用户名: 密码: 验证码:
超声抛光机理研究及其变幅杆设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在调研中发现模具行业的厂家急需不依赖于加工者技术水平并且加工效率高的新型抛光设备,尤其在注塑模具中,模具内腔表面质量的抛光是模具加工中的瓶颈。超声抛光技术是一种有效的模具精加工技术,本课题致力于研究一种超声自动抛光方法用以解决上述问题。
     超声自动抛光是通过换能器将超声波发生器产生的超声振动传递到变幅杆,变幅杆再将振幅放大后传递给磨料悬浮液,悬浮液磨粒对工件表面撞击而达到抛光的目的。
     模具材料属于弹塑性材料,现在对于这类材料的超声抛光机理的研究极少,本课题对此做出了一些基础性研究。变幅杆是超声自动抛光设备中非常关键的一个部分,由于外界的影响和新设备需要更换不同的加工工具头,因此重点研究了激励频率变化对变幅杆的影响和工具头更换对变幅杆的影响程度。本文为超声自动抛光设备变幅杆的设计和优化提供了一整套完整的解决方案。
     本文总结了相关内容的研究和应用,并开展了如下研究工作:
     (1)设计了超声自动抛光系统的主要组成部分,分别对各部分的结构和功能进行了阐述,选用压电式换能器作为超声自动抛光系统的换能器。
     (2)建立了全新的适用于韧性材料的超声加工材料去除机理模型,并引用实验与理论预测值进行了分析比较,为进一步的研究打下基础。
     (3)研究了常用的四种单一型变幅杆,推导了三段式复合变幅杆的设计公式,并对各类变幅杆进行了动态分析,总结比较了不同变幅杆的放大系数和稳定性。
     (4)提出了一种频率可调的装配式复合变幅杆,对稳定性好的圆锥形变幅杆进行了放大系数的优化设计,提出了加有工具头后的变幅杆共振频率的优化设计方法,为适用于不同加工工况的变幅杆的优化设计提供了一种准确高效的解决方案,并研究了工具头磨损和工具头的更换对于变幅杆系统的影响。
During the research, we find the mold manufacturers eagerly need a new kind ofpolishing equipment with high processing efficiency which is not depend on the worker’sskill. Especially about the injection mold, it is the bottleneck to improve the mold surfacequality of mold processing. Ultrasonic polishing technology is an effective mold finishingtechniques, and an ultrasonic automatic polishing method is developed to solve the aboveproblem.
     The principle of ultrasonic automatic polishing is that the ultrasonic generatorgenerates the ultrasonic vibration which is transmitted to the horn through the transducer,and then the horn drives the abrasives in abrasive suspension after the horn amplifies thevibration amplitude so that the abrasives hit surface of mold to decrease the roughness ofthe surface.
     Some basic work has been done in the polishing mechanism for elastic-plasticmaterial that mold steel belongs to, where little research has been done until today. Inaddition, ultrasonic horn is a very critical part in ultrasonic polishing. New equipmentdemand the horn that is not sensitive to the frequency fluctuations caused by externalchanges or replacement of the tool head linked to the horn, this article will also focus onthis area. A complete set of solutions of design and optimization of the ultrasonic automaticpolishing horn is provided.
     The relevant researches and applications are summarized and the following researchesare carried out.
     (1)The ultrasonic automatic polishing system's main components are designed, thevarious parts of the structure and function are described, and the piezoelectric transducer isselected as the ultrasonic polishing system transducer.
     (2) A new ductile materials removal mechanism model in ultrasonic machining isestablished, the values of the reference experiment and those of theoretical predictionsmeet very well, which lay the foundation for further research.
     (3) Four kinds of single-type horn are studied, three sections composite horn designformulas are derived, the dynamic characteristics of various types of horn are analyzed,and the amplification factor and stability of different horns are studied.
     (4) A composite assembly horn adapted to the frequency adjustment is proposed isproposed, the amplification factor of the conical horn is optimized, the optimal designmethod to the resonance frequency horn is created, which provides an accurate andefficient design solution for horns used in different conditions and the effect of the wear ofthe tool linked to horn is studied, the impact of tool head wear and the replacement of thetool head for the horn system is analyzed.
引文
[1]金加奇.薄壁零件冲压模具设计及成形过程模拟分析[D],2008.
    [2]薛仰荣.高速冷冲压模具的研究[D],2009.
    [3]赵雪松,高洪.精密模具超声电解复合抛光试验研究[J].农业机械学报,2004,5(3):187-189.
    [4]曹驰,马颖.模具抛光技术浅谈[J].电加工与模具.2009(增刊):45-47.
    [5]张云电.超声加工及其应用[M].北京:国防工业出版社,1995.
    [6]T.B.Thoe,D.K.Aspinwall,M.L.H.Wise.Review on Ultrasonic Machining. InternationalJournal of Machine Tools Manufacture,1998,38(4):239-255.
    [7]范仲俊.超声复合微细电解、电火花加工应用基础研究[D].扬州大学,2009.
    [8]丁仕燕.数控展成超声磨削陶瓷型面的基础研究[D].南京航空航天大学,2006.
    [9]周忆,梁德沛.超声研磨硬脆材料的去除模型研究[J].中国机械工程,2005,(8):664-666.
    [10]Z.N. Guo, T.C. Lee, T.M. Yue, W.S. Lau. The design of an ultrasonic polishing tool bythe transfer-matrix method[J]. Materials Processing Technology.2000,(102):122-127.
    [11]马立,李艺.超声抛光的理论模型和试验分析[J].机械制造与自动化.2009,(6):37-39.
    [12]郑建新,刘传绍.无磨料超声抛光工艺参数优选试验研究[J].制造技术与机床.2009,(2):93-94.
    [13]杨凌平,郑传彬.电火花超声复合抛光[J].模具制造.2002,(4):46-47.
    [14]陈亚春.超声波磁流变复合抛光实验装置研制及工艺研究[D].哈尔滨工业大学,2007.
    [15]杨胜强,李文辉.表面光整加工理论和新技术[M].北京:国防工业出版社,2011.
    [16]金菁,刘友和.合金钢电解超声复合抛光工艺的试验研究[J].中国表面工程,1995,(01):29-33.
    [17]杨卫平.超声椭圆振动-化学机械复合抛光硅片技术的基础研究[D].南京航空航天大学,2008.
    [18]A Curodeau, J Guay, D Rodrigue, et al. Ultrasonic abrasive μ-machining withthermoplastic tooling[J], International Journal of Machine Tools&Manufacture,2008,48:1553-1561.
    [19]H. Hocheng, K.L. Kuo. Fundamental study of ultrasonic polishing of mold steel[J].International Journal of Machine Tools&Manufacture,2002,42:7-13.
    [20]百度百科http://baike.baidu.com/view/856126.htm.
    [21]马立.超声抛光原理研究及超声系统设计[D].苏州大学,2010.
    [22]王燕忠.超声珩齿非谐单元变幅器的设计理论研究[D].太原理工大学,2010.
    [23]李祖胜.基于谐振频率自动识别的超声波电源研究[D].苏州大学,2011.
    [24]张振华.超声波珩齿传递系统的振动特性及结构设计[D].太原理工大学,2006.
    [25]王先逵.精密加工技术实用手册[M].北京:机械工业出版社,2001.
    [26]怡晓玲.压电声波器件的多场耦合问题ANSYS模拟与分析[D].兰州大学,2009.
    [27]林书玉.超声换能器的原理及设计[M].北京:科学出版社,2003:11-13.
    [28]高守香.双频超声波清洗机的研制[D],湖北大学,2007.
    [29]林仲茂.20世纪功率超声在国内外的发展[J].声学技术,2002,19(1):101-105.
    [30]林书玉.夹心式压电超声复频换能器的研究[J].压电与声光,1995,17(5):19-23.
    [31]何涛.功率超声多频换能器的研究[D].陕西师范大学,2004.
    [32]林书玉.夹心式功率超声压电陶瓷换能器的工程设计[J].声学技术,2006,25(2):160-164.
    [33]初涛.超声变幅杆的设计及有限元分析[J].机电工程,2009,26(1):102-104.
    [34]Lorenzo Parrini.New technology for the design of advanced ultrasonic transducers forhigh-power applications [J].Ultrasonics,2003,41:261-269.
    [35]曹凤国.超声加工技术[M].北京:化学工业出版社,2005.
    [36]肖德贤.旋转超声波铣削加工技术的实验研究[D].大连理工大学,2004.
    [37]顾志轩.数控展成超声波加工技术的工艺试验研究[D].南京农业大学,2006.
    [38]郑书友,冯平法.旋转超声加工技术研究进展[J].清华大学学报(自然科学版),2009,49(11):1800-1804.
    [39]张文玉.超声波—电化学抛光技术在模具中的应用[J].机床与液压,2003,(4):299-300,399.
    [40]李奇.模具材料及热处理[M].北京:北京理工大学出版社,2007.
    [41]戴红娟.Nd-Fe-B烧结永磁体材料的超声加工机理[J].机械工程师,2002,(8):32-33.
    [42]Ichida Y, Sato R, Morimoto Y. Material removal mechanisms in non-contact ultrasonicabrasive machining[J]. Wear, v258, n1-4,107-14, Jan.2005
    [43]G.Spur, S.E.Holl, Material removal mechanisms during ultrasonic assisted grinding,Production Engineering4(2)(1997):9-14.
    [44]Electronic Industries Association of Japan, Ultrasonic Engineering,Corona PublishingCo. Ltd., Tokyo,1993, p.232.
    [45]曹文国,轧刚.旋转超声加工机理的有限元分析[J].新技术新工艺,2009,(10):38-40.
    [46]陈辉,强颖怀.超声波空化及其应用[J].新技术新工艺,2005,(7):63-65.
    [47]谢阁.物理场辅助提取啤酒废酵母中的蛋白质与核酸[D].江南大学,2008.
    [48]Shaw M. C. Ultrasonic Grinding[J]. Microtechnic,1956,10(6):257-265.
    [49]赵明,李艺.超声加工韧性材料的材料去除率模型[J].工具技术.2011,45(1):25-28.
    [50]Z.J.Pei,P.M.Ferreira.Modeling of ductile-mode material removal in rotary ultrasonicmachining[J].International Journal of Machine&Manufacture,1998,38:1399-1418.
    [51]K.L.Johnson.接触力学[M].北京:高等教育出版社,1985.
    [52]Yongwu Zhao,L. Chang.A micro-contact and wear model for chemical–mechanicalpolishing of silicon wafers[J]. Wear,2002,252:220-226.
    [53]P.Hu, J.M.Zhang, Z.J.Pei, Clyde Treadwell. Modeling of material removal rate inrotary ultrasonic machining:designed experiments[J]. Journal of Materials ProcessingTechnology,2002,129:339-344.
    [54]R. Singh, J.S. Khamb. Ultrasonic machining of titanium and its alloys: A review [J].Journal of Materials Processing Technology,2006,173:125-135.
    [55]R. Singh, J.S. Khamb. Investigation for ultrasonic machining of titanium and itsalloys[J]. Journal of Materials Processing Technology,2007,183:363-367.
    [56《]机械工程标准手册》总编委会.机械工程标准手册——磨料与磨具卷[M].北京:中国标准出版社,2000.
    [57]朱寅.超声变幅杆有限元谐振分析[J].机械,2005,32(12):13-15.
    [58]傅锦.超声微细加工中变幅杆的设计与制造[J].现代机械,2010,(2):33-36.
    [59]林仲茂.超声变幅杆的原理和设计[M].北京:科学出版社,1987.
    [60]郑书友.旋转超声加工机床的研制及实验研究[D].华侨大学,2008.
    [61]杨超华.大截面超声变幅杆振动特性研究及设计软件开发[D].广东工业大学,2006.
    [62]宋红文,夏季.模具型腔表面振动抛光新技术的研究[J].轻工机械,2005,(3):85-87.
    [63]贺西平,高洁.超声变幅杆设计方法研究[J].声学技术,2006,25(1):82-86.
    [64]赵福龄,冯冬菊.超声变幅杆的四端网络法设计[J].声学学报,2002,27(6):554-558.
    [65]高洁.超声变幅杆的优化设计及声学特性分析[D],陕西师范大学,2006.
    [66]贺西平,胡时岳.复合超声纵振型变幅杆的简化设计[J].兰州大学学报,2002,38(5):24-27.
    [67]王富耻,张朝晖.ANSYS10.0有限元分析理论与工程应用[M].北京:电子工业出版社,2006.
    [68]刘国庆,杨庆东编著.ANSYS工程应用教程——机械篇.北京:中国铁道出版社,2003.
    [69]赵莉.基于有限元的超声波加工中变幅杆的动力学分析与设计[D].太原理工大学,2005.
    [70]张应迁,张洪才编著.ANSYS有限元分析从入门到精通[M].北京:人民邮电出版社,2010.
    [71]王森军.混凝土结构扣件式钢管高支撑架的动态响应分析[D].浙江工业大学,2007.
    [72]濮良贵,纪明刚主编.机械设计[M].高等教育出版社,2006.
    [73]桑永杰.大尺寸压电超声换能器的特性研究及有限元仿真[D].陕西师范大学,2007.
    [74]杨志斌,吴凤林,轧刚.大振幅比超声变幅杆的优化设计[J].电加工与模具,2007,(6):44-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700