用户名: 密码: 验证码:
利用数控系统实现脉冲力作用的数控铣削研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铣削是被广泛采用的一种金属切削加工方法。铣削是断续切削,并且很容易受到外界和自激振动的影响。普通铣削过程中由于系统刚度等因素的影响变得不稳定,刀具与工件时刻做微小的位移,影响加工精度和表面质量。本文研究利用工作台的逻辑进给产生振动切削的机理,强化切削过程。
     本文主要是对淬硬45号钢进行振动铣削研究。这种材料硬度达到HRC40以上的时,切削加工性较差,其特点是硬度、强度高,脆性大,(导热性差,)在切削加工过程中,切削力大,切削温度高,刀具耐用度低,容易使工艺系统产生振动,从而使加工工件的加工精度低,表面质量差。通过在相对切削刀具施加某种有规律的、可控的振动,从而达到减小切削力、切削热,提高加工质量和效率。本文研究利用数控系统控制工作台的产生逻辑进给,实现脉冲力作用的数控加工方法,即利用数控加工设备的数字控制系统,通过编程指令使工件按照所需的逻辑进给,实现脉冲力作用的振动切削机理。在理论上建立了铣削的数学模型,构建了微分方程,并进行求解,在理论上研究了刀具与工件的动态关系。论文对工艺系统刚度进行了研究和测定,对刚度规律及对加工过程影响进行了分析。通过实验研究了切削参数、逻辑进给和工作台回退速度对切削力、表面粗糙度的关系;同时也研究了振动频率对切削力和表面粗糙度的影响,探讨了其相关的规律;还对切削温度进行了粗略的研究。试验表明,当振动频率满足零位振动切削条件时,切削力、切削温度明显降低,表面粗糙度精度有较明显的提高,可以用普通切削刀具铣削淬硬材料。
In the metal cutting, milling is wildly used in the processing methods. Milling is in intermittent in the cutting process, which is affected by the external vibration and inherent vibration easily. The process of normal milling will be unstable because of stiffess of process. The machining accuracy and surface quality will be affected by the small displacement of tool and workpiece. This paper studies the mechanism of vibration cutting under the logic feed of workbench, which can strengthen the cutting process.
     In this paper, vibration milling of hardened 45 steel is studied. Machinability is poor when the hardness of this material exceeds HRC40, and this moment its characteristic is high hardness and intensity, prodigious brittleness, poor thermal conductivity prodigious cutting force, high cutting temperature, lower tool life, caused easily vibration so that the machining accuracy of workpiece is low and the surface quality is poor. By exerting certain regular and controlled vibration on relative cutting tool, cutting force and heat would be decreased and processing quality and efficiency would be improved. In this paper, the CNC machining methods of realizing the effect of pulse force is studied by the use of logic feed, which is engendered by using the CNC workbench. By programming instructions, that is to say, workpiece can realize the pulse of the force under vibration cutting mechanism according to required logic feed by the using the digital control system of numerical control processing equipment. The mathematical model of the milling established, and the differential equation is established and solved theoretically. the dynamic relationship between the tool and the workpiece is studied theoretically.the stiffness of the process system is measured. The law of stiffness and the affect of pocess is analysised .the relation of cutting perameter and logic feed and the speed of workbench with cutting force and surface roughness are studied. And the influence of vibration cutting frequency for cutting force and surface roughness are discussed in this paper. The dynamic displacement between tool and workpiece is analyzed though Matlab.Tests show that when the vibration frequency to meet the zero-vibration cutting conditions, cutting forces and cutting temperature significantly reduced, the surface roughness accuracy has improved significantly, hardened materials can be machined by the ordinary cutting tool.
引文
[1] T.B.Thoe, D.K.Aspinwall, M.L.H.Wise. Review on Ultrasonic Machining. Machine Tools & Manufacture. 1998,38:239-255
    [2] J. Kumabe. Vibration Cutting——Fundamentals and Applications, Jikkyo Publisher, 1979
    [3] Jeong-Du and In-Hyu Choi, Characteristics of Chip generation by ultrasonic vibration cutting with extremely low cutting velocity, The International Journal of Advanced Manufacturing Technology,14,pp.2-6,1998
    [4] Chandra Nath, M.Rahman. Effect of machining parameters in ultrasonic vibration cutting, International Journal of Machine Tools and Manufacture,48,pp.965-974,2008
    [5]尹天津.超声振动辅助铣削机理及实验研究.山东大学,硕士学术论文,2010
    [6]郑书友.旋转超声加工机床的研制及实验研究.华侨大学,博士学术论文,2008
    [7] V.K1Astashev1etc.Ultrasonic Cutting as a Nonlinear Process [J].Ultrason,1988:36:89-96
    [8] Ken-ichi Ishikawa, Hitoshi Suwabe, Tetsuhiro Nishide. A studyon combined vibration drilling by ultrasonic and low-frequency vibrations for hard and brittle materials. Precision Engineering,1998(22):196-205
    [9] Gi Dae Kim, Byoung Gook Loh. An ultrasonic elliptical vibration cutting device for micro V-groove machining: Kinematical analysis and micro V-groove machining characteristics. Journal of Materials Processing Technology. 2007,190:181-188
    [10] Jun-Seok Lee, Deug-Woo Lee, Yoong-Ho Jung and Woo-Seop Chung. A study on micro-grooving characteristics of planar lightwave circuit and glass using ultrasonic vibration cutting. 2002,130:396-400
    [11] Z. Y. Yu, K. P. Rajurkar, A. TandonStudy of 3D Micro-ultrasonic Machining. 2004,126:727-732
    [12] Hu P, Zhang J M, Pei Z J. Modeling of material removal rate inrotary ultrasonic machining: designed experiments. Journal of Material Processing Technology, 2002,129:339-344
    [13] Guzzo P L, Raslan A A, De Mello J D B. Ultrasonic abrasion of quartz crystals. Wear 2003,255: 67-77
    [14] Masahiko Jin, Masao Murakawa. Development of a practical ultrasonic vibration cutting tool system. Journal of Materials Processing Technology.2001,113:342-347
    [15] M.Xiao, S.Karube, T.Soutome, K.Sato.Analysis of chatter suppression in vibration cutting. Machine Tools And Manufacture.2002,(42):1677-1685
    [16] M.Xiao, K.Sato, S.Karube. The Effect of Tool Nose Radius in Ultrasonic Cutting of Hard Metal. Machine Tools And Manufacture.2003,(43):1375-1382
    [17] M.Xiao, Q.M.Wang, K.sato,et.al. The Effect of Tool Geometry on Regenerative instability in ultrasonic vibration cutting. Machine Tools And Manufacture.2006,(46):492-499
    [18]张建中,李秀人.超声波振动镗孔的试验研究.电加工.1991(4):21-25
    [19]张建中.超声波激振刀具镗削淬硬钢研究.航空工艺技术.1994(6):11-12.
    [20]张建中,李秀人,段宝.超声波激振刀具镗孔机制及试验研究.航空制造技术.2001(2):45-52
    [21]张建中.超声激振刀具干式镗削试验研究.电加工与模具.2002(1):40-42
    [22]张建中,李秀人,申奎东.超声振动干式镗削40CrMnSiMoVA钢的试验研究.航空制造技术.2002(5)
    [23]张建中,李秀人.超声振动镗削40CrMnSiMoVA钢.新技术新工艺.2002(9):18-19
    [24]张建中,李秀人.超声振动干式镗削不锈钢.制造技术与机床.2003(4):42-44
    [25]张建中,于超,申奎东.超声振动扩孔的试验研究.电加工与模具.2000(6):18-20
    [26]张建中,李秀人,李蕾.超声波激振铰刀干式铰孔试验研究.电加工与模具.2003(4)18-20
    [27]张建中,李秀人,申奎东.超声振动干式扩孔的试验研究.电加工与模具.2004(1)
    [28]李勋,张德远.单激励超声椭圆振动车削薄壁筒实验研究.航空学报.2006,27(4):720-723
    [29] Li Xun, Ji Yuan, Zhang Deyuan. Research on the Transducer of the Ultrasonic Elliptical Vibration Cutting Based on the Finite Element Method.7th Inence on Progress of Machining Technology, Suzhou,2004
    [30]陈斌,徐可伟,朱训生.超声振动切削薄壁镜筒零件的研究.机械工程师.2001,(1):40-42
    [31]杨亮.塑性材料超声振动精密切削技术的研究.哈尔滨工业大学博士学位论文.2007
    [32] Gwo-Lianq Chern, Han-Jou Lee. Using Workpiece Vibration Cutting for Micro-drilling. International Journal of Machine Tools & Manufacture. 2006,(27): 688–692
    [33]芮延年,刘文杰,李友云.细长导辊超声车削的试验研究.机械设计及制造.2001,30(1):21-22
    [34]张勤河.声振动钻削加工陶瓷的研究[J].技术新工艺,1997,1,19-21
    [35]高印寒,于向军,王连武,李东旭,王立江.超声振动精密切削GFRP的实验研究.光学精密工程.2003,11(4):591-595
    [36] Hocheng H, Kuo K L. Fundamental study of ultrasonic polishing of mold steel. International Journal of Machine Tools &Manufacture, 2002,42: 7-13
    [37]卢泽生,杨亮.精密超声振动切削频率对切削力影响规律的研究与仿真.航空精密制造技术.2006,42(5):10-14
    [38]佟富强,张飞虎,陈光军,顾立志,孙鹏.低频振动切削对加工表面影响的机理研究.华中科技大学学报.2007,35:68-70
    [39]张建中,朱瑛,于超.机械制造工艺学[M].北京:国防工业出版社. 2009.3
    [40]付俊涛.数控立式车床关键零件轻量化设计研究[D].吉林:吉林大学.2011.
    [41]魏建中,刘强,袁松海.机床动态特性对铣削力影响的实验研究[J].制造技术与机床.2009,2:23-26
    [42]王济,胡晓.MATLAB在振动信号处理中的应用[M].北京:知识产权出版社和中国水利水电出版社,2006
    [43]卢泽生,杨亮.基于动态断裂力学的超声振动切削分析与仿真[J].哈尔滨工业大学学报.2008,9:1400-1403
    [44]杜小东.小直径铣刀高速铣削淬硬钢的动力学建模与仿真[D].南京:南京理工大学,2007
    [45]佟富强,张勇,张飞虎等.振动切削中应力波对裂纹及成屑机理影响研究[J].振动与冲击.2008,27(6):136-138

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700