用户名: 密码: 验证码:
溶液雾化法制备镍钴精细粉体材料理论与工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镍钴类过渡金属精细粉体材料,包括单一金属氧化物粉末、单质粉末、人造金刚石领域用作粉末触媒的金属合金粉末等,是一类具有特殊结构和性能的重要功能材料,广泛应用于电子信息、清洁能源、石油化工、精细陶瓷等现代基础工业领域及国防军工高端领域。探索各种新的精细粉体制备方法是粉体材料重要研究方向。本研究开拓了一种溶液雾化制备有色金属精细粉体材料的新方法,制备出组成准确均匀化、微观形貌超细可控化、宏观性质功能优异化的精细粉体,克服了传统制备方法的缺陷,可满足相关行业对高性能精细粉体多样性和苛刻性要求,具有重要的理论价值和实际意义。
     本文首先提出和设计了一种溶液雾化法制备镍钻系列精细粉体材料的新工艺,并为此设计建立了专门实验装置以及系统开展了有关理论与工艺研究。本研究取得的主要成果有:
     一、设计了溶液雾化法制备精细粉体新工艺,建立了一套溶液雾化法制备精细粉体的专用实验装置。采用建立的装置系统,不但可实现有色金属粉体材料精细制备,而且可实现物料的闭路循环利用。
     二、对溶液雾化法制备NiO反应过程热力学进行了研究,确定了反应进行的热力学条件,利用自行建立的溶液雾化制粉装置开展实验,成功制备得到单一高纯NiO精细粉体。探讨了温度、载气种类、溶液浓度、雾化压力、溶液体系对NiO粉体样品组成、结构、微观形貌的影响,研究发现采用惰性载气(氮气)或氧化性载气(空气、氧气)均能制备得到单一NiO精细粉体;温度对原料转化率及样品物化指标产生重要影响;溶液浓度、雾化压力也对样品粒度形貌产生影响;采用硝酸盐体系易制得微米级空心球NiO粉体、硫酸盐体系可制得微米级多孔NiO粉体。当采用氯化盐为溶液溶质时,易得到高品质亚微米级NiO密实粉体粒子,但颗粒粒径不符合ODOP机理。在以空气为载气、氯化镍为溶液溶质、温度为800℃、溶液浓度为1.0mol·L-1、雾化压力为0.10 MPa的优化条件下,制备所得样品为形貌规则立方体、粒子均匀性好、平均粒径约为0.4μm、镍含量77.1%、余氯含量0.08%、松装密度值为0.63 g/cm3的高纯度NiO精细粉体。
     三、对溶液雾化法制备钴氧化物反应过程热力学进行了研究,确定了反应进行的热力学条件,溶液雾化法制备钴氧化物粉体过程,适用逐级转变规则,利用自行建立的溶液雾化制粉实验装置开展实验,成功制备了高纯C0304及CoO精细粉体。探讨了温度、载气种类对制备C0304性能影响,温度对样品纯度、结构、微观形貌产生重要影响,以压缩氧气为载气,能有效改善产物结晶性。在空气为载气、氯化钴溶液浓度为2.0mol·L-1、载气压力为0.25 MPa、温度为750℃的优化条件下,所得样品为高纯度的Co304精细粉体。研究发现雾化压力、气液比、溶液浓度均对产物含氯量产生明显影响;反应不完全、粉体对氯化氢的吸附行为及存在逆反应是降低原料转化率的主要原因;气固分离过程采取保温措施产物含氯量能有效降低;研究发现溶液雾化法制备所得C0304样品具有较好的超电容行为,其比电容可达到103.5 F·g-1。溶液中添加还原性化合物乙醇、尿素或者采用非氧化性气体为载气,有利于CoO的生成。在温度900℃、氯化钴溶液浓度0.5mol·L-1、雾化压力为0.08 MPa、以高纯氮气为载气、溶液中添加少量乙醇的条件下,制备得到了结晶性好、粒度介于亚微米尺度的正八面体高纯CoO精细粉体。
     四、以氯化钴溶液为原料,基于非氢还原的溶液雾化技术,开展直接制备金属钴粉试验。研究发现高纯氮气适宜用作雾化载气,乙醇可作为制备过程中的有效还原剂,乙醇加入量、温度、溶液浓度及载气压力均对钻粉制备过程产生影响。在以高纯氮气为载气、温度为800℃、乙醇:水溶液比为1:1(V/V)、溶液浓度为0.5mol·L-1、雾化压力为0.08 MPa的条件下,成功制备得到FCC晶体结构的金属钴粉。对样品的Zeta电位测试发现,制备所得钴粉具有较好的分散性与稳定性。采用溶液雾化法直接制备金属钴粉过程中,同样适用逐级转变规则,即从钴氧化物到金属钻粉需经由逐级还原过程。
     五、开展溶液雾化法制备粉末触媒实验,按化学计量比配制溶液,控制反应条件,采用溶液雾化法分别成功制备得到组成为Ni7Co3、Fe7Ni3、FeNi3、Ni70Mn25Co5的合金粉末触媒,对应样品的微观形貌为:由纳米粒子堆积而成的蚕茧状、由纳米膜组成的疏松花状球形、由纳米纤维组成的海胆形、由纳米片组成的鳞片簇。
     六、以溶液雾化法制备NiO及Co304粉体过程为对象,开展过程动力学研究,发现制备过程均由三个动力学机理完全不同的连续步骤组成,即溶质结晶析出、溶质脱水与分解、产物晶体生长。采用Doyle方程和Coats-Redfern方程联合推断相应溶质脱水与反应步骤的动力学机理,并求出了相应的动力学方程式。对于产物晶体生长步骤,相应求出了NiO及Co3O4晶粒生长速度对温度的动力学方程。
Transition-metals ultra-fine Ni&Co-based powders, including sole metal oxide powder, elementary powder and alloy powder used as catalyst in artificial diamond industy, are series of important functional materials with special microstructures and properties. These materials are widely used in national defense and sophisticated military industry, as well as modern key industries like electronic information, green power, petrochemical industry and high-grade ceramics. Nowadays, most of the investigations are focused on the new preparation methods of varies ultra-fine powders. In this paper, we find out a new preparation method to produce powders with controlled microstructure refinement, homogeneous chemical composition and outstanding macroscopic properties. The method moreover, once been found out, can overcome the old ones'shortcomings and meet the high demands of variety fine powders with excellent properties, which has great theoretical value and practical significance.
     The new technology to prepare the Ni&Co-based ultra-fine powders via solution spray methods is proposed in this paper. The apparatus for solution spray processing is designed and built. Fundamental and technological studies of this solution spray technology are discussed systematically. The highlights can be summarized as follows:
     1) According to the characters of new solution spray processing technology we used, a set of experimental apparatus applied in preparing ultra-fine powder is designed and established. By using this set of device, many non-ferrous metal powder materials can be obtained and the materials can be utilized recycling in closed system.
     2) The thermodynamics of the NiO powder preparation process by solution spray methods is analyzed and discussed. The pure ultra-fine NiO powders are prepared successfully via solution spray process using the special experimental device established by ourselves. The effects of temperature, kinds of carrier gas, solution concentration, spray pressure and solution system of solution spray routes on the resulting composition, microstructure and morphology of NiO powder are investigated. The results show that a sole NiO fine powder can be obtained at the inert carrier gas (nitrogen) and oxidizing carrier gas (air, oxygen); the temperature has effect on both the morphology size and the conversion ratio of the raw materials; the solution concentration and spray pressure have effect on the resulting particle size and mophology; the hollow NiO microspheres are easily obtained when using nitrate as solute and the porous-microspheres NiO powder are obtain when using sulfate as solute; the high-density sub-micron NiO powder are obtain while chloride as solute, but its size does not meet with ODOP mechanism which is recognized widely at the solution spray to product ultra-fine powder process. When choosing the preparation conditions at the temperature of 800℃, the solution concentration of 1.0 mol·L-1, spray pressure 0.10 MPa while air as carrier gas and nickel chloride as the solute, the resulting pure ultra-fine NiO powder shows cube morphology, uniform particle size of about 0.4μm and the apparent density value of 0.63 g/cm3, which contains 77.1%nickel,0.08%chlorine.
     3) The thermodynamics of cobalt oxide powder preparation process by solution spray technology are discussed. A sequential transformation rules is adopted to cobalt oxidize at solution spray process, and the pure ultra-fine CoO and Co3O4 powder are prepared successfully via solution spray-oxidation process using the special experimental device established by ourselves. The effects of reaction temperature and kinds of carrier gas on resulting Co3O4 powder were investigated systematically, the results show that the reaction temperature has significant effect on the composition, structure, morphology of the as-obtain specimen, and crystallization degree of the product can be improved when using compress oxygen act as carrier gas. The high purity ultra-fine Co3O4 powder was obtain successfully at the temperature of 750℃, the solution concentration of 2.0 mol·L-1 and spray pressure of 0.25 MPa while air as carrier gas. It is found that spray pressure, gas-liquid ratio, solution concentration all have effect on the remaining chlorine content of the sample. Incomplete reaction, the adsorption behavior to hydrogen chloride of powder and the reverse reaction can result in the reduction of raw material conversion. The chlorine content of the product can be reduce when using gas-solid separation process to take insulation measures.It is found that the Co3O4 powder prepared by spray-oxidation method show good capacitive properties depict, of which the specific capacitance is about 103.5 F·g-1. When using ethanol as additional solvent or the urea as additional reactant, or the non-oxidized gas as the carrier gas, the CoO is easy to form by solution spray-oxidation method. The octahedron high pure ultra-fine CoO powder with well crystalline are prepared successfully under the temperature of 900℃, the cobalt chloride solution concentration of 0.5 mol·L-1, the spray pressure of 0.08 MPa, high pure nitrogen as carrier gas, solution with a small amount of ethanol.
     4) The reaction conditions effect on the resulting Co powder prepared by solution spray route without hydrogen reduced while chloride cobalt as raw materials is investigated carefully. It is found that high purity nitrogen as carrier gas is suitable; ethanol can be used as an effective reducing agent in the preparation process of Co powder. The amount of ethanol in solution, the reaction temperature, solution concentration and spray pressure have important impact on resulting Co powder properties. The pure FCC structure Co powder has been prepared successfully under the condition of high purity nitrogen as carrier gas, the temperature of 800℃, ethanol:water solution (1:1, V/V), solution concentration of 0.5 mol·L-1 and spray pressure of 0.08 MPa. The results of Zeta potential test show that the Co powders have better dispersion property and stability. It is also found that there exists a sequential transformation rules at cobalt oxide reduction process in the preparation process of cobalt powder.
     5) The preparation experiments of catalyst powder such as Ni7Co3, Fe7Ni3, FeNi3 and Ni7oMn25Co5 by solution spray route without hydrogen reduced are carried out. The results show that the catalyst powder (Ni7Co3, Fe7Ni3, FeNi3, Ni70Mn25Co5) with varieties morphology (silkworm-like, cockles-spheres, urchin-like, squama-like) has been prepared successfully by solution spray technique via control appropriate reaction conditions and the cation of solution in stoichiometric proportion.
     6) The dynamics theory of NiO and Co3O4 powder preparation processes by spray technology are discussed. It is found that three consecutive steps with different kinetics mechanisms control the whole preparation process of NiO and Co3O4. Thre are namely as:the solute crystallization, dehydration and decomposition of the solute, crystal growth of the product. By adopting Doyle equation and Coats-Redfern equation Joint Inference in solute dehydration and decomposition steps of the dynamic mechanism, we obtain the dynamic equation to the all small stage respectively. The dynamic equations of the NiO and Co3O4 grain growth rate are provided.
引文
[1]郭学益,田庆华.有色金属资源循环理论与方法[M].长沙:中南大学出版社,2008,157
    [2]Huang Kai, Guo Xueyi. Prediction of powder characteristics of uniform NiO precursor prepared by homogeneous precipitation[J]. Transactions of Nonferrous Metals Society of China,2004,14(5):1023-1028
    [3]Hoffman W P, Phan H T, Wapner P G. The far-reaching nature of microtube technology[J]. Mat. Res. Innovat,1998,2:87-96
    [4]敦文杰,余志化,张其春.Ce02微米管的制备研究[J].广东微量元素科学理学,2007,10:61-64
    [5]苏鹏.铝熔体过滤用刚玉-莫来石基泡沫陶瓷的强韧化制备与应用研究[D]:[博士学位论文].长沙:中南大学,2009
    [6]Suraj Kumar Tripathy, Maria Christy, Nam-Hee Park, et al. Hydrothermal synthesis of single-crystalline nanocubes of Co3O4[J]. Materials Letters,2008,62: 1006-1009
    [7]Sarah C. Petitto, Erin M. Marsh, Gregory A. Carson, et al. Cobalt oxide surface chemistry:The interaction of CoO(100), Co3O4(110) and Co3O4(111) with oxygen and water[J]. Journal of Molecular Catalysis A:Chemical,2008,281:49-58
    [8]P. Nkeng, J. Koening. Enhancement of surface areas of Co3O4 and NiCo2O4 electrocatalysts prepared by spray pyrolysis[J]. Journal of Electroanalytical Chemistry,1996,402(1-2):81-89
    [9]S.G. Kandalkar, J.L. Gunjakar, C.D. Lokhande. Preparation of cobalt oxide thin films and its use in supercapacitor application[J]. Applied Surface Science,2008, 254:5540-5544
    [10]Do Youp Kim, Seo Hee Ju, Hye Young Koo, et al. Synthesis of nanosized Co3O4 particles by spary pyrolysis[J]. Jourmal of Alloys and Compounds,2006,417: 254-258
    [11]Y. Ichiyanagi, Y. Kimishima. Magnetic study on Co3O4 nanoparticles[J]. Jourmal of Magnetism and Magnetic Materials,2004,272-276:e1245-e1246
    [12]Han-Chang Liu, Shiow-Kang Yen. Characterization of electrolytic Co3O4 thin films as anodes for lithium-ion batteries[J]. Journal of Power Sources.2007,166: 478-484
    [13]黄凯,郭学益,张多默.超细粉末湿法制备过程中粒子粒度和形貌控制的基 础理论[J].粉末冶金材料科学与工程,2005,10(6):319-324
    [14]黄培云.粉末冶金原理[M].北京:冶金工业出版社,2004,1-7
    [15]毛铭华.水溶液加压氢还原制取金属粉末[M].北京:冶金工业出版社,1998,444-467
    [16]Dong-Jin Kim, Hun-Saeng Chung, KeningYu. Cobalt powder from Co(OH)2 by hydrogen reduction[J]. Materials Research Bulletin,2002, (37):2067-2075
    [17]俞克宁,毛铭华,梁焕珍,等Co(OH)2碱性浆化氢还原制备超细Co粉[J].过程工程学报,2001,1(1):62-65
    [18]林涛,汪莉,刘祥庆.溶液沉淀-氢还原法制备纳米钴粉[J].粉末冶金技术,2008,26(1):41-43
    [19]陈家镛.湿法冶金手册[M].北京:冶金工业出版社,2008,1608-1625
    [20]徐菊,喻克宁,梁焕珍,等Ni(OH)2浆化氢还原制备纳米金属镍粉的反应机制研究[J].材料研究学报,2002,16(2):158-163
    [21]Kato, Etsuro. Hydrothermal synthesis of CeO2[J]. Journal of the American ceramic society,1996,79(3):777-780
    [22]Virender K. Sharma, Ria A. Yngard, Yekaterina Lin. Silver nanoparticles:Green synthesis and their antimicrobial activities[J]. Advances in Colloid and Interface Science,145 (2009):83-96
    [23]M. Gericke, A. Pinches. Biological synthesis of metal nanoparticles[J]. Hydrometallurgy,2006,83:132-140
    [24]吴金桥,王玉琨.纳米材料的液相法制备技术及其进展[J].西安石油学院学报(自然科学版),2002,17(3):31-34
    [25]马运柱,黄伯云,刘文胜,等.前驱体溶液对(W, Ni, Fe)复合氧化物粉末制备的影响[J].中南大学学报(自然科学版),2006,37(2):207-210
    [26]郭学益,郭秋松.溶液雾化氧化法制备精细粉体材料应用及展望[J].中国有色冶金,2010,39(4):54-58
    [27]赵新宇,张煜,古宏晨,等.喷雾热解制备稀土超细粉末(1)-氧化钇粒子形态与形成机理[J].高等学校化学学报,1998,19(4):507-510
    [28]郭学益,郭秋松,冯庆明,等.溶液雾化氧化法制备超细Co3O4粒子及其性能表征[J].中南大学学报,2010,41(1):60-66
    [29]张明福,韩杰才,赫晓东,等.喷雾热解法制备功能材料研究进展[J].压电与声光,1999,21(5):401-406
    [30]于才渊,马晶晶.喷雾干燥-目标产品的功能化[J].干燥技术与设备,2007,5(4):165-171
    [31]吴玉龙,罗国华,魏飞,等.喷雾热解法合成铋系高温超导母粉的工艺研究[J].稀有金属,2004,28(4):617-621
    [32]Huaming Yang, Yuehua Hu, Xiangchao Zhang. Mechanochemical synthesis of cobalt oxide nanoparticles[J]. Material Letters,2004,58(3-4):387-389
    [33]周永慧,林君,于敏,等.喷雾热解法制备发光材料研究进展[J].发光学报,2002,23(5):503-508
    [34]李启厚,何峰,刘志宏,等.喷雾热解法制备超细粉体材料的特点及应用[J].湿法冶金,2008,27(4):220-224
    [35]戴遐明.喷雾热解-一种重要的微粉制备工艺[J].粉体技术,1995,1(2):28-33
    [36]陈祖耀,张大杰,钱逸泰.喷雾热解法制备超细粉末及其应用[J].硅酸盐通报,1988,6:54-61
    [37]李阳兴,姜长印,万春荣等.喷雾干燥法制备LiCoO2超细粉[J].无机材料学报,1999,14(4):657-660
    [38]赵改青,王晓波,刘维民.喷雾干燥技术在制备超微及纳米粉体中的应用及展望[J].材料导报,2006,20(6):56-59
    [39]马运柱,黄伯云,范景莲,等.离心式喷雾干燥制备纳米晶粉末的工艺原理及其影响因素[J].硬质合金,2002,19(3):173-176
    [40]KIKUO OKUYAMA, MIKRAJUDDIN ABDULLAH, I. WULED LENGGORO, et al. Preparation of functional nanostructured particles by spray drying[J]. Advanced Powder Technology,2006,17(6):587-611
    [41]胡国荣,刘智敏,方正升,等.喷雾热分解技术制备功能材料的研究进展[J].功能材料,2005,(36)3:335-339
    [42]方泽民,王如意.酸再生技术改造及软磁铁氧体磁性材料的丌发[J].武钢技术,2002,(5):6-9
    [43]徐志军,初瑞清,李国荣,等.喷雾热分解合成技术及其在材料研究中的应用[J].无机材料学报,2004,19(6):1240-1248
    [44]Gary L. Messing, Shi-Chang Zhang, Gopal V. Jayanthi. Ceramic powder synthesis by spray pyrolysis[J]. Journal of the American Ceramic Society,1993,76(11): 2707-2726
    [45]G. V. Jayanthi, S. C. Zhang, Gary L. Messing. Modeling of solid particle formation During Solution aerosol thermolysis:the evaporation stage[J]. Aerosol Science and Technology,1993,19:478-490
    [46]崔彦栋.气力式喷嘴雾化机理研究及水煤浆气化喷嘴的丌发[D]:[硕士学位论文].杭州:浙江大学,2006
    [47]田春霞,仇性启,崔运静.喷嘴雾化技术进展[J].工业加热,2005,34(4):40-43
    [48]蒋德明.内燃机燃烧与排放学[M].西安:西安交通大学出版,2001
    [49]严春吉.液体射流分裂雾化机理及内燃机缸内工作过程的模拟[D]:[博士学位论文].大连:大连海事大学,2004
    [50]马其良,张松涛.超声波雾化油喷嘴雾化性能的试验研究[J].工业炉,2000,22(2):6-7
    [51]孙晓霞.超声波雾化喷嘴的研究进展[J].工业炉,2004,26(1):19-23
    [52]刘鸿,王家骅.超声波雾化喷嘴的试验研究[J].江苏工业学院学报,2005,17(1):31-33
    [53]Janackvic D J, Jokanovic V, Kostic-Gvozdenovic L J, et al. Synthesis of mullite nanostructured spherical powder by ultrasonic spray pyrolysis[J]. Nanostructured Material,1998,10(3):341-348
    [54]V. Jokanovic, M.D. Dramicanin, Z. Andri, et al. Luminescence properties of SiO2: Eu3+nanopowders:Multi-step nano-designing[J]. Journal of Alloys and Compounds,2008,453:253-260
    [55]Azadeh Askarinejad, Ali Morsali. Direct ultrasonic-assisted synthesis of sphere-like nanocrystals of spinel Co3O4 and Mn3O4[J]. Ultrasonics Sonochemistry,2009,16:124-131
    [56]Sebahattin Gu"rmen, Srec'ko Stopic', Bernd Friedrich. Synthesis of nanosized spherical cobalt powder by ultrasonic spray pyrolysis[J]. Materials Research Bulletin,2006,41:1882-1890
    [57]Sung Woo Oh, Hyun J B, Young C B, et al. Effect of calcination temperature on morphology, crystallinity and electrochemical properties of nano-crystalline metal oxides(Co3O4,CuO,and NiO) prepared via ultrasonic spray pyrolysis[J]. Journal of Power Sources,2007,173:502-509
    [58]胡国荣,方正升,刘志敏,等.喷雾热解法制备锂离子电池正极材料的进展[J].电池,2005,35(3):244-245
    [59]A. Jaworek. Micro-and nanoparticle production by electrospraying[J]. Powder Technology,2007,176:18-35
    [60]W. Balachandran, A. Krupa, W. Machowski, et al. Smoke precipitation by charged water aerosols[J]. J. Electrost,2001,51-52:193-199
    [61]W. Balachandran, A. Jaworek, A. Krupa, et al. Efficiency of smoke removal by charged water droplets[J]. J. Electrost.2003,58 (3-4):209-220
    [62]任兰学,马胜远,王永峰,等.气流式喷嘴雾化特性试验研究[J].热能动力工程,2008,23(5):516-518
    [63]王忠喜,于才渊,周才君.喷雾干燥[M].北京:化学工业出版社,2003,50-72
    [64]虞子云.气流喷嘴雾化性能研究[J].林产化学与工业,1992,12(2):113-119
    [65]S.E. Law. Agricultural electrostatic spray application:a review of significant research and development during the 20th century[J]. Journal Electrost.2001, 51-52:25-42
    [66]赵新明,徐骏,朱学新,等.超音速气雾化中导液管突出长度对气体流场的影响[J].中国有色金属学报,2009,19(5):967-973
    [67]赵忠祥,凌毅,王姣娜,等.小型二流式喷嘴雾化性能研究[J].化学工程,2000,28(6):22-24
    [68]倪代秦.喷雾干燥法制备超细粉末的研究[J].兵器材料科学与工程,1992,15(7):37-40
    [69]马运柱,范景莲,黄伯云,等.超细(W,Ni,Fe)复合氧化物粉末制备工艺的研究[J].稀有金属,2003,27(6):676-679
    [70]Reitz R D, Bracco F V. Mechanism of atomization of a liquid jet[J]. Phys. Fluids, 1982,25(10):1730-1742
    [71]杜青,丁宁,金中国,等.加热条件下泰勒模式液膜射流破碎的模式特征研究[J].燃烧科学与技术,2003,9(5):414-418
    [72]章伟,蔡莹,古宏晨,等.雾化过程中粒子形貌控制的模型研究[J].华东理工大学学报,2000,26(1):57-62
    [73]刘金武HSDI柴油机雾化与排放特性瞬态多维建模和数值研究[D]:[博士学位论文].长沙:湖南大学,2007
    [74]傅德薰,马延文.计算流体力学[M].北京:高等教育出版社,2004,178-189
    [75]Viriato Semiao, Pedro Andrade, Maria da Graca Carvalho. Spray characterization: Numerical prediction of Sauter mean diameter and droplet size distribution[J]. Fuel,1996,75(15):1707-1714
    [76]李冬青,黄镇宇,崔彦栋,等.黏性液体射流雾化粒径的分析与预测[J].电站系统工程,2007,23(4):22-24
    [77]张丽丽,周慎杰,陈举华.气流式喷嘴流体雾化干燥过程的CFD分析[J].计算机仿真,2008,25(12):329-331
    [78]陈明功.气流压力复合式雾化器[J].化学工程,1998,26(4):27-29
    [79]侯丽英,王辅臣,于建国,等.渣油气化双通道喷嘴的雾化性能[J].高校化学工程学报,1995,9(1):18-23
    [80]阎红,梁允成,王忠喜.气流式喷嘴雾化性能的研究[J].大连理工大学学报,1991,31(2):241-244
    [81]Simmons H C. The predication of Sauter mean diameter for gas turbine fuel nozzles of different types[M]. American:American Society of Mechanical Engineers,1979
    [82]Rizk N K, Lefebvre A H. Spray characteristics of plain-jet airblast atomizers[J]. Trans ASME J Eng Gas Turbines Power,1984,106:639-644
    [83]Lefebvre AH. Energy considerations in Twin-fluid atomizers[J]. J. Engineering for Gas Turbines and Power,1992,114:89-93
    [84]D. W. Sprosona, G. L. Messinga, T. J. Gardner. Powder synthesis for electronic ceramics by evaporative decomposition of solutions[J]. Ceramics International, 1986,12(1):3-7
    [85]李启厚,吴希桃,何峰,等.超声雾化热分解制备Sn02超细粉体及其形貌和粒度控制[J].功能材料,2008,39(9):1450-1454
    [86]刘志宏,刘志勇,李启厚,等.喷雾热分解制备超细银粉及其形貌控制[J].中国有色金属学报,2007,17(1):149-156
    [87]赵新宇,郑柏存,李春忠,等.喷雾热解合成ZnO超细粒子工艺及机理研究[J].无机材料学报,1996,11(4):611-616
    [88]罗电宏,马荣骏.对超细粉末团聚问题的探讨[J].湿法冶金,2002,21(2):57-61
    [89]Simons S J R. Modeling of agglomerating systems-from spheres to fractals[J]. Powder Technology,1996,87(1):29-41
    [90]刘志宏.镍钴草酸盐制备中的形貌与粒度控制[D]:[博士学位论文].长沙:中南大学,2007
    [91]陈振兴.特种粉体[M].北京:化学工业出版社,2004,210-239
    [92]黄凯.可控缓释沉淀-热分解法制备超细氧化镍粉末的粒度与形貌控制研究[D]:[博士学位论文].长沙:中南大学,2003
    [93]谭柱中,梅光贵,李维健,等.锰冶金学[M].长沙:中南大学出版社,2004,143-164
    [94]童景山,张克.流态化干燥技术[M].北京:中国建筑出版社,1985,28-29
    [95]陈俊,张军营,魏凤,等.燃煤超细颗粒物喷雾团聚的模型[J].煤炭学报,2005,30(5):632-636
    [96]杨重愚.轻金属冶金学[M].北京:冶金工业出版社,2007,1-3
    [97]Jerrrey W. Fergus. Recent developments in cathode materials for lithium ion batteries[J]. Journal of Power Sources,2010,195:939-954
    [98]黄可龙,刘人生,杨幼平,等.形貌可控的四氧化三钴溶剂热合成及反应机理[J].物理化学学报,2007,23(5):655-658
    [99]Yuanguang Zhang, Yi Liu, Shengquan Fu, et al. Morphology-controlled synthesis of Co3O4 crystals by soft chemical method[J]. Materials Chemistry and Physics, 2007,104:166-171
    [100]B. M. Trost. Atom economy:a search for synthetic efficiency [J]. Science,1991, 254(6):1471-1477
    [101]徐华蕊,高玮,何斌,等.用喷雾反应法制备实心球形氧化铈超细粉末[J].稀土,1999,20(6):29-31
    [102]刘智敏,胡国荣,方正升,等.超声喷雾热分解制备捏离子电池正极材料LiNi1/3Co1/3Mn1/3O2及表征[J].无机材料学报,2007,22(4):637-641
    [103]邓新荣,胡国荣,彭忠东,等.喷雾热解法合成高性能球形钴蓝的研究[J].无机盐工业,2006,38(8):32-34
    [104]Izumi Taniguchi. Powder properties of partially substituted LiMxMn2-x04(M=Al, Cr, Fe and Co) synthesized by ultrasonic spray pyrolysis[J]. Materials chemistry and physics,2005,92:172-179
    [105]Qiusong Guo, Xueyi Guo, Qinghua Tian. Optionally ultra-fast synthesis of CoO/Co3O4 particles using CoCl2 solution via a versatile spray roasting technology [J]. Advanced powder technology,2010,21(5):529-533
    [106]催化剂、吸附剂表面积测定法[S].中华人民共和国国家标准,GB5816-86
    [107]金属粉末松装密度的测定-振动漏斗法[S].中华人民共和国国家标准,GB/T5061-1998
    [108]何焕华,蔡乔方.中国镍钴冶金[M].北京:冶金工业出版社,2000:641-643
    [109]李强.苹果酸盐溶胶凝胶法制备纳米氧化物及其性能研究[D]:[硕士学位论文].上海:华东师范大学,2007
    [110]李建芬,杜丽娟,周汉芬.均匀沉淀法制备纳米氧化镍的正交实验研究[J].化工新型材料,2008,36:51-53
    [111]李秀艳,曾令可,刘平安,等.超细NiO粉体的制备及其应用研究进展[J].材料科学与工程学报,2004,22(5):770-773
    [112]Seo Hee Ju, Do Youp Kim, Eun Byul Jo, et al. The characteristics of Li(CoxNi1-x)O2 cathode powders formed from the fine-sized Co3O4/NiO precursor powders[J]. Journal of Alloys and Compounds,2008 (450):457-462
    [113]Ku T W, Kim Y, Kang B S. Design and modification of tool to manufacture rectangular cup of Ni-MH battery for hybrid cars[J]. J mater process technol, 2007,187-188(2):197-201
    [114]V. Ranga RaoPulimi, P.Jeevanandam The effect of anion on the magnetic properties of nanocrystalline NiO synthesized by homogeneous precipitation [J]. Journal of Magnetism and Magnetic Materials,321 (2009):2556-2562
    [115]赵永祥,武志刚,张临卿,等.超细负载NiO/SiO2催化剂用于顺酐选择加氢反应研究[J].分子催化,2002,16(1):55-59
    [116]陈崧哲,钟顺和Cu/TiO2-NiO上光促进表面催化C02和H20合成CH30H反应规律[J].物理化学学报,2002,18(12):1099-1103
    [117]HOTOVY I, HURAN J, SICILIANO P, et al. Enhancement of H2 semingproperties of NiO-based thin films with a Pt surface modification[J]. Sensors and Actuators B,2004,103(1/2):300-311
    [118]SongliLi, RuisongGuo, JingouLi, et al.Synihesis of NiO-ZrO2 powders for solid oxide fuel cells[J]. Ceramies International,2003, (29):883-886
    [119]BLJU V, ABDUL KHADAR M. Analysis of AC electrical properties of nanocrystalline nickel oxide[J]. Materials Science and Engineering A,2001, 304-306(5):814-817
    [120]Kyung-Wan Nam, Kwang-Bum Kimz. A Study of the Preparation of NiOx Electrode via Electrochemical Route for Supercapacitor Applications and Their Charge Storage Mechanism[J]. Journal of the Electrochemical Society,2002, 149(3):A346-A354
    [121]周立群,杨念华,周丽荣.纳米氧化镍的固相合成[J].应用化学,2006,23(6):682-684
    [122]Thota S, Kumar J. Sol-gel synthesis and anomalous magnetic behavior of NiO nanoparticles[J]. Journal of Physics and Chemistry of Solids,2007,68: 1951-1964
    [123]Han D Y, Yang H Y, Shen C B, et al. Synthesis and size control of NiO nanoparticles by water-in-oil microemulsion[J]. Powder Technology,2004,147: 113-116
    [124]Guo-Jun Li, Xiao-Xian Huang, Ying Shi, et al. Preparation and characteristics of nanocrystalline NiO by organic solvent method[J]. Materials Letters,2001 (51): 325-330
    [125]叶大伦,胡建华.实用无机物热力学数据手册(第2版)[M].北京:冶金工业出版社,2002,1-25
    [126]陈松.湿法制备单分散C0304粉末的形貌和粒度控制研究[D]:[博士学位论文].长沙:中南大学,2003
    [127]Y. Raviprakash, Kasturi V. Bangera, G.K. Shivakumar. Growth, structural and optical properties of CdxZn1-xS thin films deposited using spray pyrolysis technique[J]. Current Applied Physics,2010,10(1):193-198
    [128]徐华蕊,李凤生,陈舒林,等.沉淀法制备纳米粒子的研究-化学原理及影响因素[J].化工进展,1996,5:29-31
    [129]L. Soriano, M. Abbate, A. Fernandes, et al. Oxidation state and size effects in CoO nanoparticles[J]. J. Phys. Chem,1999,103:6679-6682
    [130]邬建辉.特种镍粉制备新方法研究[D]:[博士学位论文].长沙:中南大学,2003
    [131]D. Parviz, M. Kazemeini, A. M. Rashidi, et al. Synthesis and characterization of MoO nanostructures by solution combustion method employing morphology and size control[J]. J. Nanopart. Res. DOI 10.1007/s 11051-009-9727-6
    [132]徐华蕊,高濂,郭景坤,等.组份均匀分布的球形实心钛酸钡超细粉体的喷雾水解反应法制备和表征[J].无机材料学报,2002,17(5):938-944
    [133]管小艳,邓晶晶,邓建成.配位均匀沉淀法制备纳米氧化镍[J].工业技术,2008,11:28-29
    [134]魏智强,汪宝珍,闫晓燕,等.直流电弧等离子体制备NiO包覆Ni纳米颗粒[J].中国有色金属学报,2009,19(11):2038-2043
    [135]邓建成,邓晶晶,刘博,等.不同形貌纳米氧化镍的制备及其电容特性研究[J].湘潭大学自然科学学报,2009,31(1):47-52
    [136]李建芬,肖波,杜丽娟,等.氧化镍纳米晶体的制备及其过程分析[J].人工晶体学报,2007,36(5):1045-1051
    [137]王艳萍,朱俊武,张莉莉,等.纳米NiO的制备及其谱学特性研究[J].光谱学与光谱分析[J],2006,26(14):690-693
    [138]何则强,孙新阳,熊利芝,等.均匀沉淀法制备NiO超细粉末及其电化学性能[J].中国有色金属学报,2008,18(S1):S301-S304.
    [139]BALL P, GARWIN L. Scanning tunneling microscopy and spectroscopy studies of nanostructured materials[J]. Nature,1992,355(6363):761-764
    [140]Xiaomin Ni, Qingbiao Zhao, Fu Zhou, et al. Synthesis and characterization of NiO strips from a single source[J]. Journal of Crystal Growth,2006,289(1): 299-302
    [141]刘卯鑫,刘伟,付振东,等.ZnO纳米粒子光学模多声子拉曼光谱的尺寸限 制效应研究[J].光散射学报,2007,19(4):321-325
    [142]Wenzhong Wang, Yingkai Liu, Congkang Xu, et al. Synthesis of NiO nanorods by a novel simple Precursor thermal decomposition approach[J]. Chemical Physics Letters,2002,362:119-122
    [143]胡志华,廖显伯,刁宏伟,等.氢稀释对非晶硅碳合金薄膜生长和光学特性的影响[J].中国科学E辑工程科学材料科学,2004,34(5):525-532
    [144]王建祺,吴文辉,冯大明.电子能谱学[M].北京:国防工业出版社,1992
    [145]Thermodynamic data available on NIST webbook from: http://webbook.nist.gov/chenistry
    [146]胡雷.高温水解法制备四氧化三钻[D]:[硕士学位论文].长沙:中南大学,2008
    [147]C.A.F. Vaz, H.Q. Wang, C.H. Ahn, et al. Interface and electronic characterization of thin epitaxial Co3O4 films[J]. Surface Science,2009,603:291-297
    [148]Masoud Salavati-Niasari, Noshin Mir, Fatemeh Davar. Synthesis and characterization of Co3O4 nanorods by thermal decomposition of cobalt oxalate[J]. Journal of Physics and Chemistry of Solids,2009,70:847-852
    [149]Xiang-Lan Xu, Zhan-Hong Chen, Yi Li, et al. Bulk and surface properties of spinel Co3O4 by density functional calculations[J]. Surface Science,2009,603: 653-658
    [150]V.R. Shinde, S.B. Mahadik, T.P. Gujar, et al. Supercapacitive cobalt oxide (Co3O4) thin films by spray pyrolysis[J]. Applied Surface Science,2006,252:7487-7492
    [151]王新喜,吕光烈,曾跃武,等.湿法制备纳米晶C0304及其微观结构研究[J].化学学报,2003,61(11):1849-1853
    [152]Ke Xing-fei, Cao Jie-ming, Zheng Ming-bo, et al. Molten salt synthesis of single-crystal Co3O4 nanorods[J]. Materials Letters,2007,61:3901-3903
    [153]Yuangguang Zhang. Youcun Chen, Tao Wang, et al. Synthesis and magnetic properties of nanoporous Co3O4 nanoflowers[J]. Microporous and Mesoporous Materials.2008,114:257-261
    [154]Renaud Metz, Jonathan Morel, Henri Delalu, et al. Direct oxidation route from metal to ceramic:Study on cobalt oxide[J]. Materials Research Bulletin,2009, 44:1984-1989
    [155]饶岩岩,张久兴,王澈,等.钨/钴氧化物SPS直接碳化原位合成超细WC-Co硬质合金[J].稀有金属与硬质合金,2006,34(1):18-21
    [156]徐勇.蓝色料生产的技术与应用[J].玻璃与搪瓷,2006,34(1):19-20
    [157]曹全喜,周晓华,蔡式东.C0304在压敏陶瓷中的作用和影响[J].压电与声光,1996,18(4):260-263
    [158]Hidero U, Youichi S, Kunio W. Preparation of Co3O4 thin films by a modified chemical-bath method[J]. Thin Solid Films,2004,468:4-7
    [159]陈金华,孙峰,樊桢,等.氧化钴多孔薄膜的电化学制备及其超电容性能[J].湖南大学学报(自然科学版),2007,34(6):44-48
    [160]Jinsoo Park, Xiaoping Shen, Guoxiu Wang. Solvothermal synthesis and gas-sensing performance of Co3O4 hollow nanospheres[J]. Sensors and Actuators B,2009,136:494-498
    [161]Fei Teng, Wenqing Yao, Youfei Zheng, et al. Facile synthesis of hollow Co3O4 microspheres and its use as a rapid responsive CL sensor of combustible gases[J]. Talanta,2008,76:1058-1064
    [162]Benjamin Solsona, Thomas E. Davies, Tomas Garcia, et al. Total oxidation of propane using nanocrystalline cobalt oxide and supported cobalt oxide catalysts[J]. Applied Catalysis B:Environmental,2008,84:176-184
    [163]Yongquan Qua, Daniel J. Masiela, Neal N. Chenga, et al. Recognition of melting of nanoparticle catalysts with cubically shaped Co3O4 nanoparticles[J]. Journal of Colloid and Interface Science,2008,321:251-255
    [164]Patrice Simon,Yury Gogotsi. Materials for electrochemical capacitors[J]. Nature materials,2008,7:845-854
    [165]T. Ozkaya, A. Baykal, M.S. Toprak, et al. Reflux synthesis of Co3O4 nanoparticles and its magnetic characterization[J]. Journal of Magnetism and Magnetic Materials.2009,321:2145-2149
    [166]张宝,张明,李新海,等.锂离子电池正极材料LiNi0.45Co0.10Mn0.45O2的合成及电化学性能[J].中南大学学报(自然科学版),2008,39(1):75-79
    [167]Yan Liu, Xiaogang Zhang. Effect of calcination temperature on the morphology and electrochemical properties of Co3O4 for lithium-ion battery[J]. Electrochimica Acta,2009,54:4180-4185
    [168]Ki-Soo Lee, Seung-Taek Myung, Hyunjoo Bang, et al. Effect of protecting metal oxide (CO3O4) layer on electrochemical properties of spinel Li1.1Mn1. 9O4 as a cathode material for lithium battery applications [J]. Journal of Power Sources, 2009,189:494-498
    [169]廖春发,梁勇,陈辉煌.由草酸钴热分解制备C0304及其物性表征[J].中国有色金属学报,2004,14(12):2131-2136
    [170]Ling Ren, Panpan Wang, Yushun Han, et al. Synthesis of CoC2O4·2H2O nanorods and their thermal decomposition to Co3O4 nanoparticles[J]. Chemical Physics Letters,2009,476:78-83
    [171]Peiying Zhan. Large scale hydrothermal synthesis of Co(OH)2 hexagonal nanoplates and their conversion into porous Co3O4 nanoplates[J]. Journal of Alloys and Compounds,2009,478:823-826
    [172]Jiu Jin-ting, Ge Yue, Lin Xiao-ning, et al. Preparation of Co3O4 nanoparticles by a polymer combustion route[J]. Materials Letters,2002,54:260-263
    [173]N. Bahlawane, E.F. Rivera, K.K. Hoinghaus, et al. Characterization and tests of planar Co3O4 model catalysts prepared by chemical vapor deposition[J]. Applied Catalysis B:Environmental.2004,53:245-255
    [174]Wen-hui Li. Microwave-assisted hydrothermal synthesis and optical property of Co3O4 nanorods[J]. Materials Letters,2008,62:4149-4151
    [175]Wang Wei-wei, Zhu Ying-jie.Microwave-assisted synthesis of cobalt oxalate nanorods and their thermal conversion to Co3O4 rods[J]. Materials Research Bulletin,2005,40:1929-1935
    [176]CAO Jin-zhang, ZHAO Yan-chun, YANG Wu, et al. Sol-gel preparation and characterization of Co3O4 nano-crystals[J]. Journal of University of Science and Technology Beijing,2003,10(1):54-57
    [177]蔡振平.锂离子蓄电池负极材料C0304的制备及性能[J].电源技术,2003,27(4):370-372
    [178]曾雯雯,黄可龙,杨幼平,等.溶剂热法合成不同形貌的C0304及其电容特性[J].物理化学学报,2008,24(2):263-268
    [179]Zhao Z W, Guo Z P, Liu H K. Non-aqueous synthesis of crystalline Co3O4 powders using alcohol and cobalt chloride as a versatile reaction system for controllable morphology [J]. Journal of Power Sources,2005,147:264-268
    [180]Ni Yong-hong, Ge Xue-wu, Zhang Zhi-cheng, et al. A simple reduction oxidation route to prepare Co3O4 nanocrystals[J]. Materials Research Bulletin,2001,36: 2383-2387
    [181]四氧化三钴[S].中华人民共和国国家标准,YS/T 633-2007
    [182]董成勇,湛青,张传福,等.纳米CoO粉的制备方法及其应用[J].硬质合金,2005,22(2):117-120
    [183]Yin Ye, Fangli Yuan, Shaohua Li. Synthesis of CoO nanoparticles by esterification reaction under solvothermal conditions [J]. Materials Letters,2006, 60:3175-3178
    [184]Jing-Shan Do, Rui-Feng Dai. Cobalt oxide thin film prepared by an electrochemical route for Li-ion battery[J]. Journal of Power Sources,2009,189: 204-210
    [185]S. Das, M. Patra, S. Majumdar, et al. Exchange bias effect at the irregular interfaces between Co and CoO nanostructures[J]. Journal of Alloys and Compounds,2009,488(1):27-30
    [186]Ying Yu, Guangbin Ji, Jieming Cao, et al. Facile synthesis, characterization and electrochemical properties of cuspate deltoid CoO crystallites [J]. Journal of Alloys and Compounds,2009,471:268-271
    [187]J.C. Toniolo, A.S. Takimi, C.P. Bergmann. Nanostructured cobalt oxides (Co3O4 and CoO) and metallic Co powders synthesized by the solution combustion method[J]. Materials Research Bulletin,2010,45:672-676
    [188]Jing-Shan Do, Chien-Hsiang Weng. Preparation and characterization of CoO used as anodic material of lithium battery[J]. Journal of Power Sources,2005, 146:482-486
    [189]Wenzhong wang, Guiling Zhang. Synthesis and optical properites of high-purity CoO nanowires prepared by an environmentally friendly molten salt route[J]. Journal of Crystal Growth,2009,311:4275-4280
    [190]J.S. Yin, Z.L. Wang. Ordered self-assembling of tetrahedral oxide nanocrystals[J]. Phys. Rev. Lett.,1997,79(13):2570-2573
    [191]叶茵,袁方利,胡鹏,等.溶剂热法合成纳米级CoO粉体及其生成习性[J].过程工程学报,2006,6(2):327-330
    [192]钟文彬,杨玉玺,张昭.湿化学法制备四氧化三钻的研究-热力学分析[J].四川有色金属,2000,1:23-26
    [193]D. NARDUCCI. F. NEGRONI, C.M. MARI. High temperature standard Gibbs free energy determinations for Co-O system by E.M.F. measurements. A statistical approach to evaluate the reliability of the current methods[J]. Materials Chemistry and Physics,1985,12:377-388
    [194]In-Ho Jung, Sergei A. Decterov, Arthur D. Pelton. Thermodynamic evaluation and modeling of the Fe-Co-O system[J]. Acta Materialia,2004,52:507-519
    [195]Tang Chih-wei, Wang Chen-bin, Chien.Shu-hua. Characterization of cobalt oxides studied by FT-IR, Raman, TPR and TG-MS[J]. Thermochimica Acta, 2008,473:68-73
    [196]Zou Ding-bing, Xu Chao, Luo Hao. Synthesis of Co3O4 nanoparticles via an ionic liquid-assisted methodology at room temperature[J]. Materials Letters, 2008,62:1976-1978
    [197]Masoud Salavati-Niasar, Afsaneh Khansari, Fatemeh Davar. Synthesis and characterization of cobalt oxide nanoparticles by thermal treatment process[J]. Inorganica Chimica Acta,2009,362(14):4937-4942
    [198]杨幼平,黄可龙,刘人生,等.水热-热分解法制备棒状和多面体状四氧化三钴[J].中南大学学报(自然科学版),2006,37(6):1103-1106
    [199]Lun-Hong Ai, J. Jiang. Rapid synthesis of nanocrystalline Co3O4 by a microwave-assisted combustion method[J]. Powder Technology,2009,195: 11-14
    [200]Hyo-Jin Ahn, Tae-Yeon Seong, Effect of Pt Nanostructures on the Electrochemical Properties of Co3O4 Electrodes for Micro-electrochemical Capacitors[J]. Journal of Alloys and Compounds,2009,478:L8-L11
    [201]马峥,周哲玮.气流雾化问题中的流动稳定性研究[J].应用数学和力学,1999,20(10):991-996
    [202]Hai Sheng Zeng, Koji Inazu, Ken-ichi Aika. Dechlorination process of active carbon-supported, barium nitrate-promoted ruthenium trichloride catalyst for ammonia synthesis[J]. Applied Catalysis A:General,2001,219 (1-2):235-247
    [203]Xi Wu, Bernard C. Gerstein, Terry S. King. The effect of chlorine on hydrogen chemisorption by silica-supported Ru catalysts:A proton NMR study[J]. Journal of Catalysis,1992,135:68-80
    [204]刘恒,李大成,陈朝珍.电渗析法除氯离子制高纯碳酸钙的研究[J].成都科技大学学报,1996(5):42-47
    [205]柴海芳,韩文锋,朱虹,等.氯对钉基氨合成催化剂的影响[J].化学进展,2006,18(10):1262-1269
    [206]刘志宏,胡雷,刘志勇,等.高温气-固反应水解制备八面体形四氧化三钻粉末[J].无机材料学报,2008,23(6):1205-1210
    [207]C. Lin, J.A. Ritter, B.N. Popov. Characterization of Sol-gel-derived Cobalt Oxide Xerogels as Electrochemical Capacitors[J]. Journal of the Electrochemical Society,1998,145(12):4097-4103
    [208]Yinyi Gao, Shuli Chen, Dianxue Cao, et al. Electrochemical capacitance of Co3O4 nanowire arrays supported on nickel foam[J]. Journal of Power Sources, 2010,195:1757-1760
    [209]Yongjie Zhan, Chunrong Yin, Wenzhong Wang, et al. Synthesis of CoO fibers in pyrolytic process[J]. Materials Letters,2003,57:3402-3405
    [210]Huaming Yang, Jing Ouyang, Aidong Tang. Single Step Synthesis of High-Purity CoONanocrystals[J]. J. Phys. Chem. B,2007,111 (28):8006-8013
    [211]Liu Sha, Xu Kai-hua. Preparation of nano-crystalline Co powder from CoCO3[J]. Int. Journal of Refractory Metals& Hard Materials,2009,27:61-65
    [212]S.-R. Chung, K.-W. Wang, M.-H. Teng, et al. Electrochemical hydrogenation of nanocrystallineface-centered cubic Co powder[J]. International journal of hydrogen energy,2009,34:1383-1388
    [213]刘飚,官建国,王琦,等.核壳型复合材料的制备及其微波吸收性能的研究[J].功能材料,2005,36(1):133-135
    [214]马光,孙晓亮,郑晶,等.钴粉的制备、应用及我国的发展现状[J].稀有金属快报,2008,27(11):6-10
    [215]Lianfeng Duan, Shusheng Jia, Lijun Zhao. Study on morphologies of Co microcrystals produced by solvothermal method with different solvents[J]. Materials Research Bulletin,2010,45(4):373-376
    [216]Hayet Moumeni, Abderrafik Nemamcha, Safia Alleg, et al. Stacking faults and structure analysis of ball-milled Fe-50%Co powders[J]. Materials Chemistry and Physics,2010,122:439-443
    [217]Yunling Li, Jingzhe Zhao, Xiaodan Su, et al. A facile aqueous phase synthesis of cobalt microspheres at room temperature [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects,2009,336:41-45
    [218]王玉棉,李军强,张亮亮,等.超细钴粉制备工艺及研究进展[J].甘肃冶金,2004,26(3):60-62
    [219]Kodama D., Shinoda K., Sato K., et al. Chemical synthesis of sub-micrometer-to nanometer-sized magnetic FeCo dice[J]. Advanced Materials,2006, 18(23):3154-3159
    [220]Murphy C.J.. Materials science:Nanocubes and nanoboxes[J]. Science,2002, 298(5601):2139-2141
    [221]李世林,毛健,陈治,等.纳米银溶胶稳定性的影响机制研究[J].稀有金属材料与工程,2008,37(8):1436-1440
    [222]Hsin-Yu Lin, Yu-Wen Chen. The mechanism of reduction of cobalt by hydrogen[J]. Materials Chemistry and Physics,2004,85:171-175
    [223]郭学益,徐刚,薛平,等.共沉淀法制备Fe33Ni15Co2合金前驱体的热力学分 析[J].湿法冶金,2008,27(1):15-18
    [224]赵文东,徐骏,宋月清.人造金刚石用触媒材料的发展及催化机理[J].超硬材料工程,2008,20(5):14-17
    [225]李丽.高压金刚石生长机理的价电子理论及热力学分析[D]:[博士学位论文].济南:山东大学,2008
    [226]徐刚.金刚石合成用FeNiCo合金粉末触媒材料制备研究[D]:[硕士学位论文].长沙:中南大学,2007
    [227]Shenderova O A, Zhirnov V V, Brenner D W. Carbon nanostructure[J]. Critical Reviews in Solid State and Materials Science,2002,27(3-4):227-356
    [228]郭宏,徐骏,经海,等NiMnCo金刚石粉末触媒的特性[J].稀有金属,2002,26(6):420-424
    [229]高峰.高品级超细颗粒金刚石的高温高压合成[D]:[博士学位论文].长春:吉林大学,2008
    [230]Santosh K. Pal, D. Bahadur. Shape controlled synthesis of iron-cobalt alloy magnetic nanoparticles using soft template method[J]. Materials Letters,2010, 64(10):1127-1129
    [231]Qiying Liu, Xiaohui Guo, Tiejun Wang. Synthesis of CoNi nanowires by heterogeneous nucleation in polyol[J]. Materials Letters,2010,64:1271-1274
    [232]徐燕军,陈东凯.合成金刚石用水雾化粉末触媒的研究[J].粉末冶金工业,2008,18(4):12-15
    [233]黄漫,唐明强,罗锡裕.金刚石工业用粉末材料的研究与发展[J].粉末冶金工业,2005,15(4):33-39
    [234]Pedro Gorria, David Martinez-Blanco, Jesus A. Blanco. Neutron powder thermo-diffraction in mechanically alloyed Fe64Ni36 invar alloy[J]. Journal of Alloys and Compounds,2010,495:495-498
    [235]A. Djekoun, N. Boudinar, A. Chebli. Structure and magnetic properties of Fe-rich nanostructured Fe100-xNix powders obtained by mechanical alloying[J]. Physics Procedia,2009,2:693-700
    [236]Diane Ung, Guillaume Viau, Christian Ricolleau. CoNi nanowires synthesized by heterogeneous nucleation in liquid polyol[J]. Advanced Materials,2005, 17(3):338-344
    [237]Sebahattin Gurmen, Aybars Guven, Burcak Ebin, et al. Synthesis of nano-crystalline spherical cobalt-iron (Co-Fe) alloy particles by ultrasonic spray pyrolysis and hydrogen reduction[J]. Journal of Alloys and Compounds,2009, 481(1-2):600-604
    [238]Huaqiang Wu, Cheng Qian,Yunjie Cao. Synthesis and magnetic properties of size-controlled FeNi alloy nanoparticles attached on multiwalled carbon nanotubes[J]. Journal of Physics and Chemistry of Solids,2010,71:290-295
    [239]Shujiang Genga, Yandong Li, Zhonghe Ma, et al. Evaluation of electrodeposited Fe-Ni alloy on ferritic stainless steel solid oxide fuel cell interconnect[J]. Journal of Power Sources,2010,195:3256-3260
    [240]Shouhong Xue, Mei Li, Youhong Wang. Electrochemically synthesized binary alloy FeNi nanorod and nanotube arrays in polycarbonate membranes[J]. Thin Solid Films,2009,517:5922-5926
    [241]Yongsuk Hong, Youngwoo Rheem, Min Lai. Electrochemical synthesis of FexNi1-x nanostructures for environmental remediation [J]. Chemical Engineering Journal,2009,151:66-72
    [242]Shunlong Pan, Zhenguo An, Jingjie Zhang, et al. Facile synthesis of prickly CoNi microwires[J]. Materials Letters,2010,64:453-456
    [243]G. Cacciamani, A. Dinsdale, M. Palumbo. The Fe-Ni system:Thermodynamic modelling assisted by atomistic calculations[J]. Intermetallics,2010,18: 1148-1162
    [244]Mingzai Wu, Guangqiang Liu, Mingtao Li. Magnetic field-assisted solvothermal assembly of one-dimensional nanostructures of Ni-Co alloy nanoparticles[J]. Journal of Alloys and Compounds,2010,491:689-693
    [245]M. Almasi Kashi, A. Ramazani, F. Es'haghi. Microstructures and magnetic properties of as-deposited and annealed FexCo1-x alloy nanowire arrays embedded in anodic alumina templates[J]. Physica B,2010,405:2620-2624
    [246]X.G. Liu, Z.Q. Ou, D.Y. Geng. Influence of a graphite shell on the thermal and electromagnetic characteristics of FeNi nanoparticles[J]. Carbon,2010,48: 891-897
    [247]M.H. Xu, W. Zhong, X.S. Qi. Highly stable Fe-Ni alloy nanoparticles encapsulated in carbon nanotubes:Synthesis, structure and magnetic properties[J]. Journal of Alloys and Compounds,2010,495:200-204
    [248]O.R. Musaev, A.E. Midgley, D.V.S. Muthu. X-ray diffraction of permalloy nanoparticles fabricated by laser ablation in water[J]. Materials Letters,2009, 63:893-895
    [249]Yuanzhi Chen, Xiaohua Luo, Guang-Hui Yue, et al. Synthesis of iron-nickel nanoparticles via a nonaqueous organometallic route[J]. Materials Chemistry and Physics,2009,113:412-416
    [250]Y.A. Abdu, T. Ericsson, H. Annersten. Coexisting antiferromagnetism and ferromagnetism in mechanically alloyed Fe-rich Fe-Ni alloys:implications regarding the Fe-Ni phase diagram below 400℃[J]. Journal of Magnetism and Magnetic Materials,2004,280:395-403
    [251]G. Cacciamani, J. De Keyzer, R. Ferro. Critical evaluation of the Fe-Ni, Fe-Ti and Fe-Ni-Ti alloy systems[J]. Intermetallics,2006,14:1312-1325
    [252]W. G.asior, Z. Moser, A. D.ebski. Heat of formation of FeNi70, FeNi73.5 and FeNi80 ordered alloys from the homogenous region of the FeNi3 phase[J]. Journal of Alloys and Compounds,2009,487:132-137
    [253]M. Hesani, A. Yazdani, B. Abedi Ravan. The effect of particle size on the characteristics of FeCo nanoparticles[J]. Solid State Communications,2010, 150:594-597
    [254]Young K. Yoo, Qizhen Xue, Yong S. Chu. Identification of amorphous phases in the Fe-Ni-Co ternary alloy system using continuous phase diagram material chips[J]. Intermetallics,2006,14:241-247
    [255]周新东,陈启武,熊湘君.合成金刚石用触媒材料的研究[J].矿冶工程,2002,22(3):108-110
    [256]山口正治,马越佑吉.金属间化合物[M].北京:科学出版社,1991,1-4
    [257]E. Hoffmann, H. Herper, P. Entel. Microscopic theory of the martensitic transition in Fe1-xNix[J]. Physical review B,1993,47(10):5589-5596
    [258]乐颂光.钴冶金[M].北京:冶金工业出版社,1987,7-35
    [259]PhaseDiagram available on PhaseDiagram-web from: http://www.crct.polymtl.ca/fact/pdweb.php
    [260]Lijun Zhang, Jiong Wang, Yong Du. Thermodynamic properties of the Al-Fe-Ni system acquired via a hybrid approach combining calorimetry, first-principles and CALPHAD[J]. Acta Materialia,2009,57:5324-5341
    [261]Igor Chumak, Klaus W. Richter, Herbert Ipser. The Fe-Ni-Al phase diagram in the Al-rich (>50 at.%Al) corner[J]. Intermetallics,2007,15:1416-1424
    [262]Sarah Ackerbauer, Nataliya Krendelsberger, Franz Weitzer. The constitution of the ternary system Fe-Ni-Si[J]. Intermetallics,2009,17:414-420
    [263]朱履冰.表面与界面物理[M].天津:天津大学出版社,1992
    [264]张伟.纳米氧化镁的制备及动力学研究[D]:[硕士学位论文].大连:大连理 工大学,2004
    [265]Wang Z L. Spontaneous CdTe-Alloy-CdS transition of stabilize-depleted CdTe nanoparticles induced by EDTA[J]. J. Phys. Chem. B,2000,104:1153-117
    [266]黄小芳,吴玉龙,杨明德,等.水氯镁石的热解机理及动力学[J].过程工程学报,2006,6(5):729-733
    [267]李峰,何静,杜以波,等.α-磷酸锆的制备及热分解非等温动力学研究[J].无机化学学报,1999,15(1):55-60
    [268]吴艳,李来时,翟玉春.硫酸铝晶体热分解行为及分解反应动力学研究[J].分子科学学报,2007,23(6):380-384
    [269]胡荣祖,史启祯.热分析动力学[M].北京:科学出版社,2001
    [270]毛卫民,赵新兵.金属的再结晶与晶粒长大[M].北京:冶金工业出版社,1994
    [271]何希.纳米Sn02、Ti02、BaTiO3的合成及晶粒生长动力学研究[D]:[硕士学位论文].长沙:中南大学,2007
    [272]杨华明,李云龙,唐爱东,等.固相合成纳米晶及晶化动力学研究[J].材料热处理学报,2005,26(4):1-4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700