用户名: 密码: 验证码:
金属次卟啉衍生物的合成及其仿生催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烃类选择性催化氧化反应是石油化工中的重要反应之一,寻找C-H键有效的活化方法,调控反应进程和氧化深度,并提高目标产物的选择性,是当前化学工业发展中迫切需要解决的问题,其研究成果具有非常重要的意义。卟啉类仿生催化剂是国内外研究最多,发展潜力最大的一种烃类氧化反应催化剂,但是其合成成本很高,尤其是多取代卟啉类化合物;另一方面,卟啉类仿生催化剂的催化活性和选择性仍需进一步提高。次卟啉衍生物是以来源充足的血红素为原料合成的一类卟啉类物质,其结构更接近于天然单加氧酶P-450的辅基。因此,以次卟啉衍生物为基础,研究其仿生催化性能,必将为仿生催化剂结构的设计及寻找高性能的氧化反应催化剂提供了新的思路。
     本论文以氯化血红素为原料,首先合成了次卟啉二甲酯(10),并在其环周的3-/8-位进行改性修饰,合成了一系列次卟啉衍生物17-21,在13-/17-位进行改性修饰合成了化合物11~16及22~24;其次是设计合成了具有两个活性中心的含有二硫键结构的金属次卟啉衍生物26和28;最后将次卟啉负载到聚乙二醇载体上,制备了负载型次卟啉仿生催化剂29。将合成的这些次卟啉衍生物配体与金属离子络合后,详细考察了它们在催化烃类空气氧化反应中的催化活性、选择性及负载型催化剂的重复使用性能。
     将次卟啉二甲酯的金属络合物用于催化空气氧化环己烷、对二甲苯及环己烯的反应,结果表明,金属次卟啉二甲酯在反应条件下能够较好的催化烃类的氧化反应,以环己烷的氧化为例,反应3.5 h后,其最高转化率达到18.6%,选择性为84.6%,催化剂的转化数为85147,明显高于简单的金属四苯基卟啉类催化剂。经过对催化反应机理探讨后发现,这可能与它们在反应过程中形成活性中间体高价金属氧络合物的途径有关。
     将3-/8-位被吸电子基团取代的金属次卟啉二甲酯衍生物用于催化空气氧化环己烷的反应,结果表明,吸电子基团取代的金属次卟啉二甲酯的催化活性比未取代的有所提高。其中Co(Ⅱ)[DP(β-Br)_2DME]的催化活性最好,反应3.5 h,环己烷的转化率达到23.57%,环己酮和环己醇的总产率已超过20%,这主要是因为吸电子取代基增加了金属次卟啉衍生物的氧化还原电位,从而提高了其催化活性。
     将13-/17-位改性的金属次卟啉二甲酯衍生物用于催化空气氧化环己烷的反应,结果表明,取代基团的体积及电子性能影响着金属次卟啉衍生物的催化活性,取代基团的体积越大,催化活性越低,当以Co(Ⅱ) (DPDOE)为催化剂时,反应4.0 h后,环己烷的转化率降到了15.0%,转化数比钴次卟啉二甲酯催化结果降低较多。这主要是因为体积较大的基团阻碍了μ-氧-双金属络合物中间体的生成。
     研究了含有二硫键的金属次卟啉衍生物在环己烷空气氧化反应中的催化活性及作用特点。以Co(Ⅱ) (TPMP)为例,环己烷的最高的转化率达到27.4%,环己醇与环己酮的总的选择性达到92.0%。催化活性比简单的金属次卟啉二甲酯有了大幅度的提高。这主要是因为分子结构中的二硫键起了助催化剂的作用,首先,作为轴向配体的硫可以有效地促进高价金属氧络合物活性中间体的生成;其次,二硫键的氧化还原性质促进了环己基过氧化氢的分解,从而增强了其催化活性。
     最后研究了聚乙二醇负载型金属次卟啉催化剂在环己烷的空气氧化反应中的催化活性及重复使用性能。结果表明,负载后的金属次卟啉催化剂催化环己烷氧化产率达到最大值的时间比未负载的催化剂延长了1.0~1.5 h。尽管催化活性降低了,但是,环己醇和环己酮的总的选择性有了一定程度的提高,催化剂的重复使用性能也得到了增强。
The selective oxidation of hydrocarbon is one of the most important reactions in the chemical engneering. Finding the catalysts for the activation of C-H bond is the pivotal issue in the development of chemistry. Metalloporphyrins, as one kind of biomimetic catalysts for cytochrome P-450, are the potential catalysts for the oxidation of hydrocarbon and have been attracting much attention from organic and industrial chemists. However, several drawbacks exist. On the one hand, preparations of these porphyrins, especially the substituted ligands are very expensive; on the other hand, the catalytic activity and selectivity of these catalytic reactions still need to be improved. Deuteroporphyrin dimethylester and its metallo complexes can be prepared in high yield from the red blood pigment heme which is available in almost any desired amount from slaughterhouse wastes. The high accessibility of deuteroporphyrin dimethylester together with its excellent stability and the close relationship to the naturally hemes makes it an ideal compound to mimic enzymatic systems based on heme. Investigation of the biomimetic catalytic activities of the metallodeuteroporphyrin derivatives should be helpful to developing and designing the new and effective catalysts for oxidation.
     In this thesis, firstly, we synthesized the compound deuteroporphyrin dimethyl ester from chloro hemin, then the compounds 17~21 were prepared by introducing different substituents into the 3-/8-sites of deuteroporphyrin and the compounds 11~16 and 22~24 were synthesized by introducing different substituents into the 13-/17- sites of deuteroporphyrin. Secondly, we synthesized the compound 26 and 28, which contain dithiol bond and two active centres. Thirdly, we have supported deuteroporphyrin on the PEG1500 by covalent bond. Then, these synthesized ligands were complexed with metallo ions and their catalytic activities and selectivities in the oxidation of hydrocarbon with air were studied in detail.
     The metallodeuteroporphyrins [metal=ClFe(Ⅲ), Co(Ⅱ) and ClMn(Ⅲ)], have been used as the catalysts in the oxidation of cyclohexane,p-xylene and cyclohexene with air as the oxidant. According to the results of our experiments, metallodeuteroporphyrins can smoothly catalyze the oxidation of these substrates under the selected conditions. For example, in the oxidation of cyclohexane catalyzed by Co(Ⅱ) (DPDME), the conversion and the total selectivity of cyclohexanol and cyclohenone have reached 18.6% and 84.6%, respectively. The turnover number of the catalysts is 85147, markedly higher than that of the simple metallo-porphyrins. These results may be attributed to their different mechanism in forming the active medium.
     The metallodeuteroporphyrins derivatives with different substituents in 3-/8-sites have been used as the catalysts in the oxidation of cyclohexane with air. The results indicate that withdrawing-electron substituents can improve the catalytic activities of metallodeuteroporphyrins. Co(Ⅱ) [DP(β-Br)2DME] shows the highest activity. The conversion of cyclohexane has reached 23.57% and the total yield of cyclohexanol and cyclohexnone is more than 20%. The reason is that the withdrawing-electron substituents can increase the redox potential of the complex and improve the catalytic activities of these metallodeuteroporphrin derivatives.
     The metallodeuteroporphyrin derivatives with different substituents in 13-/17-sites have been used as the catalysts in the oxidation of cyclohexane with air. The results indicated that both the size and electronic properties of substituents influence the catalytic activity of metallodeuteroporphyrin derivatives. The activity decreased with the increasing of the size of goups. When Co(Ⅱ) (DPDOE) was used as the catalysts, the conversion of cyclohexane decreased to 15.0% with the reaction time 4.5 h, and the turnover number was also markedly lower than that of Co(Ⅱ) (DPDME). These results may be attributed to the fact that the big substituents hamper the formation of the mediumμ-oxo metallocomplexes.
     The catalytic activities of the metallodeuteroporphyrins containing dithiol bond have also been studied in the oxidation of cyclohexane with air. The results show that the catalytic activity has been evidently improved. Taking the Co(Ⅱ) (TPMP) as the example, the conversion of cyclohexane and the total selectivity of cyclohexanol and cyclohexnone have reached 27.4% and 92.0%, respectively. The phenomenone should be attributed to the dithiol bond in the molecular structure. On the one hand, the thiol can complexe to central metallo ion and facilated the formation of active medium; on the other hand, the redox property of dithiol can help the dehydrogenation of cyclohexanylperoxide and increase the yield of products.
     Finally, the catalytic activity of PEG1500-supported deuteroporphyrin has been studied in the oxidation of cyclohexane with air. The results shows that the time when the yield reached the highst is prolonged by 1.0~1.5h. Although the catalytic activity decreases, the total selectivity of cyclohexanol and cyclohexanone increases in a certain extent and the catalysts can be recycled twice.
引文
[1]Cavani F, Trifiro F. Some Innovative Aspects in the Production of Onomers via Catalyzed Oxidation Process [J]. Appl CatalA:Gen,1992,88(2):115~135
    [2]Periana R A, Mironov O, Taube D. Catalytic, Oxidative Condensation of CH4 to CH3COOH in One Step via CH Activation [J]. Science,2003,301 (8):814~818
    [3]Ghiasi M, Tafazzoli M, Safari N. Role of Axial Ligand on the Electronic Structures of Active Intermediates in Cytochrome P-450, Peroxidase and Catalase [J]. J Mol Struct:THEOCHEM,2007,820:18~25
    [4]Amunom I, Stephens L J, Tamasi V, et al. Cytochromes P-450 Catalyze Oxidation of α, β-Unsaturated Aldehydes [J]. Arch Biochem Biophys,2007,464:187~196
    [5]Inami K, Mochizuki M. Chemical Models for Cytochrome P-450 as a Biomimetic Metabolic Activation System in Mutation Assays [J]. Mutation Res,2002,519: 133~140
    [6]Magnus I S, Hagbjork A L, Ueng Y F, et al. High Rates of Substrate Hydroxylation by Human Cytochrome P-450 3A4 in Reconstituted Membranous Vesicles: Influence of Membrane Charge [J]. Biochem Biophys Res Commun,1996,221: 318~322
    [7]Sono M, Perera R, Jin S, et al. The Influence of Substrate on the Spectral Properties of Oxygerrous Wild-type and T252A Cytochrome P-450-CAM [J]. Arch Biochem Biophys,2005,436:40~49
    [8]Cantonetti V, Monti D, Venanzi M, et al. Interaction of a Chirally Functionalised Porphyrin Derivative with Chiral Micellar Aggregates. Construction of a System with Stereoselective Cytochrome-P-450 Biomimetic Activity [J]. Tetrahedron: Asymmetry,2004,1969~1977
    [9]Garfinkel D. Biochemical Characterization and Electron-microscopie Appearance of Microsome Fractions in 1 [J]. Symp Biophys Soc,1958,22~28
    [10]Klingenberg M, Pigments of Rat Liver Microsomes [J]. Arch Biochem Biophys, 1958,75:376~386
    [11]Omura T, Sato R, The Carbon Monoxide-binding Pigment of Liver Microsomes [J]. J Biol Chem,1964,239:2370~2378
    [12]Ricoux R, Raffy Q, Mahy J P. New Biocatalysts Mimicking Oxidative Hemoproteins:Hemoabzymes [J]. C R Chim,2007,16:1~19
    [13]Mansuy D. The Great Diversity of Reactions Catalyzed by Cytochromes P-450 [J]. Comp Biochem Phys, C 1998,121:5-12
    [14]Guengerich F P. Reduction of Aflatoxin B1 Dialdehyde by Rat and Human Aldo-keto Reductases [J]. Chem Res Toxicol,2001,14:611~619
    [15]Isin E M, Guengerich F P, Complex Reactions Catalyzed by Cytochrome P-450 Enzymes [J], Biochim Biaphys Acta,2007,1770:314~329
    [16]Mansuy D. A Brief History of the Contribution of Metalloporphyrin Models to Cytochrome P-450 Chemistry and Oxidation Catalysis [J]. C R Chim,2007,10: 392~413
    [17]Mansuy D, Bartoli J F, Battioni P, et al. Highly Oxidation Resistant Inorganic-Porphyrin Analogue Polyoxometalate Oxidation Catalysts.2. Catalyasis of Olefin Epoxidation and Aliphatic and Aromatic Hydroxylations Starting from α_2-P2W2Oi6(Mn~+Br)(n-11) (Mn~+= Mn~(3+), Fe~(3+), Co~(2+), Ni~(2+), Cu~(2+)), Including Quantitati-ve Comparisons to Meatlloporphyrin Catalysts [J]. J Am Chem Soc. 1991,113:7222~7226
    [18]Cojocaru V, Winn P J, Wade R C. The Ins and Outs of Cytochrome P-450 [J]. Biochimica Biophysica Acta,2007,1770:390~401
    [19]Dorota R Z, Malgorzata W. Following Nature-Theoretical Studies on Factors Modulating Catalytic Activity of Porphyrins [J]. J Mol Catal A:Chem,2006,258: 376~380
    [20]Tian Y, Xu J, Zhao J X. DFT Studies on the SCR Reaction Mechanism of Nitrogen Monoxide with Propylene Catalyzed by Copper oxide [J]. J Harin Ins Tech,2007, 14(3):389~391
    [21]Groves J T, McClusky G A. Aliphatic Hydroxylation via Oxygen Rebound. Oxygen Transfer Catalyzed Iron [J]. J Am Chem Soc,1976,98:859
    [22]Birnbaum E R, Hodge J A, Grinstaff M W, et al.19F NMR Spectra and Structures of Halogenated Porphyrins [J]. Inorg Chem,1995,34:3625~3632
    [23]Traylor T G, Koga N, Deardurff L A, et al.1,3-Adamantane-3,13-Porphyrin-6, 6-Cyclophane:Crystal Structure of the Free Base and Steric Effects on Ligation of the Iron(II) Complex [J]. J Am Chem Soc,1984,106,5132~5143
    [24]Stone A, Fleischer E B, The Molecular and Crystal Structure of Porphyrin Diacids [J]. J Am Chem Soc,1968,90,11,2735~2748
    [25]Frochot C, Stasio B D, Vanderesse R, et al. Interest of RGD-containing linear or Cyclic Peptide Targeted Tetraphenylchlorin as Novel Photosensitizers for Selective Photodynamic Activity [J]. Bioorg Chem,2007,35:205~220
    [26]Montforts F P, Kutzki O. Simple Synthesis of a Chlorin-fullerene Dyad with a novel Ring-closure Reaction [J]. Angew Chem Int Ed,2000,39(3):599~601
    [27]Kutzki O, Walter A, Montforts F P. Synthesis of Sulfonenobilins and Their Cydization Directed to Chlorinatozinc-fullerene Dyads [J]. Helv Chim Acta,2000, 83(9):2231-2245
    [28]Plater M J, Aiken S, Bourhill G. A New Synthetic Route to Donor-acceptor Porphyrins [J]. Tetrahedron,2002,58(12):2405~2413
    [29]Sternberg E D, Dolphin D. Porphyrin-based Photosensitizers for Use in Photodynamic Therapy [J]. Tetrahedron 1998 (54):4154~4156
    [30]Korbelik M, Krosl G, Krosl J et al. The Role of Host Lymphoid Populations in the Response of Mouse EMT6 Tumor to Photodynamic Therapy [J]. Cancer Res.1996 (56):5647~5649
    [31]Loetzbeyer T, Schuhmann W, Schmidt H L. Direct Electrocatalytic H_2O_2 Reduction with Hemin Covalently Immobilized at a Mondayer-modified Gold Electrode [J]. J Electroanal Chem,1995,395(1-2):339~343
    [32]Dobson D J, Saini S. Porphyrin-modified Electrodes as Biomimetric Sensors for the Determination of Organohalide Pollutants in Aqueous Samples [J]. Anal Chem, 1997,69(17):3532~3538
    [33]Furenlid L R, Renner M W, Smith K M, et al. Structural Consequences of Nickel versus Macrocycle Reductions in F430 Models:EXAFS Studies of Ni(I) Anion and Ni(II) π Anion Radicals [J]. JAm Chem Soc,1990,112:1634~1636
    [34]Hayashi T, Aya T, Nonoguchi M, et al. Chiral recognition and chiral sensing using zinc porphyrin dimmers [J]. Tetrahedron,2002,58(14):2803~2811
    [35]DiNello R K, Chang C K. Isolation and Modification of Natural Porphyrins. In: Dolphin D(Ed) The porphyrins, Vol 1, Academic Press, New York,1978,290~304
    [36]Ocampo R, Bauder C, Callot H J, et al. Porphyrins from Messel Oil Shale [J]. Geochim Cosmochim Acta,1992,56:745~746
    [37]Deronzier A, Latour J M. A Polypyrrole-nickel(II) Pyridiniumporphyrin Modified Electrode [J]. J Electroanal Chem,1987,224:295~297
    [38]Moisy P, Bedioui F, Robin Y. Epoxidation of cis-Cyclooctene by Molecular Oxygen Electrocatlyzed by Polypyrrole-manganese Porphyrin Film Modified Electrodes [J]. J Electroanal Chem,1988,250(1):191~199
    [39]Stoller M L, Malkin R, Knaff D B. Oxidation-reduction Properties of Photosynthetic Nitrite Reductase [J]. FEBS Letters,1977,81:271~272
    [40]Lauceri R, Purrello R, Shetty S J, et al. Interaction of Anionic Carboranylated Porphyrins with DNA [J]. J Am Chem Soc,2001,123(24):5835~5836
    [41]Zhang R, Yu W Y, Wong K Y, et al. Highly Efficient Asymmetric Epoxidation of Alkenes with a D4-symmetic Chiral Dichlororuthenium(IV) Porphyrin Catalyst [J]. J Org Chem,2001,66:8145~8153
    [42]Hayashi T, Aya T, Nonoguchi M, et al. Chiral Recognition and Chiral Sensing Using Zinc Porphyrin Dimers [J]. Tetrahedron,2002,58:2803~2811
    [43]Yang J, Breslow R. Regioselective Oxidations of Equilenin Derivatives Catalyzed by a Rhodium(III) Porphyrin Complex-ontrast with the Manganese(III) Porphyrin [J]. Tetrahedron Lett,2000,41:8063~8067
    [44]Brule E, Miguel Y R. Supported Manganese Porphyrin Catalysts as P-450 Enzyme Mimics for Alkene Epoxidation [J]. Tetrahedron Lett,2002,43:8555~8558
    [45]Yagai S, Miyatake T, Tamiaki H. Regio-and Stereoisomeric Control of the Aggregation of Zinc-chlorins Possessing Inverted Interactive Hydroxyl and Carbonyl Groups [J]. J Org Chem,2002,67:49-58
    [46]Cosnier S, Lepellec A, Guidetti B, et al. Enhancement of Biosensor Sensitivity in Aqueous and Organic Solvents Using a Combination of Poly(pyrrole-ammonium) and Poly(pyrrole-lactobionamide) Film as Host Matrixes [J]. J Electroanal Chem, 1998,449(1-2):165~171
    [47]Ho T F, McIntosh A R, Weedon A C. Synthesis and Properties of a Series of Linked Porphyrin-quinone Molecules Designed as Models of the Reaction Center in Photosynthesis [J]. Can J Chem,1984,62(5):967~974
    [48]Montforts F P, Glasenapp B M. The Synthesis of Chlorines, Bacteriochlorins, Isobacteriochlorins and Higer Reduced Porphyrins. In:Gribble G W, Gilchrist T L(Eds) Progress in Heterocyclic Chemistry, Vol.10, Wiley-VCH, Weinheim,1998, 1-24
    [49]Minehan T G, Kishi Y. Totalsynthese des (+)-Tolyporphin A O, O-diacetate mit der Vorgeschlagen Struktur [J]. Angew Chem,1999,111(7):972~975
    [50]Minehan T G, Cook-Blumberg L, Kishi Y, et al. Revision der Struktur von Tolyporphin A [J]. Angew Chem,1999,111(7):975-977
    [51]Rothemund P. A New Porphyrin Synthesis. The Synthesis of Porphin [J], J Am Chem Soc,1936,58:625~627
    [52]Rothemund P. Porphyrin Studies. III. The Structure of the Porphine Ring System [J]. J Am Chem Soc,1939,61:2912~2915
    [53]Rothemund P, Menoti A R. Porphyrin Studies:V. The Metal Complex Salts of a, p, y, s-Tetraphenyporphine [J]. J Am Chem Soc,1948,70:1808~1819
    [54]Adler A D, Longo F R, Shergalis W. Mechanistic Investigation of Porphyrin Syntheses [J]. J Am Chem Soc,1964,84:3145~3149
    [55]Adler A D, Longo F R. A simplified synthesis for meso-tetraphenyl-porphin [J]. J Org Chem,1967,32:476
    [56]Adler A D, Sklar L, Longo F R, et al. A Mechanistic Study of the Syntheses of Porphyrin [J]. J Heterocycl Chem,1968,5:669~678
    [57]Kim J B, Leonard J J, Longo F R. A Mechanistic Study of the Synthesis and Spectral Properties of meso-Tetraarylporphyrins [J], J Am Chem Soc,1972,94 (11): 3986~3992
    [58]Lindsey J S, Wagner R W. Investigation of the Synthesis of Ortho Substituted Tetraphenylporphyrins [J], J Org Chem,1989,54:828~836
    [59]Lindsey J S, Schreiman I C, Hsu H C, et al. Reactions Revisited:Synthesis of Tetraphenylporphyrins under Equilibrium Conditions [J]. J Org Chem,1984,54: 827~836
    [60]Lindsey J S, Hsu H C. Synthesis of Tetraphenylporphyrins under very Mild Conditions [J]. Tetrahedron Lett,1986,27:4969~4970
    [61]Wagner R W, Breakwell B V, Lindsey J S. Synthesis of Faciallyencum-bered Porphyrins-An Approach to Light-harvesting Antenna Complexes [J]. Tetrahedron Lett,1991,32:1703~1706
    [62]Wagner R W, Lawrence D S, Lindsey J S. An Improved Synthesis of Tetramesiporphyrin [J]. Tetrahedron Lett,1987,28:3069~3070
    [63]Lindsey J S, Kristy A M, John S T, et al. Investigation of a Synthesis of meso-Porphyrins Employing High Concentrations and an Electron Transport Chain for Aerobic Oxidation [J]. J Org Chem,1994,59:579~587
    [64]高德,郑国栋,杨国显等.几种卟啉及其配合物的合成方法的改进[J].有机化学,1994,14(3):310~313
    [65]潘继刚,何明威.四苯基卟啉及其衍生物的合成[J].有机化学,1993,13,533~536
    [66]Petit A, Loupy A. Mailarde Phand Momentean M. Synthetic Communications [J]. 1992,22(18):1137-1142
    [67]刘云,徐同宽,肖德宝等.四苯基卟啉的催化合成和微波合成研究[J].北京轻工业学院学报,1998,16(4):37~43
    [68]雷裕武,郭灿城,曾得璋.取代四苯基卟啉的催化合成[J].化学试剂,1994,16(2):105~106
    [69]王莉红,汤福隆.卟啉类试剂合成的进展[J].化学试剂,1999,21(5):273~289
    [70]Taber S W, Fingar V H, Coots C T, et al. Photodynamic Therapy Using mono-1-Aspartyl Chlorin e6 (Npe6) for the Treatment of Cutaneous Disease, a Phase I Clinical Study [J]. Clin Cancer Res,1998,4:2741~2745
    [71]丁建平,蒋长苗等.猪血红细胞中超氧化物歧化酶和血红素同步提取纯化的研究[J].吉林农业大学学报,1996,18(2):65~68
    [72]李笃信,陈亮,高晓燕.四苯基卟啉制法的改进[J].应用化学,1993,10(5):95~96
    [73]Caughey W S, Alben J O, Fujimoto W Y, et al. Substituted Deuteroporphyrins. I. Reactions at the Periphery of the Porphyrin Ring [J]. J Organomet Chem,1966,31: 2631-2640
    [74]Fischer H, Hummel G. Zur Kenntnis der Naturlichen Porphyrine. XXIII Mitteilung. Uber Bromporphyrin I und seine Uberfuhrung in Deuteroporphyrin [J]. J Physiol Chem,1929,181:107~129
    [75]Chu T C, Chu J H, Preparation of Deuteroporphyrin IX Dimethyl Ester [J]. J Am Chem Soc,1952,74:6276~6277
    [76]Dolphin D. The porphyrins [M]. Academic Press, New York,1978,1, p289
    [77]Cosnier S, Gondran C, Wessel R, et al. A Poly(pyrrole-Cobalt(II)deuteropor-phyrin) Electrode for the Potentiometric Determination of Nitrite [J]. Sensors,2003, 3:213~222
    [78]Castella M, Trull F R, Chlahorra L, et al, Synthesis of Porphyrins β-Tetrasubstituted by Flexible Hydrocarbon Chains [J]. Tetrahedron,2000,56: 4017~4025
    [79]Hu B C, Zhou W Y, Liu Z L. A Facile Synthesis of Deuteroporphyrins Derivatives under Ultrasound Irradiation [J]. Ultrason Sonochem,2010,17:288~291
    [80]马登生,胡炳成,吕春绪等.[2,7,12,18-四甲基-13,17-双-(2-甲氧基羰基乙基)]次卟啉铜(Ⅱ)的合成[J].应用化学,2006,23:848~853
    [81]Hatano K, Safo M K, Walker F A, et al. Models of Cytochromes b. Attempts to Control Axial Ligand Orientation with a "Hidered" Porphyrin System [J]. Inorg Chem,1991,30,1643~1650
    [82]Milroy J A. Observations on some Metallic Compounds of Haematoporphyrin [J]. J Biochem,1918,12(4):318~338
    [83]Dorough G D, Miller J R, Huennekens F M. Spectra of the Metallo-derivatives of a, p, r, G-Tetraphenylporphine [J]. J Am Chem Soc,1951,73:4315~4320
    [84]Albers V M, Knorr H V. Spectroscopic Studies of the Simpler Porphyrins III. The Absorption Spectra of ms-Tetraphenylporphine and a Series of Its Metal Complex Salts [J]. J Chem Phys,1941,9(7):497~502
    [85]Murashima T, Uchihara Y, Wakamori N, et al. The First Preparation of Crown Ether-annulated Porphyrin [J]. Tetrahedron left,1996,37(18):3133~3136
    [86]Caughey W S, Alben J 0, Fujimoto W Y, et al. Substituted Deuteroporphyrins. I. Reactions at the Periphery of the Porphyrin Ring [J]. Biochem,1966,31(8): 2631-2640
    [87]Thomas D W, Martell A E. Metal Chelates of Tetraphenylporphine and of Some p-Substituted Derivatives [J]. J Am Chem Soc,1959,81:5111~5119
    [88]Almog J, Baldwin J E, Dyer R L, et al. Condensation of Tetraaldehydes with Pyrrole. Direct Synthesis of "Capped" Porphyrins [J]. J Am Chem Soc,1975,97(1): 226-227
    [89]王昕.卟啉化合物合成的最新研究进展[J].湘潭师范学院学报,2001,23(3):52~59
    [90]Mincey T, Traylor T G. Anion Complexes of Ferrous Porphyrins [J]. J Am Chem Soc,1979,101(3):766~767
    [91]Datta-Gupta N, Bardos T J. Synthetic porphyrins II. Preparation and Spectra of Some Metal Chelates of para-Substituted-meso-Tetraphenylporphines [J]. J Pharm Sci,1968,57(2):300~304
    [92]Bhyrappa P, Krishnan V, Octabromotetraphenylporphyrin and its Metal Derivatives: Electronic Structure and Electrochemical Properties [J]. Inorg chem,1991,30: 239~245
    [93]Tsutsui M, Velapoldi R A, Suzuki K, et al. Preparation of Titanyl and Vanadyl Mesoporphyrin IX Dimethyl Esters [J]. Angew Chem Inter Edit,1968,7(11): 891~892
    [94]Segawa H, Wu F P, Nakayama N, et al. Approaches to Conducting Polymer Devices with Nano-structure:Electrochemical Construction of One-dimensional and Two-dimensional Porphyrin-oligothiophene Co-polymers [J]. Syn Metals, 1995,71:2151~2154
    [95]Adler A D, Longo F R, et al. On the Preparation of Metalloporphyrins [J]. J Inorg Nucl Chem,1970,33:2443~2445
    [96]Marilda D A, Andrea J B M, Osvaldo A S, et al. Study of Catalytic Activity of Nitro Substituted Ironporphyrins [J]. J Mol Catal A:Chem,1995,97:41~47
    [97]Murahashi S I, Naota T, Komiya N. Metalloporphyrin-Catalyzed Oxidation of Alkanes with Molecular Oxygen in the Presence of Acetaldehyde [J]. Tetrahedron Lett,1995,30(44):8059~8062
    [98]Iamamoto Y, Assis M D, Ciuffi K J, et al. Manganese(III) Porphyrins:Catalytic acitivity and Intermediate Studies in Homogeneous Systems [J]. J Mol Catal A: Chem,1997,116:365~374
    [99]Guo C C, Huang G, Li Z P, et al. Study of the Selective Catalysis of Metalloporphyrins for 2-methyl-butane Oxidation with PhIO under Mild Conditions [J]. J Mol Catal A:Chem,2001,170:43~49
    [100]Maldotti A, Bartocci C, Varani G, et al. Oxidation of Cyclohexane by Molecular Oxygen Photoassisted bymeso-Tetraarylporphyrin Iron(III)-Hydroxo Complexes [J]. Inorg Chem,1996,35:1126~1131
    [101]Gonsalves AMR, Pereira M M. State of the Art in the Development of Biomimetic Oxidation Catalysts [J]. J Mol Catal A:Chem,1996,113:209~211
    [102]Tagliatesta P, Pastotini A. Electronic and Steric Effects on the Stereoselectivity of Cyclopropanation Reactions Catalysed by Rhodium meso-Tetraphenylporphyrins [J]. J Mol Catal A:Chem,2002,185:127~133
    [103]Nam W, Lim M H, Lee H J, et al. Evidence for the Participation of Two Distinct Reaction Intermediates in Iron(III) Porphyrin Complex-catalyzed Epoxidation Reactions [J]. J Am Chem Soc,2000,122:6641~6647
    [104]Poltowicz J, Pamin K, Haber J. Influence of Manganese Tetraarylporphyrins Substituents on the Selectivity of Cycloalkanes Oxidation with Magnesium Monoperoxyphthalate [J]. J Mol Catal A:Chem,2006,257:154-157
    [105]Poltowicz J, Pamin K, Haber J. Oxidation of Cyclooctane over Mn(TMPyP) Porphyrin-exchanged Al, Si-mesoporous Molecular Sieves of MCM-41 and SBA-15 type [J]. Catalysis Today,2006,114:287~292
    [106]Groves J T, Watanabe Y. Heterolytic and Homolytic O-O Bond Cleavage Reactions of (Acylperoxo)manganese (III) Porphyrins [J]. Inorg Chem,1986,25:4808~4810
    [107]Czarnecki K, Proniewicz L M, Fujii H, et al. Insensitivity of Vanadyl-Oxygen Bond Strengths to Radical Type (2~A_(1u) vs 2~A_(2u)) in Vanadyl Porphyrin Cation Radicals [J]. Inorg chem,1999,38:1543~1547
    [108]Gross Z, Nimri S. A. Pronounced Axial Ligand Effect on the Reactivity of Oxoiron(IV) Porphyrin Cation Radicals [J]. Inorg Chem,1994,33(9):1731~1732
    [109]Traylor T G, Xu F. A Biomimetic Model for Catalase:The Mechanisms of Reaction of Hydrogen Peroxide and Hydroperoxides with Iron(III) Porphyrins [J]. J Am Chem Soc,1980,102:6375~6377
    [110]Smegal J A, Hill C L. Hydrocarbon Functionalization by the (Iodosylbenzene) manganese(IV) Porphyrin Complexes from the (Tetraphenylporphinato) manganese (Ⅲ)-Iodosylbenzene Catalytic Hydrocarbon Oxidation System. Mechanism and Reaction Chemistry [J]. J Am Chem Soc,1983,105:3515~3521
    [111]Smith J R L, Iamamoto Y, Vinhado F S. Oxidation of Alkanes by Iodosylbenzene (PhIO) Catalysed by Supported Mn(III) Porphyrins:Activity and Mechanism [J]. J Mol Catal A:Chem,2006,252:23~30
    [112]Newcomb M, Shen R, Choi S Y, et al. Cytochrome P-450-Catalyzed Hydroxylation of Mechanistic Probes that Distinguish between Radicals and Cations. Evidence for Cationic but Not for Radical Intermediates [J]. J Am Chem Soc,2000,122: 2677~2686
    [113]Yasuko K K, Atuko A, Masaaki Y, et al. Peroxidase Activity of an Antibody-ferric Porphyrin Complex [J]. J Mol Catal B:Enzymatic,1998,4:181~190
    [114]Machii K, Watanabe Y, Morishima I J. Acylperoxo-Iron(III) Porphyrin Complexes: A New Entry of Potent Oxidants for the Alkene Epoxidation [J]. J Am Chem Soc, 1995,117:6691~6697
    [115]Vaz A D N, McGinnity D F. Epoxidation of Olefins by Cytochrome P-450:Evidence from Site-specific Mutagenesis for Hydroperoxo-iron as an Electrophilic Oxidant [J]. Coord Proc Natl Acad Sci,1998,95:3555-3560
    [116]Haber J, Matachowski L, Pamin K, et al. The Effect of Peripheral Substituents in Metalloporphyrins on Their Catalytic Activity in Lyons System [J]. J Mol Catal A: Chem,2003,198:215~221
    [117]纪红兵,佘远斌.《绿色化学化工丛书》之一——绿色氧化与还原,北京:中国石化出版社,2005,p317
    [118]Poltowicz J, Haber J. The Oxyfunctionalization of Cycloalkanes with Dioxygen Catalyzed by Soluble and Supported Metalloporphyrins [J]. J Mol Catal A:Chem, 2004,220:43~51
    [119]Lyons J E, Ellis P E, Mayers H K. Halogenated Metalloporphyrin Complexes as Catalysts for Selective Reactions of Acyclic Alkanes with Molecular Oxygen [J]. J Catal,1995,155(1):59~73
    [120]梁学博,胡伯羽,袁永军等.金属卟啉催化空气氧化环已烷反应的工艺优化[J].化工学报,2007,58(3):794~800
    [121]Fujii H. Effects of the Electron-Withdrawing Power of Substituents the Electronic Structure and Reactivity in Oxoiron(IV) on Porphyrin/y-Cation Radical Complexes [J]. J Am Chem Soc,1993,115:4641~4648
    [122]Silva A M G, Tome A C, Neves M G, et al. meso-Tetraarylporphyrins as Dipolarophiles in 1,3-Dipolar Cycloaddition Reactions [J]. Chem Commun,1999, 1767~1768
    [123]Vinhado F S, Gandini M E F, Iamamoto Y, et al. Novel Mn(III)chlorins as Versatile Catalysts for Oxyfunctionalisation of Hydrocarbons under Homogeneous Conditions [J]. J Mol Catal A:Chem,2005,239:138~143
    [124]Haber J, Matachowski L, Pamin K, et al. Manganese Porphyrins as Catalysts for Oxidation of Cyclooctane in Lyons System [J]. J Mol Catal A:Chem,2000,162: 105~109
    [125]李永,谢夏丰,陈大茴.含N轴向配位体对金属卟啉催化活性的影响[J].温州医学院学报,2004,34(5):361~362
    [126]佘远斌,范莉莉,张燕慧等.金属卟啉仿生催化绿色合成对硝基苯甲醛的新方法[J].化工学报,2004,55(12):2032~2037
    [127]Guo C C, Peng Q J, Liu G F. Selective Oxidation of Ethylbenzene with Air Catalyzed by Simple μ-oxo Dimeric Metalloporphyrins under Mildconditions in the Absence of Additives [J]. J Mol Catal,2003,192:295~302
    [128]郭灿城,刘莲英.μ-氧代双卟啉锰(Ⅲ)对环已烷的单充氧催化作用(X)[J].高等学校化学学报,1993,14(8):1083~1086
    [129]刘洋,褚明福,郭灿城.μ-氧-双铁(Ⅲ)卟啉催化分子氧氧化环已烷反应的研究[J].湖南大学学报,2002,29(3):16~19
    [130]彭清静,段友构,欧阳玉祝等.μ-氧代双锰卟啉催化下空气高选择氧化乙苯[J].物理化学学报,2001,17(4):292~294
    [131]Poltowicz J, Tabor E, Pamin K, et al. Effect of Substituents in the Manganese μ-oxo Porphyrins Catalyzed Oxidation of Cyclooctane with Molecular Oxygen [J]. Inorg Chem Commun,2005,8(12):1125~1127
    [132]Ellis P E, Lyons J E. Selective air Oxidation of Light Alkanes Catalyzed by Activated Metalloporphyrins:the Search for a Suprabiotic System [J]. Coord Chem Rev,1990,105:181~193
    [133]李东红,陈淑华,赵华明.杯[6]芳烃-双锰卟啉催化苯乙烯环氧化反应的动力学[J].分子催化,2003,17(1):10~13
    [134]Haber J, Matachowski L, Pamin K, et al. Supported Polyhalogenated Metalloporphyrins as Catalysts for the Oxidation of Cycloalkanes with Molecular Oxygen in Lyons System [J]. Catalysis Today,2004,91:195~198
    [135]Mansuy D. Activation of Alkanes:The Biomimetic Approach [J]. Coord Chem Rev, 1993,125:129~141
    [136]李臻,景震强,夏春谷.金属卟啉配合物的催化氧化应用研究进展[J].有机化学,2007,27(1):34~44
    [137]Haber J, Pamin K, Poltowicz J. Cationic Metalloporphyrins and Other Macrocyclic Compounds in Zeolite Matrix as Catalysts for Oxidation with Dioxygen [J], J Mol Catal A:Chem,2004,224:153~159
    [138]黄冠,刘飞鸽,郭灿城.高分子多糖载体对四苯基金属卟啉催化性能影响[J].化学学报,2006,64(7):662~666
    [139]Guo C C, Huang G, Zhang X B, et al. Catalysis of Chitosan-supported Iron Tetraphenylporphyrin for Aerobic Oxidation of Cyclohexane in Absence of Reductants and Solvents [J]. Appl Catal A:Gen,2003,247:261~267
    [140]黄冠,郭灿城.甲壳素铁卟啉制备及其催化空气氧化环已烷研究[J].分子催化,2005.19:36~40
    [141]黄冠,姜权,郭灿城.甲壳素铁卟啉和壳聚糖铁卟啉催化性能差异研究[J].化学试剂,2005,27:261~265
    [142]王旭涛,褚明福,郭灿城.咪唑修饰硅胶配位固载锰(Ⅲ)卟啉对环已烷空气氧化的催化作用[J].高等学校化学学报,2005,26(1):64~67
    [143]Doro F G, Smith J R L, Ferreira A G, et al. Oxidation of Alkanes and Alkenes by Iodosylbenzene and Hydrogen Peroxide Catalysed by Halogenated Manganese Porphyrins in Homogeneous Solution and Covalently Bound to Silica [J]. J Mol Catal A:Chem,2000,164:97~108
    [144]Groves J T, Kruper W J, Nemo T E, et al. Hydroxylation and Expoxidation Reactions Catalyzed by Synthetic Metalloporphyrinates. Models Related to the Active Oxygen Species of Cytochrome P-450 [J]. J Mol Catal,1980,7:169~177
    [145]Battioni P, Renaud J P, Bartoli J F, et al. Monooxygenase-like Oxidation of Hydrocarbons by H_2O_2 Catalyzed by Manganese Porphyrins and Imidazole: Selection of the Best Catalytic System and Nature of the Active Oxygen Species [J]. J Am Chem Soc,1988,110:8462~8470
    [146]Guilmet E, Meunier B. Preliminary Approach to the Mechanism of the NaOCl/Mn(TPP)OAc Epoxidation System [J]. J Mol Catal,1984,23:115~119
    [147]Yu L, Muthukumaran K, Sazanovich I V, et al. Excited-State Energy-Transfer Dynamics in Self-Assembled Triads Composed of Two Porphyrins and an Intervening Bis(dipyrrinato)metal Complex [J]. Inorg Chem,2003,42:6629~6647
    [148]Tagliatesta P, Giovannetti D, Leoni A, et al. Manganese(III) Porphyrins as Catalysts for the Oxidation of Aromatic Substrates:An Insight into the Reaction Mechanism and the Role of the Cocatalyst [J]. J Mol Catal A:Chem,2006,252:96~102
    [1]Chu T C, Chu E J H. Preparation of Deuteroporphyrin IX Dimethyl Ester [J]. J Am Chem Soc 1952,74:6276~6277
    [2]Dolphin D. The Porphyrins [M]. Academic Press, New York,1978,1, p289
    [3]Cosnier S, Gondran C, Wessel R, et al. A Poly(pyrrole-Cobalt(II)deuteroporphyrin) Electrode for Thepotentiometric Determination of Nitrite [J]. Sensors,2003,3: 213-222
    [4]Castella M, Trull F R, Chlahorra L, et al. Synthesis of Porphyrins β-Tetrasubstituted by Flexible Hydrocarbon Chains [J]. Tetrahedron,2000,56:4017~4025
    [5]Caughey W S, Alben J O, Fujimoto W Y, et al. Substituted Deuteroporphyrins. I. Reactions at the Periphery of the Porphyrin Ring [J]. J Org Chem,1966,31: 2631~2640
    [6]Hu B C, Zhou W Y, Liu Z L. A Facile Synthesis of Deuteroporphyrins Derivatives under Ultrasound Irradiation [J]. Ultrason Sonochem,2010,17:288~291
    [7]赵逸云,鲍慈光.声化学研究的新进展[J].化学通报,1994,8:26-29
    [8]张喜梅,丘泰球,李月花.声场对溶液结晶过程动力学影响的研究[J].化学通报,1997,1:44~46
    [9]Assno J, Ohe T, Kawasaki N, et al. Enhancement of Transdermal Absorption of Drugs by Pulsed Output Ultrasound [J]. Drug Delivery Syst,1998,13(3):185~189
    [10]Autin F, Van N W, Clifford R, Some Applications of Smart materials in Industry [J]. Metal Mater Soc,1995,143~152
    [11]王贺石.超声波在铝箔箱焊接中的应用[J].华东理工大学学报,1996,3(18):59~63
    [12]刘永,周家华,曾颢.超声波应用于有机合成的最新进展[J].广东化工,2002,2:20~22
    [13]Ma C, Sun C J, Hao A Y, et al. Synthesis of Some N-alkylsaccharin Derivatives Catalyzed by Potassium Fluoride-Alumina [J]. HECHENG HUAXUE,1998,6(1): 8-10
    [14]隆金桥,凌绍明.超声波辅助杂多酸催化环已醇氧化合成已二酸[J].化学世界,2006.9:558~560
    [15]李记太,杨晋辉,李同双.超声辐射下低价钛配合物诱发芳香醛的还原偶联[J]。有机化学,2003,23(12):1428~1431
    [16]贾兆祥,李燕萍,刘晨江.超声法合成新型3-(5-氯/苯氧基-3-甲基-1-苯基-4-吡唑基)异(?)唑取代苯基去甲去氢斑蝥酰亚胺衍生物[J].有机化学,2006,26(3):375~378
    [17]Balazsik K, Torok B, Felfoldi K, et al. Homogeneous and Heterogeneous Asymmetric Reactions. Part Ⅱ:Sonochemical Enantioselective Hydrogenation of Trifluoromethyl Ketones over Platinum Catalysts [J]. Ultrason Sonochem,1999,5: 149~155
    [18]Zhang Z H, Li J J, Li T S. Ultrasound-assisted Synthesis of Pyrroles Catalyzedby Zirconium Chloride under Solvent-free Conditions [J]. Ultrason Sonochem,2008, 15:673~676
    [19]Mcnulty J, Steere J A, Wolf S. The Ultrasound Promoted Knoevenagel Condensation of Aromatic Aldehydes [J]. Tetrahedron Lett,1998,39:8013~8016
    [20]Singh V, Batra S, Advances in the Baylise Hillman reaction-assisted Synthesis of Cyclic Frameworks [J]. Tetrahedron,2008,64:4511~4574
    [21]孙海洲,李基森.超声波作用下的烯醇硅醚环丙化反应的研究[J].有机化学,1998.18:550~555
    [22]Hans F, Bruno P. The Natural Porphyrins. XIX. Conversion of Hemin into Protoporphyrin and a New Preparation of Mesoporphyrin [J]. J Phys Chem,1926, 154:39-43
    [23]Crossley M J, King L G. Novel Heterocyclic Systems from Selective Oxidation at theβ-pyrrolic Position of Porphyrins [J]. J Chem Soc Chem Commun,1984, 920~922
    [24]Ostrowski S, Wyrebek P. The first example of Diels-Alder Cycloaddition of Ortho-xylylenes to meso-Tetraarylporphyrins Containing Electron-deficient β, β-double bonds [J]. Tetrahedron Lett,2006,47:8437~8440
    [25]Baldwin J E, Crossley M J, King L G. Efficient Peripheral Functionalization of Porphyrins [J]. Tetrahedron,1982,38:685~692
    [26]Crossley M J, King L G, Pyke S M. A New and Highly Efficient Synthesis of Hydroxyporphyrins [J]. Tetrahedron,1987,43:4569~4577
    [27]Liu X, Liu J H, Pan J X, et al. Synthesis, Electrochemical, and Photophysical Studies of Multicomponent Systems Based on Porphyrin and Ruthenium(II) Polypyridine Complexes [J]. Tetrahedron,2007,63:9195~9205
    [28]Crossley M J, Harding M M, Tansey C W. A Convenient Synthesis of 2-Alkyl-5,10,15,20-Tetraphenylporphyrins:Reaction of Metallo-2-nitro-5,10,15,20-tetra-phenylporphyrins with Grignard and Organolithium Reagents [J]. J Org Chem, 1994,59:4433~4437
    [29]Crossley M J, FungY M, Potter J J, et al. Convenient Route to A-nitro-a-amino Acids:Conjugate Addition of Nitroalkanes to Dehydroalanine Derivatives [J]. J Chem Soc Perkin Trans,1998,1:1113~1121
    [30]Shea K M, Jaquinod L, Smith K M. Dihydroporphyrin Synthesis:New Methodo-logy [J]. J Org Chem,1998,63:7013~7021
    [31]Catalano M M, Crossley M J, King L G. Control of Reactivity at the Porphyrin Periphery by Metal Ion Co-ordination:A General Method for Specific Nitration at the β-Pyrrolic Position of 5,10,15,20-Tetra-arylporphyrins [J]. J Chem Soc Chem Commun,1984,59:1535~1536
    [32]黄齐茂,陈彰评,徐汉生等.区域选择性合成2-硝基-5,10,15,20-四芳基金属卟啉[J].有机化学,2001,21(10):746~750
    [33]H. Fischer. Die Regulationsfunktionen des Menschlichen Labyrinthes und die Zusammenhange mit Verwandten Funktionen [J]. Monatssch Kinderh,1928,27(1): 209~379
    [34]冯娟,罗啸,穆云等.NBS与取代苯的亲电反应及其应用[J].应用化学,2007,24(1):111~113
    [35]Tanemura K, Suzuki T, Nishida Y, et al. Halogenation of Aromatic Compounds by N-chloro-, N-bromo-, and N-iodosuccinimide [J]. Chem lett,2003,32(10): 932~936
    [36]Canibano V, Rodriguez J F, Santos M, et al. Mild Regioselective Halogenation of Activated Pyridines with N-Bromosuccinimide [J]. Synthesis,2001,14: 2175~2179
    [37]Bonnett R, Mironov A F, Nizhnika N, et al. Synthesis and Properties of a Bis[(porphyrin-2-yl)methyl] Ether, A Model for the Oligomers in Haematoporphyrin Derivative [J]. J Chem Res,1990,1:191~193
    [38]Shigeoka T, Kuwahara Y, Watanabe K, et al. Synthesis of New Fluorovinylzinc Reagents and Their Application for Synthesis of Fluorine Analogs of Protoporphyrin [J]. J Fluorine Chem,2000,103:99~103
    [39]Gaylord N G. In Reduction with Complex Metal Hydrides [M]. New York, Interscience Publishers,1956,391~543
    [40]郑可利.巯基烷氧基喹啉化合物的合成[J].应用化学,2002,19(11):1115~1117
    [41]赵立明,朴虎日,全哲山.7-苄氨基-9,10-二氢-1,2,4-三氮唑并[4,3-a]喹啉衍生物的合成及环合反应的探讨[J].2005,27(2):95~96
    [42]胡永玲,张春荣,徐晓沐.叔十二醇制备方法[J].化学工程师,2008,148(1):37~39
    [43]戴立信,钱延龙.有机合成化学进展[M].化学工业出版社,1993,p193
    [44]石德清,陈茹玉.含α-氨基膦酸酯的脱落酸酰胺类似物的合成与生物活性[J].应用化学,2002,19(8):780~782
    [45]Poltowicz J, Pamin K, Matachowski L, et al. Oxidation of Cyclooctane over Mn(TMPyP) Porphyrin-exchanged Al, Si-mesoporous Molecular Sieves of MCM-41 and SBA-15 Type [J]. Catal Today,2006,114:287~292
    [46]Parkhutik V, Chirvony V, Matveyeva E, Optical Properties of Porphyrin Molecules Immobilized in Nano-porous Silicon [J]. Biomol Engin,2007,24:71~73
    [47]Kitamura Y, Mifune M, Takatsuki T, et al. Ion-exchange Resins Modified with Metal-porphyrin as a Catalysis for Oxidation of Epinephrine (Adrenaline) [J]. Catal Commun,2008,9:224~228
    [48]Buonomenna M G, Gallo Emma, Ragaini F, et al. New Ruthenium. Porphyrin Polymeric Membranes:Preparation and Chatracterization [J]. Appl Catal A:Gen, 2008,335:37~45
    [49]Emma G, Maria G B, Luca V, et al. Heterogenization of Ruthenium Porphyrin Complexes in Polymeric Membranes:Catalytic Ziridination of Styrenes [J]. J Mol Catal A:Chem,2008,282:85~91
    [50]Haber J, Klosowski M, Poltowicz J, Co-oxidation of Styrene and Iso-butyraldehyde in the Presence of Polyaniline-supported Metalloporphyrins [J]. J Mol Catal A:Chem,2003,201:167~178
    [51]Neys P E F, Vankelecom I F J, Abbe M L, et al. Manganese-and Iron-porphyrins Embedded in a Polydimethylsiloxane Membrane: A Selective Oxidation Catalyst [J]. J Mol Catal A:Chem,1998,134:209~214
    [52]Neys P E F, Vankelecom I F J, Parton R F, et al. The Oxidation of Cyclic Alcohols from An Aqueous Solution by Manganese Porphyrins Embedded in A Polydimethysiloxane Membrane [J]. J Mol Catal A:Chem,1997,126:L9-L12
    [53]Schutten J H, Beelen T P M. The role of Hydrogen Peroxide During the Autoxidation of Thiols Promoted by Bifunctional Polymer-bonded Cobaltphthalocyanine Catalysts [J]. J Mol Catal,1981,10:85~97
    [54]Mirkhani V, Moghadam M, Tangestaninejad S, et al. Mn(Br_8TPP)Cl Supported on Polystyrene-bound Imidazole:An Efficient and Reusable Catalyst for Biomimetic Alkene Epoxidation and Alkane Hydroxylation with Sodium Periodate Under Various Reaction Conditions [J]. Appl Catal A:Gen,2006,303:221~229
    [55]Pavel A J, Vladimir K, karolina J, et al. Porphyrins Covalently Bound to Polystyrene II. An Efficient Model of Monooxygenase Reactivity [J]. J Mol Catal A:Chem,1997,118(1):63~68
    [56]余汉城,陈鲜丽,李锡贤等.铁(Ⅲ)卟啉丙烯酸酯-苯乙烯共聚物的合成及其催化环己烷羟化作用[J].中山大学学报(自然科学版),2006,45(1):61~63
    [57]马卡迪,何洁,吴建.高聚物负载卟啉铁的合成及其催化环己烷氧化反应研究[J].浙江大学学报(理学版),2006,33(3):320~323
    [58]Salhi S, Vernieres M C, Pansu R, et al. Study of Energy Transfer Between Porphyrin and Chlorin Grafted on Polystyrene [J]. React & Funct Poly,1995,26: 209~220
    [59]Haber J, Klosowski M, Poltowicz J. Co-oxidation of Styrene and Iso-butyraldehyde in the Presence of Polyaniline-supported Metalloporphyrins [J]. J Mol Catal A:Chem,2003,201:167~178
    [1]Zeng H Y, Li H, Shao H W. One-pot Three-component Mannich-type Reactions Using Sulfamic Acid Catalyst Under Ultrasound Irradiation [J]. Ultrason Sonochem, 2009,16:758~762
    [2]Puri S, Kaur B, Parmar A, et al. Ultrasound-promoted Greener Synthesis of 2H-Chromen-2-ones Catalyzed by Copper Perchlorate in Solventless Media [J]. Ultrason Sonochem,2009,16:705~707
    [3]Margulis M A, Margulis IM. Contemporary Review on Nature of Sonoluminescence and Sonochemical Reactions [J]. Ultrason Sonochem,2002,9:1~10
    [4]Zang H J, Wang M L, et al. Ultrasound-promoted Synthesis of Oximes Catalyzed by a Basic Ionic Liquid [bmIm]OH [J]. Ultrason Sonochem,2009,16:301~303
    [5]Lepore S D, He Y. Use of Sonication for the Coupling of Sterically Hindered Substrates in the Phenolic Mitsunobu Reaction [J]. J Org Chem,2003,68: 8261~8263
    [6]Yaday J S, Reddy B V S, Reddy K B, et al. Ultrasound-accelerated Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones with Ceric Ammonium Nitrate [J]. J Chem Soc Perkin Trans,2001,1:1939~1941
    [7]Catalano M M, Crossley M J, King L G. Efficient Synthesis of 2-Oxy-5,10,15, 20-tetraphenylporphyrins from a Nitroporphyrin by a Novel Multi-step Cine-substitution Sequence [J]. J Chem Soc Chem Commun,1984,1537-1538
    [8]王瑞林,秦自明,邓郁等.N溴代丁二酰亚胺氧化醇反应的动力学研究[J].高等学校化学学报,1992,13(6):845~846
    [9]Filler R. Oxidations and Dehydrogenations with N-Bromosuccinimide and Related N-Haloimides [J]. Chem Rev,1963,63:21~23
    [10]Fieser L F, Rajagopalan S. Selective Oxidation with N-Bromosuccinimide. II. Cholestane-3β, 5α,β-triol [J]. J Am Chem Soc,1949,71:3935~3941
    [11]Tsuyoshi S, Yasuhisa K, Kiyoko W, et al. Synthesis of New Fluorovinylzinc Reagents and Their Application for Synthesis of Fluorine Analogs of Protoporphyrin [J]. J Fluor Chem,2000,103:99~103
    [12]Ktwzer P, Zadeh K D. Advances in the Chemistry of Carbodiimides [J]. Chem Rev, 1967,67:107~152
    [13]Castella M, Trull F R, Calahorra F L, et al. Synthesis of Porphyrins β-Tetrasubstituted by Flexible Hydrocarbon Chains [J]. Tetrahedron,2000,56: 4017~4025
    [14]Maiti N C, Mazumdar S, Periasamy N. J-and H-aggregates of Porphyrin-surfactant Complexes:Time-resolved Fluorescence and Other Spectroscopic Studies [J]. J Phys Chem B,1998,102:1528~1538
    [15]Stillman M J, Nyokong T, Leznoff C C, et al. Phthalocyanines:Properties and Applications [M]. Vol.1, VCH, New York, USA,1989, Ch.3.
    [1]Smegal J A, Hill C L. Hydrocarbon Functionalization by the (Iodosylbenzene) manganese(IV) Porphyrin complexes from the (Tetraphenylporphinato) manganese(III)-Iodosylbenzene Catalytic Hydrocarbon Oxidation System. Mechanism and Reaction Chemisty [J]. J Am Chem Soc,1983,105:3515~3521
    [2]Bartoli J F, Brigaud O, Battioni P, et al. Hydroxylation of Linear Alkanes Catalysed by Iron Porphyrins:Particular Efficacy and Regioselectivity of Perhalogenated Porphyrins [J]. J Chem Soc Chem Commun,1991,440~442
    [3]Meunier B, Guilmet E, Carvalho M E, et al. Sodium Hypochlorite:A Convenient Oxygen Source for Olefin Epoxidation Catalyzed by (Porphyrinato)manganese Complexes [J]. J Am Chem Soc,1984,106:6668~6676
    [4]Fujii H, Effects of the Electron-withdrawing Power of Substituents on the Electronic Structure and Reactivity in Oxoiron(IV) Porphyrin π-Cation Radical Complexes [J]. J Am Chem Soc,1993,115:4641~4648
    [5]Wang C Q, Shalyaev K V, Bonchio M, et al. Fast Catalytic Hydroxylation of Hydrocarbons with Ruthenium Porphyrins [J]. Inorg Chem,2006,45:4769~4782
    [6]Battioni P, Renaud J P, Bartoli J F, et al. Monooxygenase-like Oxidation of Hydrocarbons by H_2O_2 Catalyzed by Manganese Porphyrins and Imidazole: Selection of the Best Catalytic System and Nature of the Active Oxygen Species [J]. J Am Chem Soc,1988,110:8462-8470
    [7]Bruice T C. Reactions of Hydroperoxides with Metallotetraphenylporphyrins in Aqueous Solutions [J]. Acc Chem Res,1991,24:243~249
    [8]Nam W, Lee H J, Oh S Y, et al. First Success of Catalytic Epoxidation of Olefins by An Electron-rich Iron(III) Porphyrin Complex and H_2O_2:Imidazole Effect on the Activation of H_2O_2by Iron Porphyrin Complexes in Aprotic Solvent [J]. J Inorg Biochem,2000,80:219~225
    [9]Chen H L, Ellis P E, Wijesekera J T, et al. Correlation Between Gas-phase Electron Affinities, Electrode Potentials, and Catalytic Activities of Halogenated Metalloporphyrins [J]. J Am Chem Soc,1994,116:1086~1089
    [10]Maldotti A, Varani B G, Molinari A. Oxidation of Cyclohexane by Molecular Oxygen Photoassisted by meso-Tetraarylporphyrin Iron(III)-hydroxo Complexes [J]. Inorg Chem,1996,33:1126~1131
    [11]Bochot C, Bartoli J F, Frapart Y, et al. Synthesis and Spectroscopic, Electrochemical, and Catalytic Properties of a New Manganese Porphyrin Bearing Four Positive Charges Close to the Metal [J]. J Mol Catal A:Chem,2007,263: 200~205
    [12]Kumar D, Visser S P, Shaik S. Theory Favors a Stepwise Mechanism of Porphyrin Degradation by a Ferric Hydroperoxide Model of the Active Species of Heme Oxygenase [J]. J Am Chem Soc,2005,127:8204~8213
    [13]Chang C K, Kuo M S. Reaction of Iron(III) Porphyrins and Iodosoxylene. The Active Oxene Complex of Cytochrome P-450 [J]. J Am Soc,1979,101: 3413~3415
    [14]Guo C C, Chu M F, Liu Q. Effective Catalysis of Simple Metalloporphyrins for Cyclohexane Oxidation with air in the Absence of Additives and Solvents [J]. Appl Catal A:Gen,2003,246:303~309
    [15]Grinstaff M W, Hill M G, Labinger J A. Mechanism of Catalytic Oxygenation of Alkanes by Halogenated Iron Porphyrins [J]. Sci,1994,264:1311~1313
    [16]郭灿城,李枝蓬,梁本熹.金属卟啉催化下环已烷羟基化反应的Hammett关系[J].高等学校化学学报,1997,18:242~246
    [17]Kim Y L, Kim J D, Lim J S, et al. Reaction Pathway and Kinetics for Uncatalyzed Partial Oxidation of p-Xylene in Sub-and Supercritical Water [J]. Ind Eng Chem Res,2002,41(23):5576~5583
    [18]Morgan J A, Lu Z Q, Clark D S. Toward the Development of a Biocatalytic System for Oxidation of p-Xylene to Terephthalic Acid:Oxidation of 1,4-Benzenedimethanol [J]. J Mol Catal B:Enzym,2002,18:147~154
    [19]Raghavendrachar P, Ramachandran S. Liquid-phase Catalytic Oxidation of p-Xylene [J]. Ind Eng Chem Res,1992,31:453~462
    [20]Jiang Q, Xiao Y, Tan Z, et al. Aerobic Oxidation of p-Xylene over Metalloporphyrinand Cobalt Acetate:Their Synergy and Mechanism [J]. J Mol Catal A:Chem,2008,285:162~168
    [21]Hronec M, Cvengrosova Z, Ilavsky J. Kinetics and Mechanism of Cobalt-catalyzed Oxidation of p-Xylene in the Presence of Water [J]. Ind Eng Chem Process Des Dev,1985,24:787~794
    [22]Lyons J E, Ellis J P E, Myers J H K. Halogenated Metalloporphyrin Complexes as Catalysts for Selective Reactions of Acyclic Alkanes with Molecular Oxygen [J]. J Catal,1995,155:59~73
    [23]Haber J, Moldnicka T, Poltowicz J. Metal-dependent Reactivity of Some Metalloporphyrins in Oxidation with Dioxygen [J]. J Mol Catal,1999,54:451~461
    [24]Haber J, Iwanejko R, Poltowicz J, et al. Pernitrated Metalloporphyrins as Catalysts in Oxidation with Magnesium Monoperoxophthalate I. Epoxidation of Cyclic Olefins [J]. J Mol Catal A:Chem,2000,152:111~115
    [25]Souza D P B, Fricks A T, Alvarez H M, et al. Epoxidation of Natural Propenylbenzenes Catalyzed by [Fe~Ⅲ(Salen)Cl] and [Fe~Ⅲ(TPP)Cl] [J]. Catal Commun,2007,8:1041~1046
    [26]Stephenson N A, Bell A T. The Influence of Substrate Composition on the Kinetics of Olefinepoxidation by Hydrogen Peroxide Catalyzed by Iron(III) [Tetrakis(pentafluorophenyl)] Porphyrin [J]. J Mol Catal A:Chem,2006,258: 231~235
    [27]Groves J T, Kruper W J. Preparation and Characterization of An Oxoporphinatochromium (V) complex [J]. J Am Chem Soc,1979,101:7613~7615
    [28]Fontecave M, Mansuy D. Monooxygenase-like Oxidations of Olefins and Alkanes Catalyzed by Manganese Porphyrins:Comparison of Systems Involving Either O_2 and Ascorbate or Iodosylbenzene [J]. Tetrahedron,1984,40:4297~4311
    [29]Lane B S, Burgess K. Metal-catalyzed Epoxidations of Alkenes with Hydrogen Peroxide [J]. Chem Rev,2003,103(7):2047~2064
    [30]Meunier B. Metalloporphyrins as Versatile Catalysts for Oxidation Reactions and Oxidative DNA Cleavage [J]. Chem Rev,1992,92:1411~1456
    [31]Liu J Y, Li X F, Guo Z X, et al. Comparative Study on Heme-containing Enzyme-like Catalytic Activities of Water-soluble Metalloporphyrins [J]. J Mol Catal A:Chem,2002,179:27~33
    [32]Haber J, Matachowski L, Pamin K, et al. The Effect of Peripheral Substituents in Metalloporphyrins on Their Catalytic Activity in Lyons System [J]. J Mol Catal A: Chem,2003,198:215~221
    [33]Balasubramanian P N, Smith J R L, Davies M, et al. Dynamics of Reaction of (meso-Tetrakis(2,6-dimethyl-3-sulfonatophenyl)porphinato)-iron(III) Hydrate with tert-Butyl Hydroperoxide in Aqueous Solution.2. Establishment of a Mechanism That Involves Homolytic 0-0 Bond Breaking and One-Electron Oxidation of the Iron(III) Porphyrin [J]. J Am Chem Soc,1989,111:1477~1483
    [34]Birnbaum E R, Lacheur R M L, Horton A C, et al. Metalloporphyrin-catalyzed homogeneous oxidation in supercritical carbon dioxide [J]. J Mol Catal A:Chem, 1999,139:11~24
    [35]Nam W, Lee H J, Oh S Y, et al. First Success of Catalytic Epoxidation of Olefins by An Electron-rich Iron(III) Porphyrin Complex and H_2O_2:Imidazole Effect on the Activation of H_2O_2 by Iron Porphyrin Complexes in Aprotic Solvent [J]. J Inorg Biochem,2000,80:219~225
    [36]Martins R R L, Neves M G, Silvestre A J D, et al. Oxidation of Unsaturated Monoterpenes with Hydrogen Peroxide Catalysed by Manganese(III) Porphyrin Complexes [J]. J Mol Catal A:Chem,2001,172:33~42
    [37]Traylor T G, Tsuchiya S. Perhalogenated Tetraphenylbemins:Stable Catalysts of High Turnover Catalytic Hydroxylations [J]. Inorg Chem,1987,26:1338~1339
    [38]Wijesekera T, Matsumoto A, Dolphin D, et al. Perchlorinated and Highly Chlorinated meso-Tetraphenylporphyrins [J]. Angew Chem Int Ed Eng,1990,29: 1028~1030
    [39]Carrier M N, Scheer C, Gouvine P, et al. Biometic Hydrooxylation of Aromatic Compouds:Hydrogen Peroxide and Manganese-polyhalogenated Porphyrins as A Particularly Good System [J]. Tetrahedron Lett,1990,31:6645~6648
    [40]Arnd B, Eva R B, Michael W D, et al. How do Electronegative Substituents Make Metal Complexes Better Catalysts for the Oxidation of Hydrocarbons by Dioxygen [J]? J Mol Catal A:Chem,1997,1.17:229~242
    [41]Ricoux R, Dorizon H S, Girgenti E, et al. Hemoabzymes:Towards New Biocatalysts for Selective Oxidations [J]. J Immunol Methods,2002,269:39~57
    [42]Georgiy B S. Metal-catalyzed Hydrocarbon Oxygenations in Solutions:The Dramatic Role of Additives:A Review [J]. J Mol Catal A:Chem,2002,189:39~66
    [43]Meunier B. Metalloporphyrins as Versatile Catalysts for Oxidation Reactions and Oxidative DNA Cleavage [J]. Chem Rev,1992,92:1411~1456
    [44]Groenhof A R, Ehlers A W, Lammertsma K. Proton Assisted Oxygen-Oxygen Bond Splitting in Cytochrome P450 [J]. J Am Chem Soc,2007,129:6204~6209
    [45]Groenhof A R, Ehlers A W, Lammertsma K, et al. Proton Assisted Oxygen-Oxygen Bond Splitting in Cytochrome P450 [J]. J Am Chem Soc,2007,129:6204~6209
    [46]Higuchi T, Shimada K, Maruyama N, et al. Heterolytic 0-0 Bond Cleavage of Peroxy Acid and Effective Alkane Hydroxylation in Hydrophobic Solvent Mediated by an Iron Porphyrin Coordinated by Thiolate Anion as a Model for Cytochrome P-450 [J]. J Am Chem Soc,1993,115:7551-7552
    [47]Haber J, Klosowski M, Poltowicz J. Co-oxidation of Styrene and iso-Butyraldehyde in the Presence of Polyaniline-supported Metalloporphyrins [J]. J Mol Catal A:Chem,2003,201: 167~178
    [1]Kumar D, Visser S P, Shaik S. Theory Favors a Stepwise Mechanism of Porphyrin Degradation by a Ferric Hydroperoxide Model of the Active Species of Heme Oxygenase [J]. J Am Chem Soc,2005,127:8204~8213
    [2]Chang C K, Kuo M S. Reaction of Iron(III) Porphyrins and Iodosoxylene. The Active Oxene Complex of Cytochrome P-450 [J]. J Am Soc,1979,101: 3413~3415
    [3]Groves J T, Watanabe Y. Heterolytic and Homolytic O-O Bond Cleavage Reactions of (Acylperoxo)manganese(III) Porphyrins [J]. Inorg Chem,1986,25:4808~4810
    [4]Liu M H, Su Y O, Selective Electrocatalysis of Alkene Oxidations in Aqueous Media. Electrochemical and Spectral Characterization of oxo-Ferryl Porphyrin, oxo-Ferryl Porphyrin Radical Cation and Their Reaction Products with Alkenes at Room Temperature [J]. J Electoanal Chem,1998,452:113~115
    [5]Nunes G S, Mayer I, Toma H E, et al. Kinetics and Mechanism of Cyclohexane Oxidation Catalyzed by Supramolecular Manganese(III) Porphyrins [J]. J Catal, 2005,236:55~61
    [6]Machii K, Watanabe Y, Morishima I. Acylperoxo-Iron(III) Porphyrin Complexes: A New Entry of Potent Oxidants for the Alkene Epoxidation [J]. J Am Chem Soc, 1995,117:6691~6697
    [7]Groves J T, Watanabe Y. On the Mechanism of Olefim Epoxidation by Oxo-IronPorphyrins. Direct Observation of an Intermediate [J]. J Am Chem Soc, 1986,108:507~508
    [8]Filatov M, Harris N, Shaik S. A Theoretical Study of Electronic Factors Afecting Hydroxylation by Model Ferryl Complexes of Cytochrome P-450 and Horseradish [J]. J Chem Soc Perkin Trans,1999,2 (3):399~410
    [9]Groves J T, Zhang H Y. Cytochrome P-450:Structure, Mechanisms and Bio chemistry [M]. Ed.:Ortiz P R, de Montellano, Plenum, New York, ch.l,1986
    [10]Groves J T, Watanabe Y. Reactive Iron Porphyrin Derivatives Related to The Catalytic Cycles of Cytochrome-P-450 and Peroxidase-Studies of the Mechanism of Oxygen Activation [J]. J Am Chem Soc,1988,110(25):8443~8452
    [11]Traylor T G, Hill K W, Fann WP, et al. Aliphatic Hydroxylation Catalyzed by Iron (II) Porphyrins [J]. J Am Chem Soc,1992,114 (4):1308~1312
    [12]Shikama K. The Molecular Mechanism of Autoxidation for Myoglobin and Hemoglobin:A Venerable Puszzle [J]. Chem Rev,1998,98 (4):1357~1373
    [13]Balch A L, Olmstead M M, Safari N, et al. Iron(III) Porphyrin Complexes with Axial Alkyl and Acyl Ligands-Structures and Reactivity of the Acyl Complex Toward Dioxygen [J]. Inorg Chem,1994,33 (13):2815-2822
    [14]Groves J T, Ahn K H. Chraracterization of an Oxoruthenium (IV) Porphyrin Complex [J]. Inorg Chem,1987,26(23):3831~3833
    [15]Yoshizawa K, Ohta T, Eda M, et al. Two-Step Concerted Mechanism for the Hydrocarbon Hydroxylation by Cytochrome P-450 [J]. Bull Chem Soc Jpn,2000, 73(2):401~407
    [16]Lyons J E, Ellis J P E, Myers J H K. Halogenated Metalloporphyrin Complexes as Catalysts for Selective Reactions of Acyclic Alkanes with Molecular Oxygen [J]. J Catal,1995,155:59~73
    [17]Sousa A S, Fernandes M A, Nxumalo W, et al. Sc(Ⅲ) Porphyrins. The Molecular Structure of Two Sc(Ⅲ) Porphyrins and a Re-evaluation of the Parameters for Themolecular Mechanics Modelling of Sc(Ⅲ) Porphyrins [J]. J Mol Struc,2008, 872:47~55
    [18]Russell G A. Deuterium-isotope Effects in the Autoxidation of Aralkyl Hydrocarbons. Mechanism of the Interaction of Peroxy Radicals [J]. J Am Chem Soc,1957,79:3871-3877

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700