29%,而微波加热条件下比常规加热缩短了23%,温度降低了约114℃,铁酸锌的还原率仍保持在85%以上;而浸出结果显示,在温度降低17℃,加入221W的超声波辅助强化条件下,锌的浸出率由常规工艺80.49%浸出率提高到91.22%,铟的浸出率由常规工艺83.45%的浸出率提高到92.99%。
     综上所述,论文针对现有处理高铁酸锌和高难溶物含量废渣工艺的不足,首次提出了微波加热-超声波强化联合回收有价金属的技术路线,采有动力学、计算机仿真和响应曲面优化等手段对实验工艺及机理进行研究,并从SEM-EDS、XRD和激光粒度分析等微观角度探讨微波和超声波实验的强化机理。
The traditional hydrometallurgy procedures applied for Zinc production are roasting, leaching, purification and electro-deposition. However, the common zinc ore is generally associated with iron, which inevitably leads to the generation of zinc ferrite in the roasting process, meanwhile, Indium associated in zinc ore will also replace iron ion or interstitial manner in the zinc ferrite lattice to generate the Indium based zinc ferrite. Because of the strong stability zinc ferrite, it is hard to be treated by acid leaching in conventional hydrometallurgy process, Zinc and Indium are lost in form of Indium based zinc ferrite in the leaching slag. At the same time, the insoluble lead sulfate usually concentrated on the surface of zinc leaching residue, which would hinder the leaching reaction and lead to the lost of large amount of zinc and indium resource. Tradition methods used to deal with such leaching residue could be rotary kiln volatilization, dust capture and acid leaching. However, it should be noted that the fumes phase of rotary kiln dust is complex, which still contains a lot of smoke full of zinc ferrite and lead sulfate, thus, the recovery rate is still low.
     With the increasing demand on waste resource recycling, the present paper attempts to treat zinc leaching residue by combination of microwave and ultrasonic for the recovery of zinc and indium. First, the microwave heating with carbon is used to decompose the zinc ferrite in the slag, and then ultrasonic is used to enhance the leaching process to break the insoluble materials such as PbSO4and SiO2gangue composition on the surface of slag particles, some meaningful results are obtained.
     The dynamics on conventional and microwave heating carbon reduction of zinc ferrite are studied, at the conditions of conventional heating of950℃, C/ZnFe2O4of1:3, particle size of74-61μm and heating time of90min, the maximum reduction rate of zinc ferrite is85%; while at the conditions of microwave heating of850℃, C/ZnFe2O4of1:4, particle size of89-74μm, microwave power of1800W and heating time of60min. the maximum reduction rate is90%. The experimental result indicates that the microwave heating has increased only5%reduction rate, however, it not only reduces both the reaction temperature and the reaction time, but also alleviates the effect of particle size on reduction rate. The apparent activation energy of conventional heating is about11.47kJ/mol, the main control step is diffusion control; the apparent activation energy of microwave heating is about31.40kJ/mol, the main control step is chemical reaction control. The reason might be the characters such as penetrating and selectivity of microwave heating, which could optimize heat and mass transfer.
     In order to guide the ultrasonic enhancing leaching experiment, Matlab is applied for anticipation and simulation of characteristic value of the sound field and the cavitation effect, the following conclusion are obtained: ultrasonic frequency20KHz, sound intensity40w/cm2、Bubble radius of the initial equilibrium5×10-5m、environment stress1×10Pa% temperature70℃; and the force on the mineral particles appears a sine wave form with the past of time, and with mineral particles movement, the force also show irregular variations.
     The leaching kinetics on conventional and ultrasonic enhancement experiments is studied. At the conventional leaching conditions of sulfuric acid concentration of170g/L, particle size of61-53μm, solid to liquid ration of1:5, temperature of85℃, and leaching time of240min, the leaching rate of zinc and Indium are82%and80%, respectively. At the ultrasonic enhancing leaching conditions of ultrasonic power of260W, sulfuric acid concentration of140g/L, particle size of74-61μmm solid-liquid ratio of1:4, reaction temperature of75℃and reaction time180min, the leaching rate of zinc and Indium are both in excess of90%. Basing on the above results, the ultrasonic enhancing leaching can raise the leaching rate of zinc and indium for at least10%, the reaction temperature, the reaction time and the sulfuric acid consumption are also greatly reduced, moreover, the influence of particle size on the leaching rate is reduced as well. Based on the kinetics, the apparent activation energy of the conventional leaching on zinc and indium are of15.46kJ/mol and19.09kJ/mol, main control steps are diffusion control; the apparent activation energy of ultrasonic enhancing leaching on zinc and indium are33.90kJ/mol and46.70kJ/mol, the main control step is surface chemical reaction control; the kinetics equation of conventional leaching and ultrasonic enhancing leaching have been obtained.
     In order to get better experimental parameters, both conventional and unconventional experiments are designed using response surface methodology. Compared with conventional heating, the microwave heating can shorten the reaction time and lower the reaction temperature. The biggest zinc ferrite reduction rate of81.29%for conventional heating is obtained at reaction time of92min and reaction temperature of904℃, in contrast, the reaction time of microwave heating is reduced by23%, the reaction temperature is reduced for about114℃while the reduction of zinc ferrite rate is above85%; while in the leaching process, the model of the optimized zinc and Indium Leaching indicates a temperature reduction of17℃with the assistance of ultrasound enhancement, the zinc leaching rate increased from80.49%to91.22%, Indium Leaching rate increased from83.45%to92.99%.
     In all, aiming at the existing deficiencies of deal with high zinc ferrite and insoluble substance content residue process.The microwave heating with carbon is used to decompose the zinc ferrite in the residue, and then ultrasonic is used to enhance the leaching process to break the insoluble materials on the surface of slag particles at the first time.Then,using kinetics, computer simulation and response surface optimization to research the experimental process and mechanism, and the SEM-EDS, XRD and laser particle size analysis are used to proved strengthening mechanism of microwave and ultrasonic experiment. In conclusion, an effective way is provided for the recovery valuable metal from the unmanageable residue.
引文
[1]马茁卉.我国锌资源形势分析及可持续利用[J].当代经济,2010,20:94-96.
    [2]戴自希,张家睿.世界铅锌资源和开发利用现状[J].世界有色金属,2004,3:22-29.
    [3]奚甡.海外铅锌资源开发现状及其利用[J].资源再生,2009(7):22-24.
    [4]陈朝华.立德粉-硫酸锌生产与应用技术问答[M].北京:化学工业出版社,2000.
    [5]陈永海.低品位氧化锌矿直接提锌工艺研究[D].长沙:中南大学,2005.
    [6]谭铁军,肖功明.中国铅锌原料供应战略探讨[J].世界有色金属.2000,7:14-16.
    [7]侬健桃.我国铟产业现状及发展[J].有色冶炼,2002,(4):12-15.
    [8]邹家炎.铟的提取、应用和新产品开发[J].广东有色金属学报,2002,12(s):16-20.
    [9]冯同春,杨斌,刘大春.铟的生产技术进展及产业现状[J].冶金从刊,2007,(2):42.46.
    [10]何焕全,黄小珂,伍祥武.铟产业发展及对策[J].中国有色金属,2007,(10):40-42.
    [11]王殿华.贵过黄金的铟[J].百科知识,2007,(19):20-23.
    [12]孙德堃.国内外锌冶炼技术的新进展[J].中国有色冶金,2004,3:1-4.
    [13]高保军.锌冶炼技术现状及发展探讨[J].中国有色冶金,2008,3:12-13.
    [14]董英.高铁硫化锌精矿冶炼工艺探讨[J].云南冶金,2000,29(4):26-29.
    [15]M. K. Jha, V. Kumar, R. J. Singh. Review of hydrometallurgical recovery of zinc from industrial wastes[J]. Resources,Conservation and Recycling,2001,33(1):1-22.
    [16]张燕娟.机械活化强化含铟铁酸锌的锌浸渣中锌、铟浸出的理论及工艺研究[D].广西:广西大学.
    [17]谢美求.从还原挥发氧化锌烟尘中提锌、铟工艺研究[J].矿冶工程,2008,28(2):63-65.
    [18]沈奕林,覃庶宏,熊志军.铁矾渣的处理及萃取提铟新工艺研究[J].有色 金属(冶炼部分),2001,(4):33-35.
    [19]王令明.来冶铟系统技改设计思路浅述[J].湖南有色金属,2002,18(2):17.19,33-37.
    [20]王辉.从铅浮渣反射炉烟尘提取铟的试验研究[J].稀有金属,2007,31(1):32-38.
    [21]J. C. Balarini, L. D. O. Polli,Miranda T L S.Importance of roasted sulphide concentrates characterization in the hydrometallurgical extraction of zinc[J].Minerals Engineering,2008,21(1):100-110.
    [22]陈少纯,周令治,邹家炎.铁酸锌的还原分解和其中锗的行为研究[J].广东有色金属学报,1991,1(1):26-31.
    [23]田庆华,黄凯,郭学益.纳米铁酸锌粉末制备的研究进展[J].粉末冶金材料科学与工程,2005,10(4):200-204.
    [24]N. Leclerc, E. Meux, J. Lecuire.Hydrometallurgical extraction of zinc from zinc ferrites[J].Hydrometallurgy,2003,70(1-3):175-183.
    [25]S. Langova, J. Lesko, D. Matysek. Selective leaching of zinc from zinc ferrite with hydrochloric acid[J].Hydrometallurgy,2009,95(3-4):179-182.
    [26]K. Matsumoto, S. Taniguchi, A. Kikuchi. Acid leaching behavior of zinc ferrite in all agitated vessel[J].Nippon Kinzoku Gakkaishi,1999,63(3):345-351.
    [27]C. Nifiez, J. Vifials.Kinetics of leaching of zinc ferrite in aqueous hydrochloric acid solutions[J]. Metallurgical and Materials Transactions B,1984,15(2):221-228.
    [28]D. Filippou, G. P. Demopoulos. Steady-state modeling of zinc-ferrite hot acid leaching[J].Metallurgical and Materials Transactions B,1997,28(4):701-711.
    [29]李希明,陈家铺,Kammel Roland机械活化对铁酸锌浸取行为的影响[J].有色金属,1991,43(2):44-48.
    [30]李运姣,李洪桂,孙培梅.湿法炼锌浸出渣的处理[J].中南工业大学学报,1996,27(6):671-675.
    [31]窦明民.锌冶金中铁酸锌生成及离解机理研究[J].云南冶金.2003,32:63-65.
    [32]解立群,施哲,胡汉.铁酸锌还原焙烧试验研究[J].矿冶,2011,3:76-78.
    [33]郭天立,任益民.湿法炼锌生产中铟的富集实践[J].有色矿冶,1998,12(6):25-28
    [34]颜美凤.韶关冶炼厂‘钢的综合回收及深加工探讨[J].中国资源综合利用,2003,2:11-12.
    [35]王强,李科立,刘贵德.铟在竖罐炼锌中的走向及其回收方法[J].有色矿冶,2003,19(5):34-36.
    [36]林文军,刘全军.含钢锌渣浸出和萃取铟的研究[J].昆明理工大学学报(理工版),2006,31(2):23-25.
    [37]陈爱国.提高富集铟渣品位及铟回收率的途径探讨[J].湖南有色金属,2000,16(增刊):4-6.
    [38]王露娟,温加冰,闫杰军.提取铟工艺流程改革试验研究[J].有色矿冶,2000,16(2):31-34.
    [39]吕伯康,刘洋.锌渣浸出渣高温挥发富集铟锗试验研究[J].南方金属,2007,3:7-9.
    [40]王露娟,温加冰,闫杰军.提取铟工艺流程改革试验研究[J].有色矿冶,2000,16(2):31-34.
    [41]陈立三.株冶铟冶炼过程及改造[J].湖南有色金属,1995,11(1):39-42.
    [42]S.M.J.Koleini,H.Mehrpouya,K.Saberyan.Extraction of indium from zinc plant residues[J].Minerals Engineering,2010,23(1):51-53.
    [43]林文军,刘全军.含钢锌渣浸出和萃取铟的研究[J].昆明理工大学学报(理工版),2006,3 1(2):23-25.
    [44]马立明,马运柱.株冶钢富集工艺改进及应有研究[J].矿冶工程,2003,23(2):59-62.
    [45]金钦汉.微波化学[M].北京:科学出版社,1999:17-30.
    [46]T.Katsumi,K.Fumiyasu,K.Masashi.Development of the Microwave Heated Catalyst System[J].J S A E Review,1999,20(3):431-434.
    [47]E. C. David, C. F. Diane,K.W. Jon.Processing Materials with Microwave Energy[J].Mat.Sci.Eng.A-St ruct.,2000,287(2):153-158.
    [48]M. Al-Harah sheh,S. w. Kingman. Mic rowave-assisted Leaching-A Review[J].Hydrometallurgy,2004,73(3-4):189-203.
    [49]黄铭.微波与颗粒物质相互作用的机理及应用研究[D].昆明:昆明理工大学
    [50]陈津,林万明,赵晶.非焦煤冶金技术[M].北京:化学工业出版社,2007.
    [51]张兆镗.第十二届全国微波能应用学术会议论文集[A],2005.
    [52]潘永康,王喜忠,刘相东.现代干燥技术[M].北京:化学工业出版社,2007.
    [53]N. Standish, H. Womer. Microwave application in thereduction of metal oxides with carben[J]. Microwave Power and Electromagnetic Energy,1990,25(3):177-179.
    [54]Y.X. Hua, C.P. Liu. Microwave assisted carbothermic reduction of ilmenite[J]. Acta Metallurgica Sinica (English Letter),1996,9(3):164-165.
    [55]彭金辉,刘纯鹏.微波辐射下PbS和PbO的升温速率及其反应动力学[J].中国有色金属学报,1993,3(1):25-27.
    [56]B. Harton.Microwave treatment of ferrous slags[C].Steel making Conf Proc.1994:435-442.
    [57]梁波,宁平,马晓利.微波辐照解毒铬渣的稳定性研究[J].有色金属.2003,55(增刊):95-98.
    [58]N. Standish, H.K. Worner, G. Gupta.Temperature Distribution in Microwave Heated Iron Ore-Carbon Composites[J]. J.Microwave Power and Electromagnetic Energy,1990,25(2):75-80.
    [59]M.A. Hassine. Synthesis of refractory metal carbide powders via microwave carbonthermal reduction[J]. Int. J.Refract M. Hard Mater,1995,(6):353-358.
    [60]A.B. Yu. Reduction of stannic oxide with carbon by microwave heating[A].6th Aus IMM Extractive Metallurgy Conference Metal.1994:225-232.
    [61]樊希安,彭金辉,秦文峰,等.微波辐射在提金活性炭技术中的应用[J].黄金,2003,24(5):33-35.
    [62]戴长虹,杨静漪,蔺玉胜.微波法合成SiC纳米微粉[J].青岛化工学院学报,1999,20(1):39-43.
    [63]李钒,张梅,王习东微波在冶金过程中应用的现状与前景[J].过程工程学报2007,7(1):186-193.
    [64]W.L.E. Wong, S. Karthik, M. Gupta. Development of Hybrid Mg/Al2O3 Composites with Improved Properties Using Microwave Assisted Rapid Sintering Route [J]. J.Mater.Sci,2005,40:3395-3402.
    [65]Suslick K.S.,Hyeon T.,Fang M.,et al.Sonochemical Synthesis of Nanostructured Catalysts [J].Mater. Sci.Eng,1995,204(1-2):186-192.
    [66]E. Sayan,Bayramoglu M-Statistical modeling and optimization of ultrasonic-assited sulfuric acid leaching of TiO2 from red mud[J]. Hydrometallurgy,2004,71 (3-4):397-401.
    [67]赵逸云,鲍慈光,冯若.声化学应用研究的新进展[J].化学通报,1994,(8):26-29
    [68]赵逸云,徐克利,鲍慈光.声化工设备研究进展[J].化学工程,1995,23(4):6-11.
    [69]冯若,赵逸云,陈兆华.声化学主动力-声空化及其检测技术[J].声学技术,1994,13(2),56.61.
    [70]仲茂.声化学发展概况[J].应用声学,1992,12(2):1-5.
    [71]冯若,李化茂.声化学及其应用[M].安徽科技出版社,1992.
    [72]应崇福.超声学[M],科学出版社,1993.
    [73]林仲茂.声化学发展概况[J],应厂用声学,1992,12(2):1-5.
    [74]宋波,超声化学研究动向[J],化学通报,1999,8:1-5.
    [75]赵逸云,冯若,鲍慈光等,声化学反应器研究进展[J],应用声学,1994,13(2),44-48.
    [76]陈建,王慧玲,声化学应用研究进展综述,淮北煤师院学报[J],1997,18(4):77-84.
    [77]生鲁,贡长生,一门新兴学科-声化学[J],武汉化工学院学报,1990,12(2):57-65.
    [78]K.M.Swamy, K.L. Narayana. Intensification of leaching process by dual frequency ultrasound[J].Ultrasonics Sonochemistry,2001,8(4):341-346.
    [79]J. Zhang, A.X. WU, Y.M. Wang.Experimental research in leaching of copper-bearing taitings enhanced by ultrasonic treatment[J].Journal of China University of Mining and Technology,2008,18(1):98-102.
    [80]B.Ahydev.Effect of ultrasound on the dissolution of copper from copper converter slag by acid leaching[J]. Ultrasonics Sonochemistry,2007,14(6):790-796.
    [81]孙家寿,罗惠华,齐振龙.超声波作用下FeCl3浸出硫化铜精矿的研究四.湿法冶金,1999,1:22-24.
    [82]刘彬,李苏,梅立新.硫化铜矿超声处理浸出研究[J].适用技术市场,2001,6:25-26.
    [83]张通,张志全,张冬艳,等.硫化铜矿超声波预处理提高细菌浸铜浸出率[J].过程工程学报,2001,1(3):315-317.
    [84]胡松青,丘泰球,张喜梅.功率超声在分离纯化中的应用[J].声学技术1999,18(4):180-184.
    [85]A.S. Slaczka.Effect of ultrasound on ammonium leaching of zinc from galmei ore[J].Ultrasonics,1986,24(1):53-55.
    [86]范兴祥,彭余辉,张利波.超声强化草酸浸出氧化锌精矿田[J].有色金属,2003,55(1):51-53.
    [87]范兴祥,彭金辉,张利波,等.超声波强化锌浮渣浸出的研究[J].昆明理工大学学报,2003,28(1):8-11.
    [88]兰新哲,张晓民,崔学奇.超声波强化ML浸金探索性研究[J].有色金属,2002,54(增刊):121-123
    [89]念保义,郝炳云.超声波强化硫脲提金的研究[J].化学工程师,2001,85(4):11-13
    [90]M.S. Oncel, M. ince, M.Bayramo.Leachingof silver from solid waste using ultrasound assisted thiourea method[J]. Ultrasonics Sonochemistry,2005,12(3):237-242.
    [91]赵文焕.超声波强化浸出(PUL法)银精矿中金银的研究[J].矿冶,1995,4(3):60-66
    [92]K.M.Swamy, L.B.Sukla, K.L.Narayana.Use of ultrasound in microbial leaching ofnickel from laterites[J].Ultrasonics Sonochemistry,1995, 2(1):S5-S9.
    [93]B. Avvaru, S.B. Roy, Y. Ladola. Sono-chemical leaching of uranium[J].Chemical Engineering and Processing:Process Intensification, 2008,47(12):2107-2113.
    [94]T.Tekin, D.Tekin, M.Bayramoglu.The effect of Ultrasound on the dissolution inetics ofphosphate rock in HNO3[J].Ultrasonics Sonochemistry, 2001,8(4):373-377.
    [95]T.Tekin.Use ofultrasound in the dissolution kinetics ofphosphate rock in HCI[J]. Hydrometallurgy,2002,64(3):187-192.
    [96]B.Piwakowski,K.Sbai. A New Approach to Calculate the Field Radiated from Arbitrarily Structured Transducer Arrays, IEEE Transactions on Ultrasonics[J]. Ferroelectrics and Frequency Control,1999,46(2):422-440.
    [97]P. Calmon, A. Lhemery, T.Z. Lecoeur. Models forthe computation of ultrasonic fields and their interaction with defect in realistic NDT configurations[J]. Nuclear Engineering and Design,1998,180(3):271-283.
    [98]J.T. Oh, S.B. Park. A coustic field analysis in lossy nonhomogeneous medium by the beam propagation method[C]. IEEE Transactions on UFFC,1995,42(1):144-146.
    [99]T. Xue, W. Lord, S. Udpa.Numerical analysis of the radiatedfields of ultrasonic transducers[J]..Tournal of NondestructiveEvaluation,1995,14(3):137-148.
    [100]T. Xue, W. Lord, S. Udpa.Transient fields of pulsed transducers in solids[J]. Research in Nondestructive Evaluation,1995,7(1):31-53.
    [101]C.A. ssa, K.S. Iyer, K.Blasubramaniam. Numerical modellingof ultrasonic wave propagation using the efficient pversion finite element method[J]. Ultrasonics,1994,32(1):13-20.
    [102]K.Harumi.Computer simulation of ultrasonics in a solid.NDT & E International,1986,19(5):315-332.
    [103]王路根,邓京军,沈建中.一种计算固体中超声脉冲散射声场的边界元法[J].声学学报,1997.22(1):28-32.
    [104]李太宝.计算声学[M].北京:科学出版社,2005.
    [105]王小同,杜芳等.可视化仿真及其应用综述[J].计算机工程,1998,24(8)20-22.
    [106]R. Earnshaw, N. wiseman. An Introduction auide to Scientific Visualization[C]. Springer-Verlag,1992
    [107]李锦,林书玉.矩形活塞声源辐射声场研究[J].陕西师范大学学报,2003,31(1):39-42.
    [108]彭应秋,李坚.脉冲波声场的数值计算与测试研究[J].测试技术学报,2004,18(2):95-98.
    [109]郭兴忠,张丙怀,阳海彬.氧化锌球团还原的机理研究[J].有色金属(冶炼部分),2002,(2):20.
    [110]郭兴忠,张丙怀,阳海彬.含碳氧化锌球团还原的动力学[J].重庆大学学报,2002,25(5):86-88.
    [111]杨学民,郭占成,黄典冰.含碳球团还原机理研究[J].过程工程学报,1995,16(2):118-126.
    [112]黄典冰,杨学民,杨天钧,等.含碳球团还原过程动力学及模型[J].金属学报,1996,32(6):629-636.
    [113]罗世永,张家芸,周土平.固/固反应动力学预测系统[A].中国稀土学报.冶金过程物理化学专辑[C].北京:中国稀土学会,2000.198-201.
    [114]韩其勇.冶金过程动力学[M].北京:冶金工业出版社,1983.231.
    [115]傅崇说.有色冶金原理[M].北京:冶金工业出版社,1993:63.
    [116]张元福,陈家蓉,黄光裕.针铁矿法从氧化锌烟尘浸出液中除氟氯的研究.湿法冶金,1999(2):36-40.
    [117]刘晓丹,张元福.铵盐浸出氧化锌矿动力学的研究[J].贵州工业大学学报(自然科学版),2004,33(2):82.84-89.
    [118]黄孟阳,彭金辉,黄铭等.微波场中不同配碳量钛精矿的吸波特性[J].中国有色金属学报,2007,17(3):476-480.
    [119]黄孟阳,彭金辉,雷鹰等.微波场中钛精矿的升温行为及吸波特性[J].四川大学学报(工程科学版),2007,39(2):111-115.
    [120]E.T. Thostnson,T.W. Chou, Microwave processing:fundamentals and applications[J]. Composites a,1999 30:1055-1071.
    [121]T. Katsumi, K. Fumiyasu, K. Masashi.Development of the Microwave Heated Catalyst System[J].JSAE Review,1999,20(3):431-434.
    [122]李太宝.计算声学一声场的方程和计算方法[M].北京:科学出版社,2005.
    [123]超声波探伤编写组.超声波探伤[M].北京:电力工业出版社,1980.20-23,48-54.
    [124]朱昌平,冯若,何世转等.用三种方法研究双频超声空化增强效应[J].南京大学学报(自然科学版),2005,41(1),66-70.
    [125]M.L. Qian, Q. Cheng. C.Y. Ge. Dynamic be-havior of gas bubble in single bubble sonolumineseence-Vibrator model[J]. Chinese J. Acoust.,2002,21(4):296-306.
    [126]冯若,李化茂.声化学及其应用[M].安徽科技出版社,1992.
    [127]李廷盛.尹其光.超声化学[M].科学出版社,1995.
    [128]张斌,陈启元.超声波在湿法冶金中的应用进展[J].湿法冶金2001,20(3):113-115.
    [129]王瑞祥. MACA体系中处理低品位氧化锌矿制取电锌的理论与工艺研究[D].长沙,中南大学.
    [130]G.H. Xu, D.Y. Yu, Y.F. Su. Leaching of Scheelite by hydrochloric acid in the presence ofphosphate[J]. Hydrometallurgy,1986,16(1):27-40.
    [131]S.L. Pohlman, F.A. Olson.A kinetic study of acid leaching of Chrysocolla using a weight loss tech nique[A]. Solution Mining Symposium[C],AIME,New York,1974,PP.447-460.
    [132]C. Wen.Noncatalytic heterogeneous solid fluid reaction model[J].Ind Eng Chem.,1968.60(9):35-54.
    [133]A. Kunkul, K.M. Muhtar, M. Yapici.Leaching kinetics of malachite in ammonia solutions[J].Mineral processing,1994,41 (3):167-182.
    [134]谢铿,温建康,华一新.硫化锌精矿中钢的赋存及提取工艺概况[J].矿产保护与利用,2008,(1):39-43.
    [135]L.C. Hagenson, L.K. Doraiswamy.Comparison of the effects of ultrasound and mechanical agitation on a reacting solid-liquid system[J].Chemical Engineering Science,1998,53(1):131-148.
    [136]袁明亮,邱冠周,王淀佐.细粒嵌布锰银矿浸出中的超声强化作用[J].过程工程学报,2002,2(1):21-25
    [137]A.Balasubrahmanyam, S.B.Roy, L. Yogesh, C. Sujit, K.N.Hareendran, B. Pandit Aniruddha, Sono-chemical leaching of uranium[J].Chemical Engineering and Processing:Process Intensification,47,2008,2107-2113
    [138]H.Mehtap, L.Oral, S.Hanifi. Dissolution kinetics of smithsonite ore as an alternative zinc source with an organic leach reagent, Journal of the Taiwan Institute of Chemical Engineers 40 (2009) 6-12
    [139]K.M. Swamy, K.L. Narayana, Intensification of leaching process by dual-frequency ultrasound[J].Ultrasonics Sonochemistry,8,2001, Pages 341-346
    [140]Y.J. Zhang, X.H. Li, L.P. Pan, X.Y. Liang, X.P. Li, Studies on the kinetics of zinc and indium extraction from indium-bearing zinc ferrite[J]. Hydrometallurgy,100 (2010) 172-176.
    [141]D. Zhang, X.F. Gong, J.H. Liu, L.Z. Shao, Li X.R., Zhang Q.L. The experimental investigation of ultrasonic properties for a sonicated contrast agent and its application in biomedicine[J]. Ultrasound Med Biol, 2000,26(3):47-51.
    [142]C.C. Li, F.C. Xie, Y. Ma, T.T Cai, H.Y. Li, Z.Y. Huang, G.Q. Yuan, Multiple heavy metals extraction and recovery from hazardous electroplating sludge waste via ultrasonically enhanced two-stage acid leaching, J. Hazard. Mater.178 (2010) 823-833.
    [143]H. Yanagida. The effect of dissolve gas concentration in the initial growth stage of multi cavitation bubbles:differences between vacuum degassing and ultrasound degassing[J].Ultrason. Sonochem,2008,15 (4): 492-496.
    [144]A.Zabaniotou, G.Stavropoulos, V.Skoulou. Activated carbon from olive kernels in a two-stage process:Industrial improvement[J]. Bioresource Technology,2008,99:320-326.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700