用户名: 密码: 验证码:
棉纱线及织物中的防皱纤维成分对其制品性能影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉织物具有吸湿、透气,手感柔软、舒适,不易起静电等许多优异的性能,长期以来一直深受消费者的欢迎和喜爱。但棉织物在穿着过程中容易产生折皱,洗涤后需经熨烫才可继续穿着,保形性差,弹性差,严重影响了织物的外观和服用性能。
     对棉织物进行防皱整理是提高其防皱性能的主要途径。棉织物经常规的轧烘焙(PDC)工艺防皱整理以后,织物的防皱性能获得了显著的提高,同时对织物的其它性能产生了一系列影响,如织物强力显著下降、手感发硬、吸湿透气性能变差等,严重影响到织物的服用性能和风格。另外,经PDC工艺整理的织物,由于在整理过程中是对织物整体浸渍整理液进行处理,使织物两面具有同样的防皱效果。整理后的织物在穿着服用过程中,与皮肤直接接触的一面经化学药剂改性处理,可能会对人身体健康造成危害。通过分析涤/棉混纺织物认为,只要织物中含有部分具有良好拉伸回复性能的纤维,就可提高织物的防皱性能,同时,可有效改善由于传统防皱整理带来的织物品质变差的问题。从而,整个实验的落脚点在于,降低织物中防皱成分的含量,改善产品的综合性能。即对棉纤维制品进行局部防皱处理,而不是传统意义上的织物整体防皱加工。从实际的可操作性角度考虑,将经过防皱改性的纤维与原棉纤维混纺、防皱纱与原棉纱交织、对织物单面整理等处理方式,是实现这一设想的有效途径。
     160s纯棉高支纱经防皱预处理,然后将预处理纱与未处理的原纱按一定比例加捻复合成为两股及四股线,再对它们进行延迟焙烘处理。研究发现经预处理和焙烘后的单纱及股线在断裂强力、断裂伸长率、断裂时间及断裂功等几个方面,具有相似的变化规律。用设计的方法测试了纱线的折皱回复角,经延迟焙烘处理以后,纱线的折皱回复角及弯曲刚度有所提高,增加幅度与纱线中预处理纱的含量基本呈正相关关系。红外光谱(FTIR)、广角X衍射(WXRD)及元素分析表明,预处理纱经焙烘以后,整理剂与纤维大分子间发生了共价交联反应,但不会影响纤维的结晶结构。棉纤维在防皱处理前后的外观形貌没有发生明显变化,仍为原来扁平的扭曲带状。预处理棉纱经焙烘交联以后,棉纤维的热降解稳定性较原纱及预处理纱有所提高,而预处理纱与原纱相比差别不大。通过对160s纯棉高支纱的防皱合股线性能研究,使人们认识和了解到防皱单纱对股线性能的影响。
     文中研究了纺织的最初原料——棉纤维的防皱性能。经防皱预处理的棉纤维在不同的温度和时间下干热处理后,其断裂比强度(BSTR)基本随比折皱回复角(BWRA)的增大而减小。在低温烘燥时,温度和时间对BWRA及BSTR的影响较小,高温焙烘时,温度和时间的影响增大;整理剂浓度对棉束纤维防皱性能的影响不大,催化剂用量影响显著。
     棉纤维经预处理后与原棉纤维混纺,形成同质异性混纺防皱纱(以下简称为“混纺纱”),在延迟焙烘以后,随纱线中防皱纤维含量的增大,混纺纱的折皱回复角(WRA)增大,断裂强度(STR)减小,它们呈负相关性;并且,混纺纱的断裂伸长率、断裂时间和断裂功等也基本随纱线中防皱纤维含量的增大而减小。对焙烘后纱线的红外光谱及元素分析表明,随纱线中防皱纤维含量的增加,交联作用变强,纱线中氮元素含量增大;WXRD分析表明,焙烘后纱线的晶型没有变化,结晶度总体呈下降趋势;纱线焙烘后的耐热性较焙烘前有所提高,受纱线中防皱纤维含量的影响不大。这些结果表明,实验室中可以顺利纺出混纺纱,其性能与纱线中预处理纤维的含量关系密切。
     工厂实验表明,棉纤维的防皱预处理不会影响纤维的可纺性和纺制纱的上机织造,这点对于整个生产过程至关重要。对工厂试织的三种织物在不同的温度和时间下干热处理,结果表明延迟焙烘温度、时间、防皱纤维含量等因素对织物最终的防皱性能都会产生一定的影响。对100%预处理织物水洗后再焙烘,织物的防皱效果较差;延迟焙烘处理使织物的退浆、染色性能变差,而退浆、染色过程对织物防皱效果的影响不大;延迟焙烘处理提高了织物的丝光效果,但丝光降低了织物的防皱性能。由此可见,混纺防皱的加工方式在理论和实践上都具有可行性。
     树脂整理剂PS-14、催化剂2-氨基乙磺酸(2AESA)和海藻酸钠具有良好的相容性,可将它们调制在一起形成印浆,对棉织物进行单面印浆防皱整理,收到了一定的处理效果,表明实验思路切实可行。由红外光谱、pH值等实验,研究了2AESA作为防皱整理催化剂的催化机理,结果表明催化历程符合酸催化机理。对单面印浆防皱整理前后织物的正反两面进行了衰减全反射红外光谱(ATR-FTIR)、元素含量、WXRD、扫描电子显微镜(SEM)等的测试分析,研究了它们的微观结构。单面印浆防皱整理织物的正反面与原棉织物在耐磨性、静电性能及透湿性等应用性能方面存在着不同的差异,经整理的一面基本都有所下降。
     超声波雾化器可以将实验中用到的整理剂、催化剂等化学药品均匀稳定地雾化出来,雾化液中药剂的含量及成分与雾化残液及溶液本体基本相同,表明超声雾化的整理方式在原理上是可行的。织物的润湿性在单面雾化整理过程中非常重要,可根据实验要求选择润湿性合适的织物进行单面雾化整理。织物的雾化带液率随雾化时间的延长而增大,长时间雾化后,雾化液会透过织物,形成双面整理的效果。对纯棉织物的单面雾化防皱整理实验结果表明,整理后织物的WRA与STR基本呈负相关性,当雾化液透过织物形成双面整理时,织物的STR下降迅速,WRA的变化过程总体比较平稳。经ATR-FTIR、元素含量、WXRD及SEM等分析表明,整理前后织物两面的微观结构差异性不是十分显著,可能与整理剂向织物反面的渗透有关。单面雾化防皱整理织物的正反两面与整理前织物相比,耐磨性、静电性能及透湿性等性能基本都发生了不同程度的下降。
Cotton fabric has been favoring by consumer for a long time due to its excellent properties such as hydrophilicity, breathability, soft handle, comfort, antistatic property, etc. However, the appearance and wearability of cotton clothing will be greatly affected when crease on the surface of the fabric forms due to the awkward shape retentiveness and elasticity of cotton fiber. Frequent ironing must be applied after washing so as to regain its wearability. In this regard, anti-creasing finishing must be applied to cotton fabric to improve its crease resistance.
     Conventional Pad-Dry-Cure (PDC) anti-creasing finishing has been used to grant the fabric with excellent crease resistance, but side effects emerged at the same time when deteriorated strength, stiffer hand and bad moisture and vapor transferring properties were noticed during use. Another concern stands in the hazard of chemicals on the surface of the fabric that will contact skin; the chemicals are uploaded when both sides of the fabric are immersed in the solution during the treatment. Crease resistance can also be achieved by adding crease resistant fibers into the yarn of the fabric. A good example of this is the Polyester/Cotton blend fabric in which polyester serves as the crease resistant parts. This method not only brings the fabric with crease resistance but also hardly affect the original properties of the as-treated fabric. Therefore, the aim of experiment is to reduce the content of anti-creasing composition so as to improve the overall performances of the fabric. A partial crease resistant treatment was conducted instead of anti-creasing treatment to the whole fabric. To this purpose, it will be more practical to conduct blending of anti-crease component into the spinning and weaving process and one side finishing of fabric.
     In experiment, high count cotton yarn (160s) was pre-treated by anti-creasing, and then plied into2-plying yarn and4-plying yarn by twisting the pre-treating yarn and original yarns according to different proportion followed by a delayed-curing process. It was found that there was a similar variation to pre-treated and cured single yarn and plying yarn in breaking strength, elongation at break, breaking time, and work of fracture. Wrinkle recovery angle (WRA) of yarn was also measured. WRA and bending rigidity of yarn increased after delayed-curing, and the increase showed a positive correlation to the content of pre-treating yarn. FTIR, WXRD, and elemental analysis showed that the covalent crosslink reacted between finishing agent and fiber macromoleculars after curing the pre-treating yarn, but the crystal structure of the fibers was unchanged. The the flat and twisty ribbon morphology of cotton fiber didn't change much after treatment. To pre-treating cotton yam after crosslinking, the thermal degradation stability of cotton fiber in yarn enhanced than that of the original yarn and pre-treating yarn, while the difference was little when compared pre-treating yarn with the original yarn. The effect of anti-creasing yarn on the properties of plied yarn has been realized through studying anti-creasing and plying properties of160s high count cotton yarn.
     The anti-creasing properties of cotton fibers as the original textile material were studied in this paper. BSTR decreased as the BWRA increased for the anti-creasing pre-treated cotton bundles after the dry-heating under different temperatures with various treating time. Such factors as temperature and time had a lower influence on BWRA and BSTR during the low temperature treatment than that during the high high temperature curing. Finishing agent concentration had a slight effect on the anti-creasing property of cotton bundles, while catalyst amount had a significant influence on the anti-creasing property of cotton bundles.
     The homogenous anisotropic blending anti-creasing yarn was produced by the blend spinning of pre-treated and original cotton fibers (which was denoted as blending yarn). After delayed curing, the blending yarn showed an increased WRA and a decreased STR as the anti-creasing fiber content increased; specifically, there was a negative correlation between WRA and STR. Furthermore, breaking elongation, breaking time, and breaking work of blending yarn were all decreased as the anti-creasing fiber content decreased in the yarn. Results of FTIR and elemental analysis showed that the cross-linkage intensified and N content enhanced as the anti-creasing fiber content increased in the cured yarn. XRD showed that the crystallinity reduced without any change in crystal structure for the fibers in cured yam; thermal stabilities were improved after curing for yarns with various anti-creasing fiber contents. These results indicated that the blending yarn could be spun successfully in laboratory and its anti-creasing performance was closely related to the content of pretreated fibers in the yarn.
     The experiment in factory showed that, the anti-creasing pre-treatment of cotton fiber didn't affect the fiber spinningy and weaving abilities, this was essential to the whole production process. The three woven fabrics were dry-heat treated under different temperatures with different time. The results indicated that the curing temperature, curing time, and the anti-creasing fiber content in yam had an effect on anti-creasing properties of fabric.100%pre-treating fabrics after washing and curing, the anti-creasing effect of fabric was poor; delayed curing treatment decreased the desizing and dyeing performance of fabric, whereas the influence of desizing and dyeing on anti-creasing property of fabric was little; delayed curing treatment enhanced the mercerizing effect of fabric, while mercerizing treatment deduced anti-creasing property of fabric. This suggested that interpenetrating anti-creasing process was feasible in theory and in practice.
     PS-14,2AESA and sodium alginate had good compatibility, and they could be mixed together to conduct a single-sided anti-creasing finish for cotton fabric through printing pulp, indicting that the idea was feasible. By FTIR and pH data, the anti-creasing catalytic mechanism of2AESA as catalyst was studied, and results showed that the catalytic course was consistent with the acid-catalyzed mechanism. Both positive and negative faces of the finishing fabric with ATR-FTIR, elemental content, WXRD and SEM were measured to study their micro-structures. Both positive and negative faces of the finishing fabric in abrasion performance, antistatic property and moisture penetrability had certain differences, and the finishing face basically declined.
     Ultrasonic atomizer could uniformly and stably atomize chemicals, and the content and composition of the atomized liquid kept the same with the solution of residue and the originally solution, which could indicate that the ultrasonic atomized finishing was feasible in principle. Fabric wettability was very important during the ultrasonic finishing process, and wettability could be selected according to the experimental requirements. The pick-up of fabric increased with prolonged atomized time. After long time atomization, the atomized liquid could permeate the fabric to form the double-sided finishing. The results of ultrasonic atomized finishing showed that the WRA and STR was basically negative correlation. When the atomized liquid permeated the fabric to form the double-sided finish, STR declined rapidly, while the change of WRA was stable in the whole process. ATR-FTIR, elemental content, WXRD and SEM analysis showed that both positive and negative faces of the finishing fabric were not very distinct in micro-structures before and after finishing. This might be due to permeability of the finishing agent. Compared with the original fabric, the abrasion performance, antistatic property and moisture penetrability of both faces of the finishing fabric had declined at different extents.
引文
[1]Mark H., Wooding N. S., Atlas S. M. Chemical Aftertreatment of Textiles. New York: Wiley-Interscience,1971.
    [2]Clayton E. Synthetic resins and anti-crease cellulosic materials. The Journal of the Society of Dyers and Colourists,1932,48(11):295-298.
    [3]Buck G. S. Jr., McCord F. A. Crease-resistance and cotton. Textile Research Journal,1949, 19(4):216-247.
    [4]Gruntfest I. J., Gagliardi D. D. Wrinkle resistance of fabrics. Industrial and Engineering Chemistry,1949,41(4):760-764.
    [5]Jennings H. Y. Crease-resistant finishes on cotton. Textile Research Journal,1955,25(1): 20-24.
    [6]Tovey H. Cotton quality study VI Wrinkle resistance and recovery from deformation. Textile Research Journal,1961,31(3):185-252.
    [7]Lo L. Y., Li Y., Yuen C. W. M., et al. Understanding wrinkle resistance (Part Ⅰ). AATCC Review, 2007,7(11):28-31.
    [8]Gardner R. R., Scheper W. M., Sivik W. M., et al. Shrink resistant and wrinkle free textiles. US 7,018,422 B2,2006-03-28.
    [9]Gagliardi D. D., Gruntfest I. J. Creasing and creaseproofing of textiles. Textile Research Journal,1950,20(3):180-188.
    [10]Schroeder C. W., Condo F. E. Epoxy resins in the crease proofing of cotton. Textile Research Journal,1957,27(2):135-145.
    [11]Landells G. Modern resin finishing of textiles practice and research. The Journal of the Society of Dyers and Colourists,1956,72(4):137-146.
    [12]Chang H.-L., Chen C.-C. Crosslinking of cotton with DMDMDHEU in the presence of sodium chloride. Textile Research Journal,1996,66(12):803-809.
    [13]Hebeish A., Refai R., Zahran M. K., et al. Easy-care properties of simultaneously grafted and crosslinked cotton fabrics. Journal of Applied Polymer Science,1996,60(12):2165-2176.
    [14]Farnworth A. J., Lindberg J. The influence of changes in moisture content on the wrinkle recovery of fabrics, Part Ⅰ. Textile Research Journal,1961,31(8):687-694.
    [15]Lippert A. L. Characteristics of wash and wear cottons. Textile Research Journal,1956,26(2): 128-135.
    [16]Hurwitz M. D. The evolution of permanent press. Textile Chemist & Colorist,1987,19(2): 13-23.
    [17]Jones B. W., Turner J. D., Luparello D. O. Preparing and finishing durable-press cotton fabrics. Textile Research Journal,1980,50(3):165-177.
    [18]Liu X., Hu J., Babu K. M., et al. Elasticity and shape memory effect of shape memory fabrics. Textile Research Journal,2008,78(12):1048-1056.
    [19]Chandra R., Rustgi R. Biodegradable polymers. Progress in Polymer Science,1998,23(7): 1273-1335.
    [20]Mohanty A. K., Misra M., Drzal L. T. Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. Journal of Polymers and the Environment,2002,10(1/2):19-26.
    [21]Heinze T., Liebert T. Unconventional methods in cellulose functionalization. Progress in Polymer Science,2001,26(9):1689-1762.
    [22]Losonczi A., Csiszar E., Szakacs G., et al. Role of the EDTA chelating agent in bioscouring of cotton. Textile Research Journal,2005,75(5):411-417.
    [23]Gilbert S. M., Smith B. F. A degradation study of some formaldehyde-modified celluloses. Textile Research Journal,1970,40(8):720-727.
    [24]Kim Y. K., Kang T. J., Seyam A. M., et al. Stretch mercerization of cotton fibers Part Ⅰ:fiber and yarn properties. Textile Research Journal,1984,54(5):325-330.
    [25]Ruppenicker G. F., Sawhney A. P. S., Kimmel L. B., et al. Influence of cotton fiber quality on the strength properties of cotton fabrics treated with flame-resistant and easy-care finishes. AATCC Review,2007,7(11):43-48.
    [26]Jang K. O., Yeh K. Effects of silicone softeners and silane coupling agents on the performance properties of cotton fabrics. Textile Research Journal,1993,63(10):557-565.
    [27]Hashem M., Ibrahim N. A., El-Shafei A., et al. An eco-friendly-novel approach for attaining wrinkle-free/soft-hand cotton fabric. Carbohydrate Polymers,2009,78(4):690-703.
    [28]uperl O., Stana-Kleinschek K. Differences between cotton and viscose fibers crosslinked with BTCA. Textile Research Journal,2010,80(4):383-392.
    [29]Ghosh P., Samanta A. K., Dev D. Simultaneous free radical polymerization and acidic polycondensation of acrylamide-formaldehyde resin on jute fabric. Journal of Applied Polymer Science,1997,64(13):2473-2489.
    [30]Jones F. B., Hammon H. G., Leininger R. I., et al. The in situ polymerization of ethylene ureas and ethylene amides within the fibers of cotton. Textile Research Journal,1961,31(1): 57-65.
    [31]Brenner F. C., Chen C. S. The mechanical behavior of fabrics Part Ⅰ:Wrinkling. Textile Research Journal,1964,34(6):505-517.
    [32]Shi F., Hu J., Yu T. Modeling the creasing properties of woven fabrics. Textile Research Journal,2000,70(3):247-255.
    [33]Lamb G. E. R., Butler R. H., Prevorsek D. C. Influence of fiber properties on wrinkling behavior of fabrics Part Ⅱ:Bending recovery of single filaments. Textile Research Journal, 1975,45(3):267-272.
    [34]Abbott N. J. The relationship between fabric structure and ease-of-care performance of cotton fabrics. Textile Research Journal,1964,34(12):1049-1082.
    [35]Krasny J. F., Sookne A. M., Stam P. B. Fabric construction for wash-and-wear cottons. Textile Research Journal,1962,32(4):258-270.
    [36]Mehta H. U., Gupta K. C., Bhatt V. R. Crease recovery of untreated and resin-treated cotton fabrics. Textile Research Journal,1976,46(5):356-360.
    [37]Sobue H., Murakami K. Rheological interpretation of the mechanism of crease recovery of fiber. Textile Research Journal,1959,29(3):251-260.
    [38]Rath H., Herbolsheimer E., Stapf S. The mechanism of resin deposition in cotton. Textile Research Journal,1960,30(3):201-207.
    [39]O'Brien S. J., van Loo W. J. Jr. Chemical Bonding and Reaction Rates of Wrinkle-Resistant Finishes on Cotton. Textile Research Journal,1962,32(4):292-305.
    [40]Harper R. J. Jr., Bruno J. S., Reeves W. A. Application of mechanisms for wet and dry wrinkle recovery to fabric exhibiting the unusual combination of high dry and low wet recovery. Textile Research Journal,1968,38(3):292-304.
    [41]Holliday L. Ionic polymers. England:Applied Science Publishers Ltd,1975.
    [42]Smith B., Hauser P. Ionic crosslinking-a novel method of fabric stabilization. National Textile Center Annual Report,2004.
    [43]Smith B., Hauser P. Ionic crosslinking-a novel method of fabric stabilization. National Textile Center Research Briefs-Chemistry Competency,2005.
    [44]Smith C. B., Bilgen M., Hauser P. J. Ionic cross-linking of ionic cotton with small molecular weight anionic or cationic molecules. US 2005/0241073 Al,2005-11-03.
    [45]Hashem M., Hauser P., Smith B. Wrinkle recovery for cellulosic fabric by means of ionic crosslinking. Textile Research Journal,2003,73(9):762-766.
    [46]Hashem M., Refaie R., Hebeish A. Crosslinking of partially carboxymethylated cotton fabric via cationization. Journal of Cleaner Production,2005,13(9):947-954.
    [47]Hebeish A., Hashem M., Abdel-Rahman A., et al. Improving easy care nonformaldehyde finishing performance using polycarboxylic acids via precationization of cotton fabric. Journal of Applied Polymer Science,2006,100(4):2697-2704.
    [48]Hashem M., Refaie R., Goli K., et al. Enhancement of wrinkle free properties of carboxymethylated cotton fabric via ionic crosslinking with poly(vinylpyrrolidone). Journal of Industrial Textiles,2009,39(1):57-80.
    [49]Foulds R. P., Marsh J. T., Wood F. C., et al. Forming synthetic resins within textile materials. Brit. Pat.291,473,1929.
    [50]Foulds R. P., Marsh J. T., Wood F. C. Impregnating textile materials with condensation products of phenol and formaldehyde. Brit. Pat.291,474,1929.
    [51]Foulds R. P., Marsh J. T., Wood F. C. Textile material and the production thereof. US 1,734,516,1929-11-05.
    [52]Achwal W. B., Pitale B. B. Acid hydrolysis of melamine-formaldehyde resins condensed on cotton fabrics in presence of different catalysts. Textile Research Journal,1966,36(9): 844-848.
    [53]Steele R., Giddings L. E. Jr. The mechanical properties of cellulose fabrics treated with monomethylol and dimethylol ureas. Textile Research Journal,1956,26(2):116-123.
    [54]Stoll R. G. Textiles with new properties from cellulose triacetate. Textile Research Journal, 1955,25(7):650-661.
    [55]Rowland S. P., Bullock A. L., Cirino V. O., et al. The relative reactivities of the hydroxyl groups of cotton cellulose-A progress report. Textile Research Journal,1967,37(12): 1020-1030.
    [56]Reinhardt R. M., Kullman R. M. H. Sodium hypobromite treatment of cotton finished with methylolated carbamates:Bromamide formation and decomposition. Textile Research Journal,1969,39(3):217-222.
    [57]Harper R. J. Jr., Bruno J. S. The crosslinking of blended fabrics. Textile Research Journal, 1972,42(7):433-436.
    [58]Chen C.-C. Crosslinking of cotton fabric treated with DMDHEU using the high temperature steam process. Textile Research Journal,1990,60(2):118-122.
    [59]Gonzales E. J., Ziifle H. M., Berni R. J., et al. Physicochemical study of the cotton cellulose-dimethylolpropyleneurea reaction. Textile Research Journal,1969,37(9):726-735.
    [60]Petersen H. Advances in the chemistry of N-containing cross-linking agents. Textile Research Journal,1971,41(3):239-254.
    [61]Welch C. M., Andrews B. K. Catalysts and processes for formaldehyde-free durable press finishing of cotton textiles with polycarboxylic acids. US 4,820,307,1989-04-11.
    [62]Welch C. M. Mild-cure formaldehyde-free durable-press finishing of cotton textiles with glyoxal and glycols. US 4,472,167,1984-09-18.
    [63]Turner J. D. Improving the DP appearance of cotton fabrics with additives and aminorunctional silicones. Textile Chemist & Colorist,1988,20(5):36-38.
    [64]Cannizzaro A. M., Goynes W. R., Rollins M. L., et al. Microscopical studies of cottons reacted in vapor phase. Textile Research Journal,1970,40(12):1087-1095.
    [65]Sawhney A. P. S., Condon B., Singh K.V., et al. Modern applications of nanotechnology in textiles. Textile Research Journal,2008,78(8):731-739.
    [66]Harifi T., Montazer M. Past, present and future prospects of cotton cross-linking:New insight into nano particles. Carbohydrate Polymers,2012,88(4):1125-1140.
    [67]Yuen C. W. M., Ku S. K. A., Kan C. W., et al. Using nano-TiO2 as co-catalyst for improving wrinkle-resistant of cotton fabric. Surface Review and Letters,2007,14(4):571-575.
    [68]Yuen C. W. M., Ku S. K. A., Li Y., et al. Improvement of wrinkle-resistant treatment by nanotechnology. The Journal of the Textile Institute,2009,100(2):173-180.
    [69]Wang C.-C., Chen C.-C. Physical properties of the crosslinked cellulose catalyzed with nanotitanium dioxide under UV irradiation and electronic field. Applied Catalysis A: General,2005,293(9):171-179.
    [70]Chen C.-C., Wang C.-C. Crosslinking of cotton cellulose with succinic acid in the presence of titanium dioxide nano-catalyst under UV irradiation. Journal of Sol-Gel Science and Technology,2006,40(1):31-38.
    [71]Yang C., Liang G. L., Xu K. M., et al. Bactericidal functionalization of wrinkle-free fabrics via covalently bonding TiO2@Ag nanoconjugates. Journal of Materials Science,2009,44(7): 1894-1901.
    [72]Khoddami A., Shokohi S. S., Morshed M., et al. Simultaneous application of silver nanoparticles with different crease resistant finishes. Fibers and Polymers,2011,12(5): 635-641.
    [73]Montazer M., Alimohammadi F., Shamei A., et al. Durable antibacterial and cross-linking cotton with colloidal silver nanoparticles and butane tetracarboxylic acid without yellowing. Colloids and Surfaces B:Biointerfaces,2012,89(1):196-202.
    [74]Dawson T. Progress towards a greener textile industry. Coloration Technology,2012,128(1): 1-8.
    [75]Tzanov T., Stamenova M., Betcheva R., et al. Lipases to improve the performance of formaldehyde-free durable press finished cotton fabrics. Macromolecular Materials and Engineering,2002,287(7):462-465.
    [76]Stamenova M., Tzanov T., Betcheva R., et al. Proteases to improve the mechanical characteristics of durable press finished cotton fabrics. Macromolecular Materials and Engineering,2003,288(1):71-75.
    [77]Zhou L. M., Yeung K. W., Yuen C. W. M. Treating cotton fabric with cellulase and BTCA in one bath. AATCC Review,2002,2(1):29-33.
    [78]Cortez J. M., Ellis J., Bishop D. P. Using cellulases to improve the dimensional stability of cellulosic fabrics. Textile Research Journal,2002,72(8):673-680.
    [79]Yang C. Q., Zhou W., Lickfield G. C., et al. Cellulase treatment of durable press finished cotton fabric:Effects on fabric strength, abrasion resistance, and handle. Textile Research Journal,2003,73(12):1057-1062.
    [80]Ibrahim N. A., Fahmy H. M., Hassan T. M., et al. Effect of cellulase treatment on the extent of post-finishing and dyeing of cotton fabrics. Journal of Materials Processing Technology, 2005,160(1):99-106.
    [81]Hebeish A., Hashem M., Shaker N., et al. Effect of post- and pre-crosslinking of cotton fabrics on the efficiency of biofinishing with cellulase enzyme. Carbohydrate Polymers, 2009,78(4):953-960.
    [82]Aly A. S., Mostafa A. B. E., Ramadan M. A., et al. Innovative dual antimicrobial & anticrease finishing of cotton fabric. Polymer-Plastics Technology and Engineering,2007,46(7): 703-707.
    [83]Hebeish A., Abdel-Mohdy F. A., Fouda M. M. G., et al. Green synthesis of easy care and antimicrobial cotton fabrics. Carbohydrate Polymers,2011,86(4):1684-1691.
    [84]Lee J., Broughton R. M., Akdag A., et al. Antimicrobial fibers created via polycarboxylic acid durable press finishing. Textile Research Journal,2007,77(8):604-611.
    [85]Abo-Shosha M. H., Hashem A. M., El-Hosamy M. B., et al. Easy care finishing of knitted cotton fabric in presence of a reactive-type antibacterial agent. Journal of Industrial Textiles, 2008,38(2):103-126.
    [86]Hashem M., Ibrahim N. A., El-Sayed W. A., et al. Enhancing antimicrobial properties of dyed and finished cotton fabrics. Carbohydrate Polymers,2009,78(3):502-510.
    [87]Vukusic S. B., Grgac S. F., Katovic D., et al. Antibacterial properties of citric acid used as easy-care finishing agent. AATCC Review,2009,9(8):37-41.
    [88]Ibrahim N. A., Refaie R., Ahmed A. F. Novel approach for attaining cotton fabric with multi-functional properties. Journal of Industrial Textiles,2010,40(1):65-83.
    [89]Ibrahim N. A., Eid B. M., El-Batal H. A novel approach for adding smart functionalities to cellulosic fabrics. Carbohydrate Polymers,2012,87(1):744-751.
    [90]Cerkez I., Kocer H. B., Worley S. D., et al. Multifunctional cotton fabric:Antimicrobial and durable press. Journal of Applied Polymer Science,2012,124(5):4230-4238.
    [91]Perumalraj R. Single-stage antimicrobial and crease proof finishing of cotton materials. Journal of Industrial Textiles,2012, Online DOI:10.1177/1528083712441778.
    [92]Wu W., Yang C. Q. Comparison of DMDHEU and melamine-formaldehyde as the binding agents for a hydroxy-functional organophosphorus flame retarding agent on cotton. Journal of Fire Sciences,2004,22(2):125-142.
    [93]Yang C. Q., Wu W., Xu Y. The combination of a hydroxy-functional organophosphorus oligomer and melamine-formaldehyde as a flame retarding finishing system for cotton. Fire and Materials,2005,29(2):109-120.
    [94]Yang H., Yang C. Q. Nonformaldehyde flame retardant finishing of the nomex/cotton blend fabric using a hydroxy-functional organophosphorus oligomer. Journal of Fire Sciences, 2007,25(5):425-446.
    [95]Wu W., Yang C. Q. Comparison of different reactive organophosphorus flame retardant agents for cotton. Part Ⅱ:Fabric flame resistant performance and physical properties. Polymer Degradation and Stability,2007,92(3):363-369.
    [96]Wu X., Yang C. Q. Flame retardant finishing of cotton fleece fabric:Part Ⅲ-The combination of maleic acid and sodium hypophosphite. Journal of Fire Sciences,2008,26(4): 351-368.
    [97]Waly A., Abou-Zeid N. Y., Marie M. M., et al. Special finishing of cotton to impart flame-retardancy, easy care finishing and antimicrobial properties. Research Journal of Textile & Apparel,2009,13(3):10-26.
    [98]Shao H., Sun J.-Y., Meng W.-D., et al. Water and oil repellent and durable press finishes for cotton based on a perfluoroalkyl-containing multi-epoxy compound and citric acid. Textile Research Journal,2004,74(10):851-855.
    [99]Li Z.-R., Fu K.-J., Wang L.-J., et al. Synthesis of a novel perfluorinated acrylate copolymer containing hydroxyethyl sulfone as crosslinking group and its application on cotton fabrics. Journal of Materials Processing Technology,2008,205(1-3):243-248.
    [100]Peng H., Yang C. Q., Wang S. Nonformaldehyde durable press finishing of cotton fabrics using the combination of maleic acid and sodium hypophosphite. Carbohydrate Polymers, 2012,87(1):491-499.
    [101]Dehabadi V. A., Buschmann H.-J., Gutmann J. S. Durable press finishing of cotton fabrics with polyamino carboxylic acids. Carbohydrate Polymers,2012,89(2):558-563.
    [102]Asvadi S., Janner A.-M., Hultermans E., et al. Strain dependency in wrinkling performance of butanetetracarboxylic acid and lubricant-treated cotton fabric. Textile Research Journal, 2012,82(9):899-910.
    [103]Yu Y. H., Lee E. S., Bang E. S. A new catalyst for glyoxal durable press finish of cotton fabrics. Fibers and Polymers,2008,9(6):715-719.
    [104]Gupta D., Haile A. Multifunctional properties of cotton fabric treated with chitosan and carboxymethyl chitosan. Carbohydrate Polymers,2007,69(1):164-171.
    [105]Huang K.-S., Wu W.-J., Chen J.-B., et al. Application of low-molecular-weight chitosan in durable press finishing. Carbohydrate Polymers,2008,73(2):254-260.
    [106]Mostafa K. M., Samarkandy A. R., El-Sanabary A. A. Using persulfate oxidized chitosan as a novel additives in easy-care finishing for cotton textiles. Polymer-Plastics Technology and Engineering,2009,48(2):130-135.
    [107]Li Z.-R., Jiang W.-C., Wang L.-J., et al. Synthesis and application of novel aqueous anionic polyurethane as a durable press finishing agent of cotton fabrics. Textile Research Journal, 2007,77(4):227-232.
    [108]Montazer M., Hashemikia S. Application of polyurethane/citric acid/silicone softener composite on cotton/polyester knitted fabric producing durable soft and smooth surface. Journal of Applied Polymer Science,2012,124(5):4141-4148.
    [109]Kut D., Gunesoglu C., Orhan M. An investigation into the possibility of using cyclodextrin in crease resistant finish. FIBRES & TEXTILES in Eastern Europe,2007,15(2):93-96.
    [110]Huang K. S., Nien Y. H., Hsiao K. C., et al. Application of DMEU/SiO2 gel solution in the antiwrinkle finishing of cotton fabrics. Journal of Applied Polymer Science,2006,102(5): 4136-4143.
    [111]Huang K.-S., Hwang M.-C., Chen J.-S., et al. Application of mixed gel solution in the anti-wrinkle finishing of cotton fabrics. The Journal of the Textile Institute,2007,98(2): 169-176.
    [112]Schramm C., Rinderer B. Dyeing and DP treatment of sol-gel pre-treated cotton fabrics. Fibers and Polymers,2011,12(2):226-232.
    [113]Zheng C., Chen G., Qi Z. Ultraviolet resistant/antiwrinkle finishing of cotton fabrics by sol-gel method. Journal of Applied Polymer Science,2011,122(3):2090-2098.
    [114]Hauser P. J., Smith C. B., Hashem M. M. Ionic crosslinking of cotton. Research Journal of Textile & Apparel,2003,7(1):1-7.
    [115]Refai R., Hashem M., Hebeish A. Inducing durable press in ionically crosslinked cotton fabric. Research Journal of Textile & Apparel,2005,9(2):47-63.
    [116]Bilgen M., Hauser P., Smith B. Ionic crosslinking of cellulose. Indian Journal of Fibre & Textile Research,2006,31(3):363-368.
    [117]Vargantwar P. H., Smith B., Hauser P. Preparation of zwitterionic cotton fabrics and their wrinkle resistant performance. AATCC Review,2007,7(12):42-46.
    [118]Sahin U. K., Gursoy N. C., Hauser P., et al. Optimization of ionic crosslinking process:an alternative to conventional durable press finishing. Textile Research Journal,2009,79(8): 744-752.
    [119]Hashem M., Elshakankery M. H., El-Aziz S. M. A., et al. Improving easy care properties of cotton fabric via dual effect of ester and ionic crosslinking. Carbohydrate Polymers,2011, 86(4):1692-1698.
    [120]Chen C.-C., Chen J.-C., Yao W.-H. Argon plasma treatment for improving the physical properties of crosslinked cotton fabrics with dimethyloldihydroxyethyleneurea-acrylic acid. Textile Research Journal,2010,80(8):675-682.
    [121]Lam Y. L., Kan C. W., Yuen C. W. M. Effect of plasma pretreatment on the wrinkle-resistance properties of cotton fibers treated with a 1,2,3,4-butanetetracarboxylic acid-sodium hypophosulfite system with titanium dioxide as a cocatalyst. Journal of Applied Polymer Science,2011,120(3):1403-1410.
    [122]Lam Y. L., Kan C. W., Yuen C. W. M. Physical and chemical analysis of plasma-treated cotton fabric subjected to wrinkle-resistant finishing. Cellulose,2011,18(2):493-503.
    [123]Lam Y. L., Kan C. W., Yuen C. W. M., et al. Fabric objective measurement of the plasma-treated cotton fabric subjected to wrinkle-resistant finishing with BTCA and TiO2 system. Fibers and Polymers,2011,12(5):626-634.
    [124]Lam Y. L., Kan C. W., Yuen C. W. M. Effect of plasma pretreatment on enhancing wrinkle resistant property of cotton fiber treated with BTCA and TiO2 System. Journal of Applied Polymer Science,2012,124(4):3341-3347.
    [125]Vukusic S. B., Katovic D., Schramm C. Influence of microwaves on nonformaldehyde DP finished dyed cotton fabrics. Textile Research Journal,2003,73(8):733-738.
    [126]Purwar R., Joshi M. Effect of microwave curing on easy care finishing of cotton using glyoxal/glycol. AATCC Review,2005,5(11):40-44.
    [127]Fouda M. M. G, Shafei A. E., Sharaf S., et al. Microwave curing for producing cotton fabrics with easy care and antibacterial properties. Carbohydrate Polymers,2009,77(3): 651-655.
    [128]Zohdy M. H., Mohamed S. S., El-Naggar A. W. M. Crease recovery, mechanical and thermal properties of synthetic fabrics treated with electron beam irradiation. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2004,222(1-2):105-113.
    [129]Hu J., Zhu Y., Huang H., et al. Recent advances in shape-memory polymers:Structure, mechanism, functionality, modeling and applications. Progress in Polymer Science,2012, http://dx.doi.org/10.1016/j.progpolymsci.2012.06.001.
    [130]Choi H.-M. One-bath dyeing and nonformaldehyde durable press finishing of cotton using dialdehyde and a monochlorotriazinyl reactive dye. Textile Research Journal,2002,72(6): 469-473.
    [131]Xiao J., Zhang S., Yang J., et al. Study on chemical bonding of Polycarboxylic acid Black on cotton and its dyeing and finishing properties. Dyes and Pigments,2007,73(1):111-117.
    [132]Namligoz E. S., Coban S., Unal P. G. Prediction of various functional finishing treatments using artificial neural networks. Fibers and Polymers,2011,12(3):414-421.
    [133]Fridrichova L., Zelova K. Objective evaluation of multidirectional fabric creasing. The Journal of the Textile Institute,2011,102(8):719-725.
    [1]GB/T 3916-1997,纺织品 卷装纱 单根纱线断裂强力和断裂伸长率的测定.
    [2]GB/T 2543.2-20011,纺织品 纱线捻度的测定 第2部分:退捻孰捻法.
    [3]FZ/T 01086-2000,纺织品 纱线毛测测定方法 投影计数法.
    [4]GB/T 3292.1-2008,纺织品 纱线条干不匀试验方法 第1部分:电容法.
    [5]Peirce F. T. The "handle" of cloth as a measurable quantity. The Journal of the Textile Institute, 1930,21(9):377-416.
    [6]Owen J. D., Riding G. The weighted-ring stiffness test. The Journal of the Textile Institute, 1964,55(8):414-417.
    [7]Abbott G. M. Yarn-bending and the weighted-ring stiffness test. The Journal of the Textile Institute,1983,74(5):281-286.
    [8]Venkatesh G. M., Dweltz N. E. Measurement of crease recovery properties of yarns and fibers. Textile Research Journal,1974,44(6):428-433.
    [9]Neelakantan P., Patel N. C. Measurement of crease-recovery angle of a single filament or yarn. Textile Research Journal,1975,45(3):264-266.
    [10]Vail S. L., Roberts J. G., Jeffries R. Chemical structures of cross links from the reaction of N-methylolamides with cellulose. Textile Research Journal,1967,37(8):708-710.
    [11]阎克路.染整工艺与原理(上册).北京:中国纺织出版社,2009.
    [12]Qi H., Chang C., Zhang L. Effects of temperature and molecular weight on dissolution of cellulose in NaOH/urea aqueous solution. Cellulose,2008,15(6):779-787.
    [13]Frick J. G. Jr., Andrews B. A. K., Reid J. D. Effects of cross-linkage in wrinkle-resistant cotton fabrics. Textile Research Journal,1960,30(7):495-504.
    [14]Madan G. L. Disposition of crosslinking agents on cellulose. Textile Research Journal,1974, 44(12):946-947.
    [15]Choi H., Yeh K. In-situ copolymerization and crosslinking of cotton fibers for improved performance. Textile Research Journal,1993,63(5):302-308.
    [16]Zhu P., Sui S., Wang B., et al. A study of pyrolysis and pyrolysis products of flame-retardant cotton fabrics by DSC, TGA, and PY-GC-MS. Journal of Analytical and Applied Pyrolysis, 2004,71(2):645-655.
    [17]Trask-Morrell B. J., Andrews B. A. K., Vinyard B. T. Thermoanalytical study of durable press reactant levels on cotton fabrics Part Ⅱ:Finishes based on DMDHEU. Textile Research Journal,1996,66(3):172-183.
    [1]徐卫林,王运利,沈小林.一种由同质异性无然纤维构成免烫纺织品的加工方法.中国专利:CN 102182034 A,2011-09-14.
    [2]GB/T 13783-1992,棉纤维断裂比强度的测定 平束法.
    [3]Venkatesh G. M., Dweltz N. E. Measurement of crease recovery properties of yarns and fibers. Textile Research Journal,1974,44(6):428-433.
    [4]Neelakantan P., Patel N. C. Measurement of crease-recovery angle of a single filament or yarn. Textile Research Journal,1975,45(3):264-266.
    [5]GB/T 39231-1997,纺织品 织物拉伸性能第1部分:断裂强力和断裂伸长率的测定 条样法
    [5]GB/T 3819-1977,纺织品 织物折痕回复性的测定 回复角法.
    [7]GB/T 9995-1997,纺织材料含水率和回潮率的测定 烘箱干燥法.
    [8]陈英.染整工艺实验教程.北京:中国纺织出版社,2009.
    [9]Gilbert S. M., Smith B. F. A degradation study of some formaldehyde-modified celluloses. Textile Research Journal,1970,40(8):720-727.
    [10]Kang I.-S., Yang C. Q., Wei W., et al. Mechanical strength of durable press finished cotton fabrics Part Ⅰ:Effects of acid degradation and crosslinking of cellulose by polycarboxylic acids. Textile Research Journal,1998,68(11):865-870.
    [11]Xu W., Li Y. Crosslinking analysis of polycarboxylic acid durable press finishing of cotton fabrics and strength retention improvement. Textile Research Journal,2000,70(7):588-592.
    [12]Xu W., Li Y. Cotton fabric strength loss from treatment with polycarboxylic acids for durable press performance. Textile Research Journal,2000,70(11):957-961.
    [13]Vail S. L., Pierce A. G. Jr. Chemical and physical properties of cotton modified by N-methylol agents Ⅳ:Release of formaldehyde. Textile Research Journal,1973,43(5):294-299.
    [14]Reinhardt R. M., Andrews B. A. K. Thermal response of cotton finishes from methylolamide agents. Textile Research Journal,1987,57(3):161-167.
    [15]Vail S. L., Verburg G. B. Chemical and physical properties of cotton modified by N-methylol agents Ⅲ:Observations on polymerization and crosslinking of melamine-based reagents with cotton. Textile Research Journal,1973,43(2):67-74.
    [16]Bai Y., Keller T. Time dependence of material properties of FRP composites in fire. Journal of Composite Materials,2009,43(21):2469-2484.
    [17]Rowland S. P., Bullock A. L., Cirino V. O., et al. The relative reactivities of the hydroxyl groups of cotton cellulose-A progress report. Textile Research Journal,1967,37(12): 1020-1030.
    [18]Rowland S. P. The mechanisms of durable press. Textile Chemist & Colorist,1972,4(8): 33-40.
    [19]Reinhart R. M., Cashen N. A., Reid J. D. A mild cure process for wrinkle-resistant cotton fabrics. Textile Chemist & Colorist,1969,1(20):33-40.
    [20]Steele R., Giddings L. E. Jr. The mechanical properties of cellulose fabrics treated with monomethylol and dimethylol ureas. Textile Research Journal,1956,26(2):116-123.
    [21]Zeronian S. H., Bertoniere N. R, Alger K. W., et al. The effect of cross-linking with dimethyloldihydroxyethyleneurea on the mechanical properties of liquid-ammonia-treated cotton fibres. The Journal of the Textile Institute,1990,81 (3):310-318.
    [22]Yang C. Q., Wei W., Lickfield G. C. Mechanical strength of durable press finished cotton fabric Part Ⅲ:Change in cellulose molecular weight. Textile Research Journal,2000,70(10): 910-915.
    [23]Katovic D., Vukusic S. B., Grgac S. F., et al. The effect of microwave drying on warp sizing. Textile Research Journal,2008,78(4):353-360.
    [24]Abdel-Mohdy F. A. Improving the sizeability of some sizing materials based on starch composites. Pigment & Resin Technology,1998,27(3):180-186.
    [25]Abhyankar P. N., Beck K. R., Ladisch C. M., et al. A new and effective method for removing DMDHEU crosslinks from cotton. Textile Research Journal,1985,55(7):444-448.
    [26]Vail S. L. Comments on "A new and effective method for removing DMDHEU crosslinks from cotton". Textile Research Journal,1986,56(6):400-401.
    [27]Abhyankar P. N., Beck K. R., Ladisch C. M., et al. Reply to "Comments on 'A new and effective method for removing DMDHEU crosslinks from cotton'". Textile Research Journal, 1986,56(6):401-403.
    [28]Blanchard E. J., Reinhardt R. M., Andrews B. A. K. Finishing with modified polycarboxylic acid systems for dyeable durable press cottons. Textile Chemist & Colorist,1991,23(5): 25-28.
    [1]Lu M. Crease resistant finishing of cotton fabric with a complex of fibroin and citric acid. FIBRES & TEXTILES in Eastern Europe,2010,18(3):86-88.
    [2]Mostafa K. M., Morsy M. S. Utilization of newly tailored modified starch products in easy-care finishing. Carbohydrate Polymers,2004,55(3):323-331.
    [3]Choi H.-M. Effects of boron compounds on cotton fabrics treated with glyoxal for nonformaldehyde wrinkle resistant finishing. AATCC Review,2002,2(3):42-45.
    [4]Turner J. D., Blanton W. A., Kravetz L. Foam mercerization. Textile Research Journal,1982, 52(1):73-76.
    [5]Childers B. M., Fesperman C. D. Jr. Diphenyl continuous foam dyeing with fabric running over rolls in foam bath. US 3,954,404,1976-05-04.
    [6]Baker K. L., Bryant G. M., Camp, J. G. Jr., et al. Foam finishing technology. Textile Research Journal,1982,52(6):395-403.
    [7]徐卫林,王运利,沈小林等.一种制备网点免烫纺织品的方法.中国专利:201110277429.1,2011-09-19.
    [8]GB/T 127031-2008,纺织品 静电性能的评 定第1部分:静电压半衰期.
    [9]GB/T 12704.2-2009,纺织品 织物透湿性试验方法第2部分:蒸发法.
    [10]赵涛.染整工艺与原理(下册).北京:中国纺织出版社,2009.
    [11]Uddin F., Lomas M. Catalyst systems for crease recovery finishing prior to pigment printing. Coloration Technology,2004,120(5):254-259.
    [12]Uddin F., Lomas M. Combined crease recovery finishing and pigment printing. Coloration Technology,2005,121(3):158-163.
    [13]Reinhart R. M., Cashen N. A., Reid J. D. A mild cure process for wrinkle-resistant cotton fabrics. Textile Chemist & Colorist,1969,1(20):33-40.
    [14]Neogi P. Diffusion in polymers. New York:Marcel Dekker,1996.
    [15]S.阿达纳主编,徐朴,叶奕梁,童步章译.威灵顿产业用纺织品手册.北京:中国纺织出版社,2000.
    [1]徐卫林,祝国成,崔卫钢等.一种纺织品染色方法.中国专利:CN 102002834 A,2011-04-06.
    [2]Wisutmethangoon S., Plookphol T., Sungkhaphaitoon P. Production of SAC305 powder by ultrasonic atomization. Powder Technology,2011,209(1-3):105-111.
    [3]Jokanovic V, Spasic A. M., Uskokovic D. Designing of nanostructured hollow TiO2 spheres obtained by ultrasonic spray pyrolysis. Journal of Colloid and Interface Science,2004,278(2): 342-352.
    [4]Kamel M. M., Zawahry M. M. E., Ahmed N. S. E., et al. Ultrasonic dyeing of cationized cotton fabric with natural dye. Part 1:Cationization of cotton using Solfix E. Ultrasonics Sonochemistry,2009,16(2):243-249.
    [5]Lee K. W., Chung Y. S., Kim J. P. Characteristics of ultrasonic dyeing on poly(ethylene terephthalate). Textile Research Journal,2003,73(9):751-755.
    [6]Perincek S., Bahtiyari I., Korlu A., et al. New techniques in cotton finishing. Textile Research Journal,2009,79(2):121-128.
    [7]徐卫林,王运利,沈小林.一种制备单面免烫纺织品的方法.中国专利:CN 102230279 A,2011-11-02.
    [8]FZ/T 01071-2008,纺织品 毛细效应试验方法.
    [9]Morris C. E., Harper R. J. Jr. Abrasion performance of cotton fabric after etherification and esterification crossiinking. Textile Chemist & Colorist,1995,27(1):17-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700