用户名: 密码: 验证码:
面向水下原位探测的光谱图像采集与数据处理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发展海洋原位化学传感技术,实现对水下目标化学成分的原位探测,对海洋科学研究的深入开展以及海洋环境监测、资源开发利用等都有重要意义。与电化学传感器相比,新兴的基于光谱学原理的化学传感器具有多成分同时探测、快速、非接触等优点,是目前水下原位探测技术研究的热点。然而将光谱技术应用于水下原位化学成分探测首先需要攻克两方面的关键技术:一是适用于水下的宽范围、高光谱分辨率的光谱探测技术,二是现场光谱数据的自动实时处理方法。本文即围绕这两方面内容开展研究工作。
     为解决宽范围、高光谱分辨率的时间分辨光谱采集问题,构建了以折叠光栅光谱仪和带有内部数字延迟产生器的ICCD相机为核心的光谱图像采集系统,并以LabVIEW为开发平台,借助ICCD相机的SDK实现了时间分辨光栅衍射图像的采集。在从光谱图像到光谱的处理过程中,从9块子光栅衍射图像中各取单行像素,以多项式拟合方法实现分段光谱的波长校准;通过对9个光谱段的截取、拼接获得了300-700nm范围的全谱谱线。测试证明系统像素波长分辨能力可达0.054nm/pixel,波长准确度达0.1nm。
     针对折叠光栅光谱仪制作工艺导致的光栅衍射图像变形问题提出了软件校正方法。对每块子光栅衍射图像经过图像校正、一维中值滤波、像素合并三个步骤的处理,可在保证光谱分辨率基本不变的前提下,提高光谱信噪比约6倍。在上述工作基础上,以开发的系统进行了溶液中Raman/LIBS联合探测实验,同时获得了硫酸根、硝酸根的拉曼信号和钠离子的LIBS信号,验证了以该系统进行水中原位光谱探测应用的可行性。
     针对水下光谱探测中实时分析、长期监控等应用需求,提出了以自动寻峰为核心,以定标曲线进行成分分析的光谱数据自动处理方法。在该方法中,寻峰是进行光谱自动分析的首要和关键环节。论文从弱峰和重叠峰识别能力、对噪声敏感程度、背景和趋势影响、计算机自动化处理等方面考虑,选择以对称零面积变换方法作为自动寻峰方法。针对重叠峰中峰参数难以准确提取的问题,以对称零面积变换寻峰法获得重叠峰的初步参数,以L-M算法进行拟合优化,提高了峰参数的提取准确度。在自动滤波方法方面,则对小波阈值滤波方法和EMD方法进行了比较研究。以论文中提出的光谱数据自动处理方法对DOCARS系统获得的海试光谱数据进行了反演分析,获得了理想的结果。
     最后,在总结完成的工作的基础上,论文从海水原位探测应用角度提出了进一步工作的设想,包括波长的自动校准、海水环境中的强度标定和光谱自动分析的深入研究等。同时针对联合探测实验中发现的实际问题,提出了具体的改进方案。
It is very important in marine science to develop the in-situ chemical sensor for theenvironmental monitoring and the exploration. Compared to the electrochemical sensor,the spectroscopic senor has been a promising technique since the advantages ofmulti-element detection, rapid, stand-off etc. However there are two issues to beresolved: a) the wide spectral range with high resolution; b) the data processing; they bothwere studied in this thesis.
     In order to achieve the time-resolved detection with wide spectral range and highspectra resolution, a detection system was established based on a Folded GratingsSpectrometer and an ICCD camera. In that system the time-resolved images werere-built by using the SDK of the ICCD in the language LabVIEW. In the conversionfrom spectral image to spectrum, a line of image pixels of each sub-grating was calibratedby laser line from OPO tunable laser and the results compared by high-resolutionspectrometer SP-25000i; and the wavelength calibration were realized by polynomialfitting. Through the interception and splicing of nine spectrum ranges, full spectrumbetween300-700nm was obtained. The analysis shows that the pixel wavelengthresolution capability of0.054nm/pixel can be reached with the wavelength accuracy of0.1nm.
     Calibration software was developed to solve the distortion in grating diffractionimage which is caused by the craftsmanship of making the Folded Gratings Spectrometer.Each sub-grating diffraction image undergoes three steps process of image correction,1-D median filtering and pixel binning, thus the SNR can be increased by6folds on thepremise of the spectral resolution is basically unchanged. The Raman/LIBS jointdetection in solution was carried out simultaneously as the Raman detection of sulfate/nitrate and the LIBS signal of sodium. The results indicate that it is feasible to apply thissystem underwater for in-situ detection.
     Addressing the application requirements in underwater spectral detection such asreal-time analysis and long-term monitoring etc., the automatic spectrum analysis methodwas developed by using the calibration curve. In this method, the automatic peakseeking is the key for the whole detection. Considering recognition weak peak andoverlapping peaks, the sensibility to noise, the influence of the background and tendency,and the convenience for computer’s automatic processing, the symmetric zero areatransformation method was utilized. To solve the problem that peak parameters arereally difficult to be accurately extracted from overlapping peaks, the preliminaryparameters of overlapping peaks are recognized by symmetrical zero area transformationmethod, and the parameters are fitted and optimized by L-M algorithm, thus theextraction accuracy of peak parameters is improved. In terms of automatic filtering method, the thesis proves the EMD method’s potential in spectral automatic filtering bycomparing the wavelet threshold filtering and the EMD method. In this way, theregression analysis on the spectral data in marine trial data of DOCARS system wasexamined and the ideal result was obtained.
     After summarizing the completed work, the further research will be focused on thein-situ underwater detection including the automatic wavelength calibration method; theintensity calibration method research in marine water; the in-depth study of automaticspectrum analysis method. The joint detection experiments will be implemented basedon the study of this work.
引文
[1]中华人民共和国国务院.全国海洋经济发展“十二五”规划.2012.
    [2] Prien R D The future of chemical in situ sensors[J]. Mar Chem.,2007,107(3):422–432.
    [3]高艳波,深海高技术发展现状及趋势[J].海洋技术,2009,29(3):119-124.
    [4] Brewer P G, Malby G, Pasteris J D, et al. Development of a laser Raman spectrometer fordeep-ocean science[J]. Deep Sea Research Part I: Oceanographic Research Papers,2004,51(5):739-753.
    [5] White S N, Brewer P G, Peltzer E T, et al. Determination of gas bubble fractionation rates in thedeep ocean by laser Raman spectroscopy[J], Marine Chemistry,2006,99:12-23.
    [6] Hester K C, White S N, Peltzer E T, et al. Raman spectroscopic measurements of synthetic gashydrates in the ocean[J]. Marine Chemistry,2006,98(2):304-314.
    [7] White S N, Dunk R M, Peltzer E T, et al. In situ Raman analyses of deep-sea hydrothermal andcold seep systems (Gorda Ridge and Hydrate Ridge)[J].Geochemistry Geophysics Geosystems,2006,7(5):1-12.
    [8] Sherman A, Peltzer E T, Kirkwood W, et al. Lessons learned while optimizing instrumentsensitivity for deep ocean Raman spectroscopy[C]//OCEANS2006. IEEE,2006:1-6.
    [9] Sherman A D, Walz P M, Brewer P G. Two Generations of Deep-Ocean Raman In-SituSpectrometers[J]. Sea Technology,2007,48(2):10.
    [10] Peltzer E.T, Henthorn, et al. Recent Advances in Deep-Sea in situ Geochemical Measurementsby ROV Deployed Laser Raman Spectroscopy[J]. AGU,2007,88(52):82-87.
    [11] Zhang Xin, Kirkwood W. J., Walz P. M., Peltzer E.T., Brewer P G. Review of Advances inDeep-Ocean Raman Spectroscopy[J]. Applied Spectroscopy,2012,66(3):237-249.
    [12] Chinese863high technology, projects2006AA09Z243,2010Anniversal Report.
    [13] Rai N K, A.K. Rai. LIBS: an efficient approach for the determination of Cr in industrialwastewater. Journal of Hazardous Materials,2008.150(3):835-838.
    [14] Burakov V S, Tarasenko N V, Nedelko M I, et al. Analysis of lead and sulfur in environmentalsamples by double pulse laser induced breakdown spectroscopy. Spectrochimica Acta Part B:Atomic Spectroscopy,2009,64(2):141-146.
    [15] Lazic V, Sonja Jovicevic, Roberta Fantoni, et al. Efficient plasma and bubble generationunderwater by an optimized laser excitation and its application for liquid analyses bylaser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy,2007,62(12):1433-442.
    [16] Yaroshchyk P, et al. Quantitative determination of wear metals in engine oils using LIBS: theuse of paper substrates and a comparison between single-and double-pulse LIBS[J].Spectrochimica Acta Part B: Atomic Spectroscopy,2005,60(11):1482-1485.
    [17] Chen Z, et al. Fast and sensitive trace metal analysis in aqueous solutions by laser-inducedbreakdown spectroscopy using wood slice substrates[J]. Spectrochimica Acta Part B: AtomicSpectroscopy,2008,63(1):64-68.
    [18]吴江来,傅院霞,李颖,等.水溶液中金属元素的激光诱导击穿光谱的检测分析[J].光谱学与光谱分析,2008,28(9):1979-1982.
    [19]钟石磊,卢渊,程凯,等.超声波雾化辅助液体样品激光诱导击穿光谱技术研究[J].光谱学与光谱分析,2011,31(6):1458-1462.
    [20] Lu Y, Li Y, Wu J, et al. Guided conversion to enhance cation detection in water usinglaser-induced breakdown spectroscopy[J]. Applied Optics,2010,49(13): C75-C79.
    [21] Kumar A., Yueh F. and Single J.. Double-pulse laser-induced breakdown spectroscopy withliquid jets of different thicknesses[J]. Appl. Opt.,2003,42:6047-6051.
    [22] De Giacomo A, et al. From single pulse to double pulse ns-laser induced breakdownspectroscopy under water: elemental analysis of aqueous solutions and submerged solidsamples[J]. Spectrochimica Acta Part B: Atomic Spectroscopy,2007,62(8):721-738.
    [23] Michel A P M, Chave A D. Double pulse laser-induced breakdown spectroscopy of bulk aqueoussolutions at oceanic pressures: interrelationship of gate delay, pulse energies, interpulse delay,and pressure.[J]. Applied Optics,2008,47(31): G131-143.
    [24] Lawrence-Snyder M, Scaffidi J, et al. Laser-induced breakdown spectroscopy of high-pressurebulk aqueous solutions[J]. Applied Spectroscopy,2006,60(7):786-790.
    [25] Michel A, Lawrence-Snyder M, et al. Laser-induced breakdown spectroscopy of bulk aqueoussolutions at oceanic pressures: evaluation of key measurement parameters. Applied Optics,2007,46(13):2507-2515.
    [26] Michel A P M, Chave A D. Single pulse laser-induced breakdown spectroscopy of bulk aqueoussolutions at oceanic pressures: interrelationship of gate delay and pulse energy[J]. AppliedOptics,2008,47(31): G122-130.
    [27] Thornton B, Takahashi T, Ura U, Sakka T. Laser-induced breakdown spectroscopy at highpressure and demonstration of in situ multi-element analysis at sea[C]. LIBS2012,7thInternational Conference on Laser Induced Breakdown Spectroscopy, Luxor, Egypt.
    [28]李全臣,蒋月娟.光谱仪器原理[M].北京:北京理工大学出版社,1999.
    [29] Bosiers J T, Peters I M, Draijer C, et al. Technical challenges and recent progress in CCDimagers[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers, Detectors and Associated Equipment,2006,565(1):148-156.
    [30] Banda Y, Coulter P, Cussans D, et al. Design and performance of improved Column ParallelCCD, CPC2[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers, Detectors and Associated Equipment,2010,621(1):192-204.
    [31]李宏光,吴宝宁,施浣芳,等.一种小型光谱色彩分析仪的设计[J].应用光学,2005,26(6):66-69.
    [32]鞠辉,吴一辉.微型光谱仪的发展[J].微纳电子技术,2003,15(1):30-37.
    [33]史俊锋,惠梅,王东生等.光谱仪器的微型化及其应用[J].光学技术,2003,29(1):13-20.
    [34] Bigas M, Cabruja E, Forest J, et al. Review of CMOS image sensors[J]. Microelectronicsjournal,2006,37(5):433-451.
    [35] Schroeder Daniel J. An echelle spectrometer spectrograph for astronomical use[J]. AppliedOptics,1967,6(11):1976-1980.
    [36]武旭华,朱永田,王磊.高分辨率阶梯光栅光谱仪的光学设计[J].光学精密工程,2003,11(5):442-447.
    [37] Ballester P, Rosa M R. Modeling echelle spectrographs[J]. Astronomy&Astrophysics,1997,126(3):563-571.
    [38] Rosa M R. Calibrating echelle spectra using instrument modes[J]. Space Telescope ScienceInstitutr,1997:533-536.
    [39] Anderwa. Dantzlaer. Echelle spectrograph software design aid [J]. Applied Optics,1985,24(24):4504-4508.
    [40] Gaigalas A K, Wang L, He H J, et al. Procedures for wavelength calibration and spectralresponse correction of CCD array spectrometers[J]. Journal of Research of the National Instituteof Standards and Technology,2009,114(4):215-228.
    [41] Zong Y, Brown S W, Johnson B C, et al. Simple spectral stray light correction method for arrayspectroradiometers[J]. Applied Optics,2006,45(6):1111-1119.
    [42]唐玉国,陈少杰,巴音贺希格,崔继承,陈今涌.中阶梯光栅光谱仪的谱图还原与波长标定[J].光学精密工程,2010,18(10):2130-2136.
    [43] Matthew Beasley. The Colorado High-resolution Echelle Stellar Spectrograph (CHESS) designand status Physics Procedia[J],2012,37:1435–1444.
    [44] Liu M, et al. Path-folded infrared spectrometer consisting of10sub-gratings and atwo-dimensional InGaAs detector[J]. Opt. Express,2009,17:14956-14966.
    [45] Chen Yue-Rui, et al. Densely folded spectral images of a CCD spectrometer working in the full200–1000nm wavelength range with high resolution[J]. Opt. Express,2005,13:10049-10054.
    [46]韩涛.集成二维多光栅光谱成像系统的研制与应用:博士学位论文.上海:复旦大学,2005.
    [47]游海洋,贾建虎,陈剑科,等.面阵CCD探测的全自动椭圆偏振光谱系统研究[J].红外与毫米波学报,2003,22(1):45-50.
    [48] Cai Qing-yuan, Zheng Yu-xiang, Zhang Dong-xu, et al. Application of image spectrometer to insitu infrared broadband optical monitoring for thin film deposition[J]. Opt. Express,2011,19:12969-12977.
    [49]锁志勇,魏先文,徐正.两种新的时间分辨技术[J].无机化学学报,2000,16(3):404-410.
    [50]王传珂,焦春晔,王峰,等.激光等离子体受激Raman散射光谱的时间分辨测量[J].强激光与粒子束,2010,22(9):2051-2054.
    [51]刘佳,高勋,段花花,林景全.激光诱导击穿光谱技术研究的新进展[J].激光杂志,2012,33(1):7-10.
    [52]曹宁,傅盘铭,张治国.飞秒时间分辨光抽运探测技术及进展[J].前沿进展,2007,36(5):395-398.
    [53]李景镇.迈向原子时间分辨的时间放大技术[J].中国科学E辑:技术科学,2009,39(12):1887-1904.
    [54] Lindblom P. New compact echelle spectrographs with multichannel time-resolved recordingcapabilities[J]. Analytica chimica acta,1999,380(2):353-361.
    [55] Donoho D L. Denoising by soft-thresholding[J]. IEEE Trans Inform. Theory,1995,41(3):613-627.
    [56] Donoho D L, Johnstone I M. Adapting to unknown smoothness via wavelet shrinkage[J].Journal of the american statistical association,1995,90(432):1200-1224.
    [57]潘泉,孟晋丽,张磊,程咏梅,张洪才.小波滤波方法及应用[J].电子与信息学报.2007,29(1):236-241.
    [58]郭埠岩,胡绍明等.小波去噪与平均算法去噪在拉曼光谱分析中的应用[J].计算机工程与设计,2007,28(7):1504-1507.
    [59] Ramos P M, Ruisánchez I. Noise and background removal in Raman spectra of ancientpigments using wavelet transform[J]. Journal of Raman Spectroscopy,2005,36(9):848-856.
    [60] Alsberg B K, Woodward A M, Winson M K, et al. Wavelet denoising of infrared spectra[J].Analyst,1997,122(7):645-652.
    [61]郝勇,陈斌,朱锐.近红外光谱预处理中几种小波消噪方法的分析[J].光谱学与光谱分析,2006,26(10):1838-1841
    [62]吴桂芳,何勇.小波阈值降噪模型在红外光谱信号处理中的应用研究[J].光谱学与光谱分析,2009,29(12):3246-3249.
    [63] Ehrentreich F, Sümmchen L. Spike removal and denoising of Raman spectra by wavelettransform methods[J]. Analytical chemistry,2001,73(17):4364-4373.
    [64] Hu Y, Jiang T, Shen A, et al. A background elimination method based on wavelet transform forRaman spectra[J]. Chemometrics and Intelligent Laboratory Systems,2007,85(1):94-101.
    [65] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbertspectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the RoyalSociety of London. Series A: Mathematical, Physical and Engineering Sciences,1998,454(1971):903-995.
    [66]李卿,张国平,刘洋.基于EMD的拉曼光谱去噪方法研究[J].光谱学与光谱分析.2009,29(1):142-145.
    [67]林婉如,熊盛武,谢啸虎.局部经验模态分解算法[J].计算机工程与应用.2011,47(13):123-126.
    [68]许亮华,郭永刚,杜修力.改进的EMD方法及大坝强震反应信号应用分析[J].中国水利水电科学研究院报.2011,9(3):229-236.
    [69]李夕兵,张义平,左宇军,王卫华,周子龙.岩石爆破振动信号的EMD滤波与消噪[J].中南大学学报.2006,37(1):150-154.
    [70]窦东阳,赵英凯.小波和EMD的滤波特性在轴承故障诊断中的比较[J].数学的实践和认识.2011,41(9):121-127.
    [71]陈珊,李晓宁,梁逸曾,等.拉曼光谱的荧光背景扣除及其用于药物聚类分析[J].光谱学与光谱分析,2010,30(8):2157-2160.
    [72] Lieber C A, Anita M J. Automated Method for subtraction of Fluoresence from BiologicalRaman Spectra[J]. Applied SpectroscoPy.2003,57:1363-1367
    [73] Vincent M, Carteret C, Brie D. et al. Background Removal from Spectraby Designing andMinimisinga Non-quadratie Cost Funetion. Chemometrics and intelligent laboratory systems,2005,76:121-133.
    [74]林艺玲.成品汽油关键成分的拉曼光谱分析[D].浙江大学硕士学位论文,2011.
    [75]李颖. LIBS在金属元素定量分析中的应用及其影响因素研究[D].中国海洋大学博士学位论文,2011:124-128.
    [76]包鑫,戴连奎.一种简便的近红外光谱标准化方法[J].光谱学与光谱分析,2008,28(14):829-833
    [77] Cooper J B. Chemometric Analysis of Raman Spectroscopic Data for Proeess ControlApplication[J]. Chemometrics and Intelligent Laboratory Systems,1999,46:231-247
    [78] Roman S, Sylwester M. Simple transformation of spectra to effectively reduce quantificationerrors in FT-Raman Multivariate Analysis of Complex Systems Vibrational Spectroscopy[J].2009,9:298-302
    [79]吴正洁,黄耀熊,王成,黎绍发.多种拉曼光谱归一化法对乙醇定量分析的研究[J].光谱学与光谱分析,2010,30(4):971~974.
    [80]梁逸曾,吴海龙,沈国励,等.分析化学计量学的若干新进展[J].中国科学B辑化学,2006,36(2):93-100
    [81]潘荣荣,曲刚莲,马果花.化学计量学在分析化学中的应用[J].化学分析计量,2007,16(2):76-78.
    [82]陈柳.拉曼光谱系统设计及基于遗传算法的光谱数据分析研究[D].华中师范大学硕士学位论文,2004.
    [83] Kardamakis A A, Pasadakis N. Autoregressive modeling of near-IR spectra and MLR to predictRON values of gasolines[J]. Fuel,2010,89(1):158-161.
    [84] Pearson K. LIII. On lines and planes of closest fit to systems of points in space[J]. The London,Edinburgh, and Dublin Philosophical Magazine and Journal of Science,1901,2(11):559-572.
    [85] Abdi H, Williams, L J. Principal component analysis. Wiley Interdisciplinary Reviews:Computational Statistics,2010,2(4):33-459.
    [86]张国文,潘军辉,王福民,等.主成分回归用于分光光度法同时测定6种食品添加剂[J].分析实验室.2007,26(7):52-56.
    [87]曾九孙,刘祥官,罗世华,等.主成分回归和偏最小二乘法在高炉冶炼中的应用[J].浙江大学学报(理学版).2009,36(l):33-36.
    [88] Geladi P, Kowalski B R. Partial least-squares regression: a tutorial[J]. Analytica chimica acta,1986,185:1-17.
    [89] Chen D, Cai W, Shao X. Removing uncertain variables based on ensemble partial leastsquares[J]. Analytica chimica acta,2007,598(1):19-26.
    [90] Gonzaga F B, Pasquini C. A compact and low cost laser induced breakdown spectroscopicsystem: Application for simultaneous determination of chromium and nickel in steel usingmultivariate calibration[J]. Spectrochimica Acta Part B: Atomic Spectroscopy,2012,69:20–24.
    [91] Balabin R M, Safieva Ravilya Z, Lomakina Ekaterina I. Comparison of linear and nonlinearcalibration models based on near infrared(NIR) spectroscopy data for gasoline propertiesprediction[J]. Chemometrics and Intelligent Laboratory Systems,2007,88(2):183-188.
    [92] Skov T, Ballabio D, Bro R. Multiblock variance partitioning: A new approach for comparingvariation in multiple data blocks[J]. Analytica Chimica Acta,2008,615(1):18-29.
    [93] Kohonen J, Reinikainen S P, Aaljoki K, et al. Multi‐block methods in multivariate processcontrol[J]. Journal of chemometrics,2008,22(3‐4):281-287.
    [94] Jing Ming, Cai Wensheng, Shao Xueguang. Multiblock partial least squares regression based onwavelet transform for quantitative analysis of near infrared spectra[J]. Chemometrics andIntelligent Laboratory Systems,2010,100(1):22-27.
    [95] Ergungor Z, Batur C, Cakmak M. On line measurement of crystallinity Of nylon6nanocomposites by laser Raman spectroscopy and neural networks[J]. Joumal of AppliedPolymer Science,2004,92(l):474-483.
    [96]刘立拓,刘建国,赵南京,等.基于人工神经网络的激光诱导击穿光谱在土壤重金属Cr检测中的应用[J].中国激光,2011,38(s1):s115002
    [97] Oh S Y, Yueh F Y, Singh J P. Quantitative analysis of tin alloy combined with artificial neuralnetwork prediction[J]. Applied Optics,2010,49(13): C36-C41.
    [98] Inakollu P, Philip T, Rai A K, et al. A comparative study of laser induced breakdownspectroscopy analysis for element concentrations in aluminum alloy using artificial neuralnetworks and calibration methods[J]. Spectrochimica Acta Part B: Atomic Spectroscopy,2009,64(1):99-104.
    [99] Boueri M, Motto-Ros V, Lei W Q, et al. Identification of polymer materials using laser-inducedbreakdown spectroscopy combined with artificial neural networks[J]. Applied spectroscopy,2011,65(3):307-314.
    [100]孙兰香,于海斌,丛智博,等.激光诱导击穿光谱技术结合神经网络定量分析钢中的Mn和Si[J].光学学报,2010,30(9):2758-2765.
    [101] Zou Hongyan, Wu Hailong, Fu Haiyan. Variable-weighted least-squares support vector machinefor multivariate spectral analysis[J]. Talanta,2010,80(5):1698-1701.
    [102] Li Y K, Shao X G, Cai W S. A consensus least squares support vector regression (LS-SVR) foranalysis of near-infrared spectra of plant samples[J]. Talanta,2007,72:217-222.
    [103] Jiao L, Wang L. A novel genetic algorithm based on immunity[J]. Systems, Man andCybernetics, Part A: Systems and Humans, IEEE Transactions on,2000,30(5):552-561.
    [104]王磊,潘进,焦李成.基于免疫策略的进化算法[J].自然科学进展,2000,10(5):451-455.
    [105]刘芳,王俊德.遗传算法及其在谱图解析中的应用[J].光谱学与光谱分析,2001,21(3):331-335.
    [106]刘芳,王俊德.遗传算法用于傅里叶变换红外光谱的定量解析[J].光谱学与光谱分析,2001,21(5):607-609.
    [107]张帅.拉曼光谱预处理及多组分分析方法研究[J].哈尔滨工程大学硕士学位论文,2010.
    [108] Goicoechea H C, Olivieri A C. Determination of bromhexine in cough–cold syrups byabsorption spectrophotometry and multivariate calibration using partial least-squares and hybridlinear analyses. Application of a novel method of wavelength selection[J]. Talanta,1999,49(4):793-800.
    [109] Clegg S M, Sklute E, Dyar M D, et al. Multivariate analysis of remote laser-induced breakdownspectroscopy spectra using partial least squares, principal component analysis, and relatedtechniques[J]. Spectrochimica Acta Part B: Atomic Spectroscopy,2009,64(1):79-88.
    [110] Ding Q, Small G W, Arnold M A. Genetic algorithm-based wavelength selection for thenear-infrared determination of glucose in biological matrixes: initialization strategies and effectsof spectral resolution[J]. Analytical chemistry,1998,70(21):4472-4479.
    [111]成忠,陈德钊,吴晓华,等.自适应模糊偏最小二乘方法在药物构效关系建模中的应用[J].分析化学研究简报,2005,33(7):972-97.
    [112]吕剑峰,戴连奎.加权最小二乘支持向量机改进算法及其在光谱定量分析中的应用[J].分析化学,2007,35(3):340-344.
    [113] Bangalore A S, Shaffer R E, Small G W, et al. Genetic algorithm-based method for selectingwavelengths and model size for use with partial least-squares regression: application tonear-infrared spectroscopy[J]. Analytical Chemistry,1996,68(23):4200-4212.
    [114] Cáceres J O, Tornero López J, Telle H H, et al. Quantitative analysis of trace metal ions in iceusing laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: AtomicSpectroscopy,2001,56(6):831-838.
    [115]鲁翠萍,刘文清,赵南京,等.土壤重金属铬元素的激光诱导击穿光谱定量分析研究[J].物理学报,2011,60(4):45206-045206.
    [116] Noll R, Sturm V, Aydin ü, et al. Laser-induced breakdown spectroscopy—from research toindustry, new frontiers for process control[J]. Spectrochimica Acta Part B: Atomic Spectroscopy,2008,63(10):1159-1166.
    [117]王琦,陈兴龙,余嵘华.基于激光诱导击穿光谱技术对钢中Mn和Cr元素的定量分析[J].光谱学与光谱分析,2011,9:2546-2551.
    [118]尚凤军,王海霞,周蓉生. X荧光谱分析中寻峰算法的探讨及实践[J].物探化探计算技术,2000,122(4):364-368.
    [119]缪华键,胡上序.一阶和二阶导数相综合的色谱峰检测法[J].分析化学,1994,22(3):247-250.
    [120]陈亮,魏义祥,屈建石.便携式γ谱仪中的核素识别算法[J].清华大学学报(自然科学版),2009,49(5):635-638.
    [121]朱浩瀚,秦海琨,张敏等.光纤布拉格光栅传感解调中的寻峰算法[J].中国激光,2008,35(6):893-897.
    [122] Sievanen O P. Resolution enhancement of Raman spectra of solids using true linear predictionand deconvolution[J]. Applied spectroscopy,1999,53(2):144-149.
    [123] Buslov D K, Nikonenko N A, Sushko N I, et al. Resolution enhancement in IR spectra ofcarbohydrates by the deconvolution method and comparison of the results with low-temperaturespectra[J]. Applied Spectroscopy,2000,54(11):1651-1658.
    [124] Lórenz-Fonfría V A, Padrós E. Maximum entropy deconvolution of infrared spectra: use of anovel entropy expression without sign restriction[J]. Applied spectroscopy,2005,59(4):474-486.
    [125]李正直.重迭光谱线形的解卷积方法[J].光谱学与光谱分析,1985,5(3):1-7.
    [126] Yuan Jinghe, Hu Ziqiang, Sun Jinzuo. High-order cumulant-based blind deconvolution ofRaman spectra[J]. Appl. Opt.,2005,44(35):7595-7601.
    [127]钱霖,李正直,许国梁.消卷积和自消卷积方法在红外光谱测量中的应用[J].光学学报,1984,4(6):546-552.
    [128]张秀琦,刘辉,郑建斌,等.信号处理技术在重叠化学信号解析中的应用[J].化学进展,2002,14(3:174-181.
    [129]胡耀垓,张晓星,赵正予,冯波.光谱重叠峰的曲线拟合解析策略与实现[J].重庆大学学报,2012,35(5):76-82.
    [130] Bi Y, Qi F, Guo J, et al. The spectral image acquisition and processing system based on foldedgratings spectrograph and ICCD[C]//Electronic and Mechanical Engineering and InformationTechnology (EMEIT),2011International Conference on. IEEE,2011,3:1332-1335.
    [131] Andor technology. User’s guide to iStar Manual, Version5.1,2006.
    [132] Andor technology. User’s guide to Andor Software Development Kit, Version2.84,2009.
    [133]白廷柱,金伟其.光电成像原理与技术[M].北京:北京理工大学出版社.2006.
    [134] Moran S E, Ulich B L, Elkins W P, et al. Intensified CCD (ICCD) dynamic range and noiseperformance[C]//Optical Science, Engineering and Instrumentation'97. International Society forOptics and Photonics,1997:430-457.
    [135]毕云峰,亓夫军,郑荣儿.一种提高折叠光栅光谱仪信噪比的新方法[J].光电子·激光,2012,23(7):1240-1245.
    [136]王玲芳,温志渝,向贤毅.近红外微型光谱仪光学系统设计与模拟[J].光谱学与光谱分析,2009,29(6):1721-1725.
    [137] Buades A, Coll B, Morel J M. A review of image denoising algorithms, with a new one[J].Multiscale Modeling&Simulation,2005,4(2):490-530.
    [138] Yan F, Cheng L, Peng S. A new interscale and intrascale orthonormal wavelet thresholding forSURE-based image denosing[J]. IEEE Signal Process. Lett.,2008,15:139–142.
    [139]刘国金,曾孝平,田逢春等.基于小世界模型和图论的图像去噪[J].光电子.激光,2010,21(1):149-153.
    [140]尚金奎,马晓光.基于中值滤波和参考点的风洞压敏涂料试验图像处理技术[J].实验流体力学,2010,24(2):69-72.
    [141] Castillejoa Marta, Martin M, Silva Diego, et al. Laser-induced breakdown spectroscopy andRaman microscopy for analysis of pigments in polychromes[J]. J. Cult. Heritage,2000,1:S297-S302.
    [142] Castillejoa Marta, Martin M, Silva Diego, et al. Analysis of pigments in polychromes by use oflaser induced breakdown spectroscopy and Raman microscopy[J]. Journal of MolecularStructure,2000,550:191-198.
    [143] Bicchieria M., N. M., Russo P.A., et al. Characterization of azurite and lazurite based pigmentsby laser induced breakdown spectroscopy and micro-Raman spectroscopy[J]. SpectrochimicaActa Part B,2001,56(6):915-922.
    [144] Osticioli I, Mendes N F C, Porcinai S, et al. Castellucci Spectroscopic analysis of works of artusing a single LIBS and pulsed Raman setup[J]. Anal Bioanal Chem,2009,394(4):1033-1041.
    [145] Giakoumaki A, Osticioli I, Anglos D. Spectroscopic analysis using a hybrid LIBS-Ramansystem[J]. Appl. Phys. A,2006,83(4):537-541.
    [146] Osticioli I, Mendes N F C, Nevinc A, et al. Castellucci. Analysis of natural and artificialultramarine blue pigments using laser induced breakdown and pulsed Raman spectroscopy,statistical analysis and light microscopy[J]. Spectrochimica Acta Part A,2009,73(3):525-531.
    [147] Fabre C, Boiron M C, Dubessy J, et al. Palaeofluid chemistry of a single fluid event: a bulk andin-situ multi-technique analysis (LIBS, Raman Spectroscopy) of an Alpine fluid(Mont-Blanc)[J]. Chemical geology,2002,182(2):249-264.
    [148] Derome D, Cathelineau M, Fabre C, et al. Paleo-fluid composition determined from individualfluid inclusions by Raman and LIBS: application to mid-proterozoic evaporitic Na–Ca brines(Alligator Rivers Uranium Field, northern territories Australia)[J]. Chemical geology,2007,237(3):240-254.
    [149] Christopher B D, G. S M, Phihung Thanh, Juliez George Radziszewski. Study of sub-mJ-excitedlaser-induced plasma combined with Raman spectroscopy under Mars atmosphere-simulatedconditions[J]. Spectrochimica Acta Part B,2007,62(12):1448-1459.
    [150] Sharma S K, Misra A K, Lucey P G, et al. Combined remote LIBS and Raman spectroscopy at8.6m of sulfur-containing minerals, and minerals coated with hematite or covered with basalticdust[J]. Spectrochimica Acta Part A,2007,68(4):1036-1045.
    [151] Sharma S K. New trends in telescopic remote Raman spectroscopic instrumentation[J].Spectrochimica Acta Part A,2007,68(4):1008-1022.
    [152] Sharma S K, Misra A K., Lucey P G., et al. A combined remote Raman and LIBS instrument forcharacterizing minerals with532nm laser excitation[J]. Spectrochimica Acta Part A,2009,73(3):468-476.
    [153] Wiens R C, Sharma S K, Thompson J, et al. Joint analyses by laser-induced breakdownspectroscopy (LIBS) and Raman spectroscopy at stand-off distances[J]. Spectrochimica ActaPart A: Molecular and Biomolecular Spectroscopy,2005,61(10):2324-2334.
    [154] Boyain-Goitia A R, Beddows D, Griffiths B C, et al. Single-pollen analysis by laser-inducedbreakdown spectroscopy and Raman microscopy[J]. Applied optics,2003,42(30):6119-6132.
    [155] Moros J, Lorenzo J A, Lucena P, et al. Simultaneous Raman Spectroscopy Laser-InducedBreakdown Spectroscopy for instant standoff analysis of explosives using a mobile integratedsensor platform[J]. Analytical chemistry,2010,82(4):1389-1400.
    [156] Guo J J, Wu J L, Lu Y., Zheng R E, Liu Z S, Joint Analyses of CuSO4in Seawater by LaserInduced Breakdown Spectroscopy and Raman Spectroscopy, Oral presented in CSI XXXV,23-27September,2007, Xiamen, China.
    [157] Bazalgette Courrèges-Lacoste G, Ahlers B, Pérez F R. Combined Ramanspectrometer/laser-induced breakdown spectrometer for the next ESA mission to Mars[J].Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2007,68(4):1023-1028.
    [158] Hoehse M, Mory D, Florek S, et al. A combined laser-induced breakdown and Ramanspectroscopy Echelle system for elemental and molecular microanalysis[J]. Spectrochimica ActaPart B: Atomic Spectroscopy,2009,64(11):1219-1227.
    [159]庞巨丰,郑桂芳,侯晓凤.对称零面积变换法找峰[J].原子能科学与技术,1987,21(3):270-279.
    [160]向安平,朱世德,任基. Voigt线型及其精确快速算法[J].红外与毫米波学报,1995,14(2):125-130.
    [161] HE Jian, ZHANG Qing-guo. An exact calculation of the Voigt spectral line profileinspectroscopy J. Opt. A: Pure Appl. Opt.2007,9:565-568.
    [162]毕云峰,李颖,郑荣儿. LIBS/Raman光谱对称零面积变换自动寻峰方法研究[J].光谱学与光谱分析,2013,33(2):438-443.
    [163] Levenberg K. A Method for the Solution of Certain Non-linear Problems in Least Squares[J].Quarterly of Applied Mathematics,1944,2(2):164–168.
    [164] Marquardt D W. An algorithm for least-squares estimation of nonlinear parameters[J]. Journal ofthe Society for Industrial&Applied Mathematics,1963,11(2):431-441.
    [165] Lampton M. Damping-Undamping Strategies for the Levenberg-Marquardt NonlinearLeast-Squares Method[J]. Computers in Physics Journal,1997,11(1):110–115.
    [166]张鸿燕,耿征. Levenberg-Marquardt算法的一种新解释[J].计算机工程与应用,2009,45(19):5-8.
    [167]许晓飞,林勇,严彬彬.基于希尔伯特-黄变换的心音包络提取[J].航天医学与医学工程.2008,21(2):134-136.
    [168]钱勇,黄成军,戚伟.基于经验模态分解的自适应滤波算法在局部放电窄带干扰抑制中的应用[J].继电器.2006,34(22):27-31.
    [169]郭喜平,王立东.经验模态分解(EMD)新算法及应用[J].噪声与振动控制.2008,5:70-72.
    [170]徐宝森,张建民,徐小力,李建伟.抑制EMD端点效应方法的研究[J].北京理工大学学报.2006,26(3):197-200.
    [171]裴强,胡波. Hilbert Huang.变换方法研究进展.世界地震工程[J].2011,27(2):21-29.
    [172]钟佑明,秦树人.希尔伯特-黄变换的统一理论依据[J].振动与冲击.2004,25(3):40-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700