用户名: 密码: 验证码:
高级氧化法处理水中的有机污染物
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高级氧化法是处理有机废水的有效方法,具有良好的开发应用前景。声化学氧化法和光催化氧化技术是高级氧化法中的两个重要组成部分,本论文主要采用这两种方法来处理水体中的有机污染物:
     超声波技术,在降解有机污染物方面越来越受到人们的关注。在本研究中,以碱性品红作为目标污染物,探讨了功率,温度,溶液初始pH对降解率的影响。并研究了均相催化剂亚铁离子,以及非均相催化剂TiO:对降解效果的影响。发现Fe2+的加入可以较大程度地提高降解效率,而TiO2的促进效果并不明显。自由基捕捉剂的加入导致降解过程被明显地抑制。
     响应面法是用于建立经典模型的统计学方法,通过实验设计来对响应值进行最优化。采用超声/Fenton试剂联合的方法降解萘普生,通过单因素实验确定了各影响因素的水平范围。又通过中心组合设计试验评价了Fe2+、H2O2浓度以及萘普生浓度三个因素的影响效果(pH=3,超声波功率设定在90%),最后通过响应面分析法优化得到了最高降解率和相应的最佳降解条件。
     工业用碳纳米管作为一种有效的吸附剂已经成功地应用于去除一些环境污染物。与单独超声和单独用多壁碳纳米管(伴随搅拌)相比,超声和多壁碳纳米管相结合对于酸性橙74的吸附作用更加显著。研究了碳纳米管用量、超声时间、温度、溶液初始浓度和pH值对吸附过程的影响。与Freundlich等温吸附模型相比,Langmuir模型更适合描述酸性橙74在碳纳米管上的吸附行为。通过热力学分析的数据,推测酸性橙74和碳纳米管的吸附类型为物理吸附。动力学分析表明,吸附过程遵循准二级动力学模型。
     以纳米TiO:为催化剂利用太阳光降解不同类型的染料(阴离子型和阳离子型),探讨了催化剂对不同类型染料的吸附和光催化降解特性。以酸性橙74为研究对象,考察了催化剂Ti02的用量、染料浓度、溶液pH值等因素对光降解的影响。通过对降解产物进行阴离子色谱分析,发现经过光催化降解后酸性橙74并没有完全矿物化。
     采用水热法制备出了Ti02/石墨烯复合材料。并考察了氧化石墨用量对复合材料光催化性能的影响。实验结果初步证实石墨烯的引入有利于提高TiOz的光催化降解能力。在紫外光照射下,Ti02/石墨烯复合材料催化降解亚甲基蓝水溶液的活性是Ti02的2.5倍。这种降解效率的提高主要是依赖于复合材料中的石墨烯可以传导光照TiOz产生的电子,提高了电子空穴对的分离效率。
Advanced Oxidation Processes (AOPs) are emerging as powerful and efficient techniques for the treatment of organic wastewaters. In the present study, ultrasonic technology and photocatalytic oxidation, as the important components of AOPs, were utilized in the degradation of organic pollutants from aqueous solutions.
     Ultrasonic degradation is proven to be effective for removing organic pollutants from aqueous solutions. In this study, removal of fuchsin basic from aqueous solutions by ultrasound was investigated. The effects of operating parameters such as ultrasound power, initial pH and temperature on the ultrasonic degradation were studied. Addition of catalyst Fe2+had a markedly positive effect on degradation. But addition of heterogeneous catalyst TiO2affected degradation slightly. Addition of radical scavenger suppressed fuchsin basic degradation significantly.
     Response surface methodology (RSM) is a collection of mathematical and statistical techniques for empirical model building. By design of experiments, the objective is to optimize a response which is influenced by several independent variables. Degradation of naproxen by combination of Fenton reagent and ultrasound irradiation was investigated and experiment conditions were optimized by using response surface methodology. Some preliminary runs were performed with the purpose of establish the variable ranges. After that, a central composite design was applied to evaluate the effect of H2O2, Fe2+and NPX concentration after10min, at pH=3and ultrasonic power amplitude at90%. Optimization by the response surface methodology was utilized to obtain the optimum of concentration of H2O2, Fe2+and NPX that resulted in the highest response.
     Industrial carbon nanotubes have been successfully applied in adsorption of environmental pollutants. The adsorption behaviour of Acid orange74(AO74) from aqueous solution by the combination of ultrasound and multi-walled carbon nanotubes (MWCNTs) was investigated. The combination method of ultrasound and MWCNTs achieved better results than either MWCNTs or ultrasound alone. The effects of dosage of MWCNTs, ultrasound time, temperature, initial concentration and pH of AO74solution were studied. Experimental isotherm data was represented with Langmuir and Frendlich adsorption isotherms models. The adsorption data were found to follow the Langmuir model better than the Frendlich model. Thermodynamics analysis suggested that adsorption of AO74onto MWCNTs was driven by a physisorption process. The adsorption of AO74follows pseudo second-order kinetics.
     Researches of sunlight degradation of different types of dyes (anionic and cationic), catalyzed by nanometer TiO2catalyst were did. The adsorptive and catalytic characteristics of different TiO2catalysts were investigated. Acid orange74was chosen as the object substrate to investigate the effects of dosage of the catalyst, dye concentration and initial pH value of the solution. The degradation products were analyzed by anion chromatography and it was found thatacid orange74has not been completely mineralized by photocatalytic oxidation.
     TiO2/graphene composites were synthesized by hydrothermol method. Influence of dosage of grapheme oxide on the photocatalytic activity of TiO2/graphene was studied. The results showed that the TiO2/Graphene composite exhibited a higher (nearly2.5times) degradation activity than pure TiO2. The enhancement of the photocatalytic activity could be attributed to the excellent electronic conductivity of graphene, which results in that the photogenerated electrons can transport to the surface of the composites more easily, thus inhibiting the recombination between photo-induced electrons and holes.
引文
[1]黎梅,超声波和膨胀石墨相结合处理染料废水的研究,河北大学博士学位论文,2008.
    [2]岑科达,超声降解染料废水的实验研究,合肥工业大学硕士学位论文,2007.
    [3]J. Wang, W. Sun, Z. Zhang, et al., Sonocatalytic degradation of methyl parathion in the presence of micron-sized and nano-sized rutile titanium dioxide catalysts and comparison of their sonocatalytic abilities, Journal of Molecular Catalysis A:Chemical,2007,272:84-90.
    [4]J. Wang, Y. Jiang, Z. Zhang, et al., Investigation on the sonocatalytic degradation of congo red catalyzed by nanometer rutile TiO2powder and various influencing factors, Desalination,2007,216:196-208.
    [5]A. Francony, C. Petrier, Sonochemical degradation of carbon tetrachloride in aqueous solution at two frequencies:20kHz and500kHz, Ultrasonics Sonochemistry,1996,3:77-82.
    [6]C. Petrier, Y. Jiang, M. F. Lamy, Ultrasound and environment:sonochemical destruction of chloroaromatic derivatives, Environmental Science and Technology,1998,32:1316-1318.
    [7]Y. Ku, Y. H. Tu, C. M. Ma, Effect of hydrogen peroxide on the decomposition of monochlorophenols by sonolysis in aqueous solution, Water Research,2005,39:1093-1098.
    [8]L. Wang, L. Zhu, W. Luo, et al., Drastically enhanced ultrasonic decolorization of methyl orange by adding CCl4, Ultrasonics Sonochemistry,2007,14:253-258.
    [9]H. Liu, M. Y. Liang, C. S. Liu, et al., Catalytic degradation of phenol in sonolysis by coal ash and H2O2/O3, Chemical Engineering Journal,2009,153:131-137.
    [10]宋亚丽,偶氮染料废水的脱色降解及机理研究,河北大学博士学位论文,2009.
    [11]K. P. Gopinath, K. Muthukumar, M. Velan, Sonochemical degradation of Congo red:Optimization through response surface methodology, Chemical Engineering Journal,2010,157:427-433.
    [12]S. Merouani, O. Hamdaoui, F. Saoudi, et al., Sonochemical degradation of Rhodamine B in aqueous phase:Effects of additives, Chemical Engineering Journal,2010,158:550-557.
    [13]O. Moumeni, O. Hamdaoui, C. Petrier, Sonochemical degradation of malachite green in water, Chemical Engineering and Processing,2012,62:47-53
    [14]D. Kobayashi, C. Honma, A. Suzuki, et al.,Comparison of ultrasonic degradation rates constants of methylene blue at22.8kHz,127kHz, and490kHz, Ultrasonics Sonochemistry,2012,19:745-749.
    [15]L. H. Thompson, L. K. Doraiswamy, Sonochemistry:science and engineering, Industrial&Engineering Chemistry Research,1999,38:1215-1249.
    [16]R. Srinivasan, M. N. Kathiravan, K. P. Gopinath, Degradation of Tectilon Yellow2G by hybrid technique:Combination of sonolysis and biodegradation using mutant Pseudomonas put:da, Bioresourse Technology,2011,102:2242-2247.
    [17]Y.G. Adewuyi, Sonochemistry:environmental science and engineering applications, Industrial&Engineering Chemistry Research,2001,40:4681-4715.
    [18]程建萍,陈长琦,殷福才,等,超声预处理强化印染废水的生物降解性,合肥工业大学学报(自然科学版),2008,31:1548-1551.
    [19]K. P. Gopinath, H. A. M. Sahib, K. Muthukumar, et al., Improved biodegradation of Congored by using Bacillus sp., Bioresource Technology,2009,100:670-675.
    [20]Y. L. Pang, A. Z. Abdullah, S. Bhatia, Review on sonochemical methods in the presence of catalysts and chemical additives for treatment of organic pollutants in wastewater, Desalination,2011,277:1-14.
    [21]Z. Guo, R. Feng, J. Li, et al., Degradation of2,4-dinitrophenol by combining sonolysis and different additives, Journal of Hazardous Materials,2008,158:164-169.
    [22]M. Muruganandham, J. S. Yang, J. J. Wu, Effect of ultrasonic irradiation on the catalytic activity and stability of goethite catalyst in the presence of H2O2at acidic medium, Industrial&Engineering Chemistry Research,2007,46:691-698.
    [23]A. De Visscher, H. Van Langenhove, P. Van Eenoo, Sonochemical degradation of ethylbenzene in aqueous solution:a product study, Ultrasonics Sonochemistry,1997,4:145-151.
    [24]M. Goel, H. Hongqiang, A. S. Mujumdar, et al., Sonochemical decomposition of volatile and non-volatile organic compounds-a comparative study, Water Research,2004,38:4247-4261.
    [25]张晖,刘芳,张建华,等,超声强化高级氧化技术降解水中有机污染物的研究进展,化工环保,2007,27:491-495.
    [26]高丽,马红竹,王博,超声/臭氧联合技术处理次甲基蓝废水,陕西师范大学学报(自然科学版), 2010,38:57-59.
    [27]H. Zhang, L. J. Duan, D. B. Zhang, Decolorization of methyl orange by ozonation in combination with ultrasonic irradiation, Journal of Hazardous Materials, B,2006,138:53-59.
    [28]S. Song, H. P. Ying, Z. Q. He, et al., Mechanism of decolorization and degradation of CI Direct Red23by ozonation combined with sonolysis, Chemosphere,2007,66:1782-1788.
    [29]Z. Q. He, L. L. Lin, S. Song, et al., Mineralization of CI Reactive Blue19by ozonation combined with sonolysis:performance optimization and degradation mechanism, Separation and Purification Technology,2008,62:376-381.
    [30]M. V. Bagal, P. R. Gogate, Wastewater treatment using hybrid treatment schemes based on cavitation and Fenton chemistry:A review, Ultrasonics Sonochemistry,2014,21:1-14.
    [31]R. J. Lan, J. T. Li, H. W. Sun, et al., Degradation of naproxen by combination of Fenton reagent and ultrasound irradiation:optimization using response surface methodology, Water Science&Technology,2012,66:2695-2701.
    [32]陶长元,刘作华,李晓红等,超声波促进Fenton法脱色甲基橙溶液的研究,环境科学,2005,26:111-114.
    [33]H. Nakui, K. Okitsu, Y. Maeda, et al., Effect of coal ash on sonochemical degradation of phenol in water, Ultrasonics Sonochemistry,2007,14:191-196.
    [34]S. Findik, G. Gunduz, Sonolytic degradation of acetic acid in aqueous solutions, Ultrasonics Sonochemistry,2007,14:157-162.
    [35]J. T. Li, M. Li, J. H. Li, et al, Decolorization of azo dye direct scarlet4BS solution using exfoliated graphite under ultrasonic irradiation, Ultrasonics Sonochemistry,2007,14:241-245.
    [36]J. Wang, T. Ma, Z. Zhang, et al, Investigation on the sonocatalytic degradation of methyl orange in the presence of nanometer anatase and rutile TiO2powders and comparison of their sonocatalytic activities, Desalination,2006,195:294-305.
    [37]S. Zhang, Synergistic effects of C-Cr codoping in TiO2and enhanced sonocatalytic activity under ultrasonic irradiation, Ultrasonics Sonochemistry,2012,19:767-771.
    [38]Y. L. Pang, A. Z. Abdullah, Comparative study on the process behavior and reaction kinetics in sonocatalytic degradation of organic dyes by powder and nanotubes TiO2, Ultrasonics Sonochemistry, 2012,19:642-651.
    [39]L. Song, C. Chen, S. Zhang, Sonocatalytic performance of Tb7Oi2/TiO2composite under ultrasonic irradiation, Ultrasonics Sonochemistry,2011,18:713-717.
    [40]C. Basto, C. J. Silva, G. Gubitz, et al., Stability and decolourization ability of Trametes villosa laccase in liquid ultrasonic fields, Ultrasonics Sonochemistry,2007,14:355-362.
    [41]沈政赢,袁东星,马剑等,超声波强化微生物对偶氮染料A07的生物降解及其生物效应的研究,厦门大学学报,2006,45:243-247.
    [42]王颖,牛军峰,张哲,等,超声-光催化降解水中有机污染物,化学进展,2008,20:1621-1627.
    [43]J. Peller, O. Wiest, P. V. Kamat, Synergy of combining sonolysis and photocatalysis in the degradation and mineralization of chlorinated aromatic compounds, Environmental Science and Technology,2003,37:1926-1932.
    [44]K. Hirano, H. Nitta, K. Sawada, Effect of sonication on the photo-catalytic mineralization of some chlorinated organic compounds, Ultrasonics Sonochemistry,2005,12:271-276.
    [45]N. L. Stock, J. Peller, K. Vinodgopal, et al., Combinative Sonolysis and Photocatalysis for Textile Dye Degradation, Environmental Science and Technology,2000,34:1747-1750.
    [46]S. Kaur, V. Singh, Visible light induced sonophotocatalytic degradation of Reactive Red dye198using dye sensitized TiO2, Ultrasonics Sonochemistry,2007,14:531-537.
    [47]N. J. Bejarano-Perez, M. F. Suarez-Herrera, Sonophotocatalytic degradation of congo red and methyl orange in the presence of TiO2as a catalyst, Ultrasonics Sonochemistry,2007,14:589-595.
    [48]A. S. Gonzalez, S. S. Martinez,. Study of the sonophotocatalytic degradation of basic blue9industrial textile dye over slurry titanium dioxide and influencing factors. Ultrasonics Sonochemistry,2008,15:1038-1042.
    [49]T. C. An, H. F. Gu, Y. Xiong, et al., Decolourization and COD removal from reactive dye-containing wastewater using sonophotocatalytic technology, Journal of Chemical Technology and Biotechnology,2003,78:1142-1148.
    [50]N. N. Mahamuni, Y. G. Adewuyi, Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment:a review with emphasis on cost estimation, Ultrasonics Sonochemistry,2010,17:990-1003.
    [51]A. Aguedacha, S. Brosillonb, J. Morvanb, et al., Photocatalytic degradation of azo dyes reactive black5and reactive yellow145in water over a newly deposited titanium dioxide, Applied Catalysis. B: Environmental,2005,57:55-62.
    [52]D. M. Blake, Bibliography of work on the photocatalytic removal of hazardous compounds from water and air, National Renewal Energy Laboratory, Cole Boulevard Golden, Colorado, USA,2001.
    [53]K. Pirkanniemi, M. Sillanpaa, Heterogeneous water phase catalysis as an environmental application:a review, Chemosphere,2002,48:1047-1060.
    [54]M. M. Haque, M. Muneer, Heterogeneous photocatalysed degradation of a herbicide derivative, isoproturon in aqueous suspension of titanium dioxide, Journal of Environmental Management,2003,69:169-176.
    [55]孙胜鹏,高级氧化技术处理难降解有机废水的研究,河南师范大学硕士学位论文,2007.
    [56]Q. Zhu, Y. Zhang, F. Zhou, et al., Preparation and characterization of Cu2O-ZnO immobilized on diatomite for photocatalytic treatment of red water produced from manufacturing of TNT, Chemical Engineering Journal,2011,171,61-68.
    [57]R. Nakano, E. Obuchi, K. Katoh, et al., Photocatalytic Degradation activity of phenol aqueous solution by TiO2photocatalyst on various supports, Kagaku Kogaku Ronbunshu,2012,38,403-407.
    [58]S. Mozia, P. Brozek, J. Przepiorski, et al., Immobilized TiO2for phenol degradation in a pilot-scale photocatalytic reactor, Journal of Nanomaterials,2012.
    [59]I. Stambolova, M. Shipochka, V. Blaskov, et al., Sprayed nanostructured TiO2films for efficient photocatalytic degradation of textile azo dye, Journal of Photochemistry and Photobiology B:Biology,2012,117:19-26.
    [60]L. C. Macedoa, D. A.M. Zaiaa, G. J. Mooreb, et al., Degradation of leather dye on TiO2:A study of applied experimental parameters on photoelectrocatalysis, Journal of Photochemistry and Photobiology A:Chemistry,2007,185,86-93.
    [61]R. Zeng, J. Wang, J. Cui, et al., Photocatalytic degradation of pesticide residues with RE3--doped nano-TiO2, Journal of Rare Earths,2010,28:353-356.
    [62]B. K. Avasarala, Photocatalytic degradation of monocrotophos pesticide-An endocrine disruptor by magnesium doped titania, Journal of Hazardous Materials,2011,186,1234-1240.
    [63]安婧,周启星,药品及个人护理用品(PPCPs)的污染来源、环境残留及生态毒性,生态学杂志,2009,28:1878-1890.
    [64]EPA. Pharmaceuticals&Personal Care Products in the Environment:An Emerging Concern? http://www.epa.gov/nerl/research/1999/html/g8-14.html,1999-12-24/2005-3-20.
    [65]C. Marta,O. Francisco, M. L. Juan, et al., Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant, Water Research,2004,38:2918-2926.
    [66]S. A. Snyder, P. Westerhoff, Y. YOON, et al., Pharmaceuticals, personal care products, and endocrine disruptors in water:Implications for the water industry, Environment, Engineering Science,2003,20:449-469.
    [67]T. A. Ternes, M. Meisenheimer, D. McDowell, Removal of pharmaceuticals during drinking water treatment, Environmental Science&Technology,2002,36:3855-3863.
    [68]B. D. Witte, J. Dewulf, K. Demeestere,et al., Ozonation and advanced oxidation by the peroxone process of ciprofloxacin in water, Journal of Hazardous Materials,2009,161:701-708.
    [69]S. Esplugas, D. M. Bila, L. G. Krause, et al., Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents, Journal of Hazardous Materials,2007,149:631-642.
    [70]U. von Gunten, Ozonation of drinking water:Part Ⅱ. Disinfection and by-product formation in presence of bromide, iodide or chlorine, Water Research,2003,37:1469-1487.
    [71]Y. X. Lin, C. Ferronato, N. S. Deng, et al., Photocatalytic degradation of methylparaben by TiO2: Multivariable experimental design and mechanism, Applied Catalysis B:Environmental,2009,88:32-41.
    [72]X. Zhang, F.Wu, X. Wu, et al., Photodegradation of acetaminophen in TiO2suspended solution, Journal of Hazardous Materials,2008,157:300-307.
    [73]F. Mendez-Arriaga, S. Esplugas, J. Gimenez, Photocatalytic degradation of non-steroidal anti-inflammatory drugs with TiO2and simulated solar irradiation, Water Research,2008,42:585-594.
    [74]A. Chatzitakis, C. Berberidou, I. Paspaltsis, et al., Photocatalytic degradation and drug activity reduction of chloramphenicol, Water Research,2008,42:386-394.
    [75]H. Shemer, Y. K. Kunukcu, K. G. Linden, Degradation of the pharmaceutical Metronidazole via UV, Fenton and photo-Fenton processes, Chemosphere,2006,63:269-276.
    [76]O. Gonzalez, M. Esplugas, C. Sans, et al., Performance of a sequencing batch biofilm reactor for the treatment of pre-oxidized sulfamethoxazole solutions, Water Research,2009,43:2149-2158.
    [77]R. J. Emery, M. Papadaki, L. M. Freitas dos Santos, et al., Extent of sonochemical degradation and change of toxicity of a pharmaceutical precursor (triphenylphosphine oxide) in water as a function of treatment conditions, Environment International,2005,31:207-211.
    [78]L. Sanchez-Prado, R. Barro, C. Garcia-Jares, et al., Sonochemical degradation of triclosan in water and wastewater. Ultrasonics Sonochemistry,2008,15:689-694.
    [79]G T. Giiyera, N. H. Ince, Degradation of diclofenac in water by homogeneous and heterogeneous sonolysis, Ultrasonics Sonochemistry,2011,18:114-119.
    [80]J. Hartmann, P. Bartels, U. Mau, et al., Degradation of the drug diclofenac in water by sonolysis in presence of catalysts, Chemosphere,2008,70:453-461.
    [81]Y. Wang, G Y Rao, J. Y Hu, Adsorption of EDCs/PPCPs from drinking water by submicron-sized powdered activated carbon, Water Science&Technology:Water Supply,2011,11:711-718.
    [82]J. L. Cartinella, Y C. Tzahi, M. T. Flynn, et al., Removal of natural steroid hormones from wastewater using membrane contactor processes, Environmental Science&Technology,2006,40:7381-7386.
    [83]Y Yoon, P. Westerhoff, S. A. Snyder, et al., Nanofiltration and ultrafiltration of endocrine disrupting compounds, Pharmaceuticals and personal care products, Journal of Membrane Science,2006,270:88-100.
    [84]C. E. Rodriguez-Rodriguez, E. Marco-Urrea, G. Caminal, Degradation of naproxen and carbamazepine in spiked sludge by slurry and solid-phase Trametes versicolor systems, Bioresource Technology,2010,101:2259-2266.
    [85]E. Marco-Urrea, M. Perez-Trujillo, P. Blanquez, et al., Biodegradation of the analgesic naproxen by Trametes versicolor and identification of intermediates using HPLC-DAD-MS and NMR, Bioresourse Technology,2010,101:2159-2166.
    [1]S. M. A. G. Ulson de Souza, E. Forgiarini, A. A. Ulson de Souza, Toxicity of textile dyes and their degradation by the enzyme horseradish peroxidase (HRP), Journal of Hazardous Materials,2007,147:1073-1078.
    [2]G.O. El-Sayed, Removal of methylene blue and crystal violet from aqueous solutions by palm kernel fiber, Desalination,2011,272:225-232.
    [3]K. Z. Elwakeel, M. Rekaby, Efficient removal of Reactive Black5from aqueous media using glycidyl methacrylate resin modified with tetracthelenepentamine, Journal of Hazardous Materials,2011,188:10-18.
    [4]S. C. Kwon, J. Y. Kim, S. M. Yoon, et al., Treatment characteristic of1,4-dioxane by ozone-based advanced oxidation processes, Journal of Industrial and Engineering Chemistry,2012,18:1951-1955.
    [5]G. L. Jing, M. M. Luan, W. T. Du, et al., Treatment of oily sludge by advanced oxidation process, Environmental Earth Sciences,2012,67:2217-2221.
    [6]R. Singla, F. Grieser, M. Ashokkumar, Sonochemical degradation of martius yellow dye in aqueous solution, Ultrasonics Sonochemistry,2009,16:28-34.
    [7]D. Kobayashi, C. Honma, A. Suzuki, et al., Comparison of ultrasonic degradation rates constants of methylene blue at22.8kHz,127kHz, and490kHz, Ultrasonics Sonochemistry,2012,19:745-749.
    [8]V. Naddeo, S. Meric, D. Kassinos, et al., Fate of pharmaceuticals in contaminated urban wastewater effluent under ultrasonic irradiation, Water Research,2009,43:4019-4027.
    [9]V. Naddeo, V. Belgiorno, D. Kassinos, et al., Ultrasonic degradation, mineralization and detoxification of diclofenac in water:Optimization of operating parameters, Ultrasonics Sonochemistry,2010,17:179-185.
    [10]G. Andaluri, E. V. Rokhina, R. P. S. Suri, Evaluation of relative importance of ultrasound reactor parameters for the removal of estrogen hormones in water, Ultrasonics Sonochemistry,2012,19:953-958.
    [11]M. Capocelli, E. Joyce, A. Lancia, er al., Sonochemical degradation of estradiols:Incidence of ultrasonic frequency, Chemical Engineering Journal,2012,210:9-17.
    [12]R. Sivakumar, K. Muthukumar, Sonochemical Degradation of Pharmaceutical Wastewater, Clean- Soil Air Water,2011,39:136-141.
    [13]B. Soltani, A. Moheb, Ultrasound Irradiation Facilitated Adsorption of MTBE from Aqueous Solution using Exfoliated Graphite, Chemical Engineering&Technology,2010,33:1107-1111.
    [14]J. Madhavan, P. S. Sathish Kumar, S. Anandan, et al., Degradation of acid red88by the combination of sonolysis and photocatalysis, Separation and Purification Technology,2010,74:336-341.
    [15]Y. Suzuki, Waristo, H. Arakawa, et al., Ultrasonic enhancement of photo-catalytic oxidation of surfactant, International Journal of Photoenergy,1999,1:60-64.
    [16]G. Bayramoglu, B. Altintas, M. Y. Arica, Adsorption kinetics and thermodynamic parameters of cationic dyes from aqueous solutions by using a new strong cation-exchange resin, Chemical Engineering Journal,2009,152:339-346.
    [17]V. K. Gupta, A. Mittal, V. Gajbe, et al., Adsorption of basic fuchsin using waste materials-bottom ash and deoiled soya-as adsorbents, Journal of Colloid and Interface Science,2008,319:30-39.
    [18]ISO6060, Water Quality-Determination of the Chemical Oxygen Demand, seconded,1989,147, ISO6060/TC, Geneva.
    [19]X. S. Chai, Q. X. Hou, Q. Luo, et al., Rapid determination of hydrogen peroxide in the wood pulp bleaching streams by a dual-wavelength spectroscopic method, Analytica Chimica Acta,2004,507:281-284.
    [20]T. Kimura, T. Sakamoto, J-M. Leveque, et al., Standardization of ultrasonic power for sonochemical reaction, Ultrasonics Sonochemistry,1996,3:S157-S161.
    [21]M. H. Entezari, A. Heshmati, A. Sarafraz-yazdi, A combination of ultrasound and inorganic catalyst: removal of2-chlorophenol from aqueous solution, Ultrasonics Sonochemistry,2005,12:137-141.
    [22]R. J. Lan, J. T. Li, H. W. Sun, et al., Degradation of naproxen by combination of Fenton reagent and ultrasound irradiation:optimization using response surface methodology, Water Science&Technology,2012,66:2695-2701.
    [23]M. H. Entezari, P. Kruus, Effect of frequency on sonochemical reactions Ⅱ. Temperature and intensity effects, Ultrasonics Sonochemistry,1996,3:19-24.
    [24]J. L. Luche, Synthetic Organic Sonochemistry, Plenum Press, New York,1998.
    [25]A. Tauber, H.P. Schuchmann, C. von Sonntag, Sonolysis of aqueous4-nitrophenol at low and high pH, Ultrasonics Sonochemistry,2000,7:45-52.
    [26]E. De Bel, J. Dewulf, B. De Witte, et al., Influence of pH on the sonolysis of ciprofloxacin: Biodegradability, ecotoxicity and antibiotic activity of its degradation products, Chemosphere,2009,77:291-295.
    [27]M. Goel, H. Hongqiang, A.S. Mujumdar, et al., Sonochemical decomposition of volatile and non-volatile organic compounds-a comparative study, Water Research,2004,38:4247-4261.
    [28]R. J. Emery, M. Papadaki, L. M. Freitas dos Santos, et al., Extent of sonochemical degradation and change of toxicity of a pharmaceutical precursor (triphenylphosphine oxide) in water as a function of treatment conditions, Environment International,2005,31:207-211.
    [29]A. Bhatnagar, H. M. Cheung, Sonochemical destruction of chlorinated Cl and C2volatile organic compounds in dilute aqueous solution, Environmental Science and Technology,1994,28:1481-1486.
    [30]J. M. Wu, H. S. Huang, C. D. Livengood, Ultrasonic destruction of chlorinated compounds in aqueous solution, Environmental Progress,1992,11:195-201.
    [31]H. Destaillats, T. W. Alderson II, M. R. Hoffmann, Applications of ultrasound in NAPL remediation: sonochemical degradation of TCE in aqueous surfactant solutions, Environmental Science and Technology,2001,35:3019-3024.
    [32]X. K. Wang, Z. Y. Yao, J. G. Wang, et al., Degradation of reactive brilliant red in aqueous solution by ultrasonic cavitation, Ultrasonics Sonochemistry,2008,15:43-48.
    [33]M. Inoue, F. Okada, A. Sakurai, et al., A new development of dyestuffs degradation system using ultrasound, Ultrasonics Sonochemistry,2006,13:313-320.
    [34]Q. P. Isariebel, J. L. Carine, J. H. Ulises-Javier, et al., Sonolysis of levodopa and paracetamol in aqueous solutions, Ultrasonics Sonochemistry,2009,16:610-616.
    [35]S. Merouani, O. Hamdaoui, F. Saoudi, et al., Sonochemical degradation of Rhodamine B in aqueous phase:Effects of additives, Chemical Engineering Journal,2010,158:550-557.
    [36]Y. Jiang, C. Petrier, T. D. Waite, Sonolysis of4-chlorophenol in aqueous solution:Effects of substrate concentration, aqueous temperature and ultrasonic frequency, Ultrasonics Sonochemistry,2006,13:415-422.
    [37]F. Me'ndez-Arriaga, R. A. Torres-Palma, C. Pe'trier, et al., Ultrasonic treatment of water contaminated with ibuprofen, Water Research,2008,42:4243-4248.
    [38]J. Wang, B. D. Guo, X. D. Zhang, et al., Sonocatalytic degradation of methyl orange in the presence of TiO2catalysts and catalytic activity comparison of rutile and anatase, Ultrasonics Sonochemistry,2005,12:331-337.
    [39]N. Shimizu, C. Ogino, M. F. Dadjour, et al., Sonocatalytic degradation of methylene blue with TiO2pellets in water, Ultrasonics Sonochemistry,2007,14:184-190.
    [1]K. Choi, Y. Kim, J. Park, et al., Seasonal variations of several pharmaceutical residues in surface water and sewage treatment plants of Han River, Korea, Science of the Total Environment,2008,405:120-128.
    [2]D. Ashton, M. Hilton, K. V. Thomas, Investigating the environmental transport of human pharmaceuticals to streams in the United Kingdom, Science of the Total Environment,2004,333:167-184.
    [3]B. Quinn, F. Gagne, C. Blaise, An investigation into the acute and chronic toxicity of eleven pharmaceuticals (and their solvents) found in wastewater effluent on the cnidarian, Hydra attenuata, Science of the Total Environment,2008,389:306-314.
    [4]M. J. Benotti, R. A. Trenholm, B. J. Vanderford, et al, Pharmaceuticals and endocrine disrupting compounds in US drinking water, Environmental Science&Technology,2009,43:597-603.
    [5]J. L. Zhao, G. G Ying, L. Wang, et al, Determination of phenolic endocrine disrupting chemicals and acidic pharmaceuticals in surface water of the Pearl Rivers in South China by gas chromatography-negative chemical ionization-mass spectrometry, Science of the Total Environment,2009,407:962-974.
    [6]V. J. Pereira, K. G. Linden, H. S. Weinberg, Evaluation of UV irradiation for photolytic and oxidative degradation of pharmaceutical compounds in water, Water Research,2007,41:4413-4423.
    [7]R. Molinari, F. Pirillo, V. Loddo, et al, Heterogeneous photocatalytic degradation of pharmaceuticals in water by using polycrystalline TiO2and a nanofiltration membrane reactor, Catalysis Today,2006,118:205-213.
    [8]F. Mendez-Arriaga, S. Esplugas, J. Gimenez, Photocatalytic degradation of non-steroidal anti-inflammatory drugs with TiO2and simulated solar irradiation, Water Research,2008,42:585-594.
    [9]X. Zhao, J. H. Qu, H. J. Liu, et al., Photoelectrochemical degradation of anti-inflammatory pharmaceuticals at Bi2MoO6-boron-doped diamond hybrid electrode under visible light irradiation, Applied Catalysis B:Environmental,2009,91:539-545.
    [10]T. Gonzalez, J. R. Dominguez, P. Palo et al., Conductive-diamond electrochemical advanced oxidation of naproxen in aqueous solution:optimizing the process, Journal of Chemical Technology and Biotechnology,2011,86:121-127.
    [11]E. Marco-Urrea, M. Perez-Trujillo, P. Blanquez, et al., Biodegradation of the analgesic naproxen by Trametes versicolor and identification of intermediates using HPLC-DAD-MS and NMR, Bioresourse Technology,2010,101:2159-2166.
    [12]Y. L. Song, J. T. Li, H. Chen, Degradation of CI Acid Red88aqueous solution by combination of Fenton's reagent and ultrasound irradiation, Journal of Chemical Technology and Biotechnology,2009,84:578-583.
    [13]D. C. Montgomery, Design and Analysis of Experiments,6th ed,2007, Posts&Telecom Press (gravure), China.
    [14]J. N. Sahu, J. Acharyab, B. C. Meikapa, Response surface modeling and optimization of chromium(VI) removal from aqueous solution using Tamarind wood activated carbon in batch process, Journal of Hazardous Meterials,2009,172:818-825.
    [15]M.A. Rauf, N. Marzoukia, B.K. Korbahti, Photolytic decolorization of Rose Bengal by UV/H2O2and data optimization using response surface method, Journal of Hazardous Meterials,2008,159:602-609.
    [16]M. Li, J. T. Li, H. W. Sun, Treatment of Organic Pollutants in Water by Ultrasound, Progress in Chemistry,2008,20:1187-1194.
    [17]J. H. Sun, S. P. Sun, J. Y. Sun, et al., Degradation of azo dye Acid black1using low concentration iron of Fenton process facilitated by ultrasonic irradiation, Ultrasonics Sonochemistry,2007,14:761-766.
    [18]M. S. Lucas, J. A. Peres, Decolorization of the azo dye reactive black5by Fenton and photo-Fenton oxidation, Dyes and Pigments,2006,71:236-244.
    [19]G. P. Yang, X. K. Zhao, X. J. Sun, et al., Oxidative degradation of diethyl phthalate by photochemically-enhanced Fenton reaction, Journal of Hazardous Meterials,2005,126:112-118.
    [20]Q. P. Isariebel, J. L. Carine, J. H. Ulises-Javier, et al., Sonolysis of levodopa and paracetamol in aqueous solutions, Ultrasonics Sonochemistry,2009,16:610-616.
    [21]V. A. Sakkas, MdA. Islam, C. Stalikas, et al., Photocatalytic degradation using design of experiments: A review and example of the Congo red degradation, Journal of Hazardous Meterials,2010,175:33-44.
    [22]F. Ay, E. C. Catalkaya, F. Kargi, A statistical experiment design approach for advanced oxidation of Direct Red azo-dye by photo-Fenton treatment, Journal of Hazardous Meterials2009,162:230-236.
    [23]V. Homem, A. Alves, L. Santos, Amoxicillin degradation at ppb levels by Fenton's oxidation using design of experiments, Science of the Total Environment,2010,408:6272-6280.
    [1]E.yan, Optimization and modeling of decolorization and COD reduction of reactive dye solutions by ultrasound-assisted adsorption, Chemical Engineering Journal,2006,119:175-181.
    [2]E. Forgacs, T. Cserhati, G. Oros, Removal of synthetic dyes from wastewaters:A review, Environment International,2004,30:953-971.
    [3]H. Nakui, K. Okitsu, Y. Maeda, et al., Effect of coal ash on sonochemical degradation of phenol in water, Ultrasonics Sonochemistry,2007,14:191-196.
    [4]S. Findik, G. Gunduz, Sonolytic degradation of acetic acid in aqueous solutions, Ultrasonics Sonochemistry,2007,14:157-162.
    [5]J. T. Li, M. Li, J. H. Li, et al, Decolorization of azo dye direct scarlet4BS solution using exfoliated graphite under ultrasonic irradiation, Ultrasonics Sonochemistry,2007,14:241-245.
    [6]J. Ge, J. Qu, Degradation of azo dye acid red B on manganese dioxide in the absence and presence of ultrasonic irradiation, Journal of Hazardous Material, B,2003,100:197-207.
    [7]R. H. Baughman, A. A. Zakhidov, W. A. de Heer, Carbon nanotubes-the route toward applications, Science,2002,297:787-792.
    [8]S. Iijima, Helical microtubules of graphitic carbon, Nature,1991,354:56-58.
    [9]H. Hyung, J. H. Kim, Natural organicmatter adsorption tomulti-walled carbon nanotubes:effects of NOM characteristics and water quality, Environmental Science&Technology,2008,42:4416-4421.
    [10]D. H. Lin, B. S. Xing, Adsorption of phenolic compounds by carbon nonotube:role of aromaticity and substitution of hydroxyl groups, Environmental Science&Technology,2008,42:7254-7259.
    [11]W. Chen, L. Duan, D. Q. Zhu, Adsorption of polar and nonpolar organic chemicals to carbon nanotubes, Environmental Science&Technology,2007,41:8295-8300.
    [12]方媛,隋铭皓,盛力,等,磺胺嘧啶在颗粒活性炭和碳纳米管上的吸附特性,水处理技术,2012,38:23-26.
    [13]L. L. Ji, W. Chen, L. Duan, et al. Mechanisms for adsorption of tetracycline to carbon nanotubes:A comparative study using activated carbon and graphite as adsorbents, Environmental Science&Technology,2009,43:2322-2327.
    [14]https://fscimage.fishersci.com/msds/99925.html
    [15]L. H. Thompson, L. K. Doraiswamy, Sonochemistry:Science and Engineering, Industrial and Engineering Chemistry Research,1999,38:1215-1249.
    [16]I. A. W. Tan, B. H. Hameed, A. L. Ahmad, Equilibrium and kinetic studies on basic dye adsorption by oil palm fibre activated carbon, Chemical Engineering Journal,2007,127:111-119.
    [17]J. T. Li, M. Li, J. H. Li, et al,. Removal of disperse blue2BLN from aqueous solution by combination of ultrasound and exfoliated graphite, Ultrasonics Sonochemistry,2007,14:62-66.
    [18]J. T. Li, B. Bai, Y. L. Song, Removal of acid orange3from aqueous solution by activated carbon adsorption, Asian Journal of Chemistry,2010,22:439-447.
    [19]V. K. Garg, R. Gupta, A. BalaYadav, et al., Dye removal from aqueous solution by adsorption on treated sawdust, Bioresourse Technology,2003,89:121-124.
    [20]Y. Fang, M. Sui, L. Sheng, et al., Adsorption characterics of sulfapyridine to granular activated carbon and multi-walled carbon nanotube, Technology of Water Treatment,2012:38,23-26.
    [21]X. Wu, D. Wu, R. Fu, Studies on the adsorption of reactive brilliant red X-3B dye on organic and carbon aerogels, Journal of Hazardous Meterials,2007,147:1028-1036.
    [22]S. D. Faust,O. M. Aly, Adsorption Processes for Water Treatment,1st edition. New York: Butterworth,1987.
    [23]C. Y. Kuo, C. H. Wu, J. Y. Wu, Adsorption of direct dyes from aqueous solutions by carbon nanotubes:Determination of equilibrium, kinetics and thermodynamics parameters, Journal of Colloid and Interface Science,2008,327:308-315.
    [24]Z. H. Xiong, L. Wang, J. G. Zhou, et al., Thermodynamics and kinetics of adsorption of diclofenac on magnetic multiwalled carbon nanotubes in an aqueous solution, Acta Physico-Chimica Sinica,2010,26:2890-2898.
    [1]M. R. Hoffmann, S. T. Martin, W Y Choi, et al., Environmental applications of semiconductor photocatalysis, Chemical Reviews,1995,95:6996.
    [2]齐普荣,王光辉,光降解偶氮染料的研究进展,染料与染色,2007,44:1-4.
    [3]J. Wang, R. Li, Z. Zhang, et al., Solar photocatalytic degradation of dye wastewater in the presence of heat-treated anatase TiO2powder, Environmental Progress,2008,27:242-249.
    [4]邓德明,李富贵,王家文等,不同光源下累托石-TiO2降解染料废水,武汉大学学报(理学版),2006,52:713-716.
    [5]A. Vincenzo, B. Claudio, P. A. Bianco, et al., Azo-dyes photocatalytic degradation in aqueous suspension of TiO2under solar irradiation, Chemosphere,2002,49:1223-1230.
    [6]S. K. Pardeshi, A. B. Patil, A simple route for photocatalytic degradation of phenol in aqueous zinc oxide suspension using solar energy, Solar Energy,2008,82:700-705.
    [7]Y Su, L. Deng, N. Zhang, et al, Photocatalytic degradation of C.I. Acid Blue80in aqueous suspensions of titanium dioxide under sunlight, Reaction Kinetics and Catalysis Letters,2009,98:227-240.
    [8]J. Sun, L. Qiao, S. Sun, et al, Photocatalytic degradation of Orange G on nitrogen-doped TiO2catalysts under visible light and sunlight irradiation, Journal of Hazardous Materials,2008,155:312-319.
    [9]B. Mounir, M. N. Pons, O. Zahraa, et al., Discoloration of a red cationic dye by supported TiO2photocatalysis, Journal of Hazardous Meterials,2007,148:513-520.
    [10]S. H. Fan, Z. F. Sun, Q. Z. Wu, et al., Adsorption and photocatalytic kinetic of azo dyes, Acta Physico-Chimica Sinica,2003,19:25-29.
    [11]Y. L. Song, J. T. Li, B. Bai, TiO2-assisted photodegradation of direct blue78in aqueous solution in sun light, Water, Air and Soil Pollution,2010,213:311-317.
    [12]M. Stylidi, D. I. Kondarides, X. E. Verykios, Pathways of solar light-induced photocatalytic degradation of azo dyes in aqueous TiO2suspensions, Applied Catalysis B:Environmental,2003,40:271-286.
    [13]刘守新,刘鸿,光催化及光电催化基础与应用.化学工业出版社,2006,55-101.
    [14]邢其毅,裴伟伟,徐瑞秋,等,基础有机化学(下册),高等教育出版社,2005,第三版.
    [15]S. Al-Qaradawi, Salman R. Salman, Photocatalytic degradation of methyl orange as a model compound, Journal of Photochemistry and Photobiology A:Chemistry,2002,148:161-168.
    [16]Y. Ku, C. B. Hsieh, Photocatalytic decomposition of2,4-dichlorophenol in aqueous TiO2suspensions, Water Research,1992,26:1451-1456.
    [17]B. Parea, S. B. Jonnalagaddab, H. Tomara, et al., ZnO assisted photocatalytic degradation of acridine orange in aqueous solution using visible irradiation, Desalination,2008,232:80-90.
    [18]宋亚丽,偶氮染料废水的脱色降解及机理研究,河北大学博士学位论文,2009.
    [19]A. Zniszczynska, J. Rubaj, G. Bielecka, et al., Determination of organic acids in compound feed by ion chromatography methord, Bulletin of the Veterinary Institute in Pulawy,2011,55:107-110.
    [1]崔玉民,张文保,苗慧,等,稀土修饰TiO2光催化降解甲基橙反应机理,哈尔滨工业大学学报,2009,41:229-232.
    [2]J. Luo, D. L. Li, M. Z. Jin, Preparation and photocatalytic performance of Cs+/Sr2--doped nano-sized TiO2, Journal of Central South University of Technology,2009,16:282-285.
    [3]吴树新,尹燕华,马智,等,掺铜方法对二氧化钛光催化氧化还原性能的影响,河北大学学报,2005,25:486-494.
    [4]万李,冯嘉猷,CdS/TiO2复合半导体薄膜的制备及其光催化性能,环境科学研究,2009,22:95-98.
    [5]C. L.Wang, L. Sun, K. P. Xie, et al., Controllable incorporation of CdS nanoparticles into TiO2 nanotubes for highly enhancing the photocatalytic response to visible light, Science in China Series B: Chemistry,2009,52:2148-2155.
    [6]李兴鳌,王博琳,刘忠儒,石墨烯的制备、表征与特性研究进展,材料导报,2012,26:61-65.
    [7]柏嵩,沈小平,石墨烯基无机纳米复合材料,化学进展,2010,22:2106-2118.
    [8]Y. H. Zhang, Z. R. Tang, X.Z. Fu, et al., TiO2-Graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant:Is TiO2-Graphene truly different from other TiO2-carbon composite materials? ACS Nano,2010,4:7303-7314.
    [9]H. Zhang, X. J. Lv, Y. M. Li, et al., P25-Graphene composite as a high performance photocatalyst, ACS Nano,2010,4:380-386.
    [10]C. Nethravathi, M. Rajamathi, Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide, Carbon,2008,46:1994-1998.
    [11]S. D. Perera, R. G. Mariano, K. Vu, et al., Hydrothermal synthesis of graphene-TiO2nanotube composites with enhanced photocatalytic activity, ACS Catalysis,2012,2:949-956.
    [12]Y. Y. Liang, H. L. Wang, H. S. Casalongue, et al., TiO2Nanocrystals grown on graphene as advanced photocatalytic hybrid materials, Nano Research,2010,3:701-705.
    [13]W. S. Hummers, R. E. Hoffeman, Preparation of graphitic oxide, Journal of the American Chemical Society,1958,80:1339-1339.
    [14]D. H. Wang, D. Choi, J. Li, et al., Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion, ACS Nano,2009,3:907-914.
    [15]王昭,毛峰,黄祥平,等,TiO2/石墨烯复合材料的制备及其光催化性能,材料科学与工程学报,2011,29:267-271.
    [16]张晓艳,李浩鹏,崔晓莉,TiO2/石墨烯复合材料的合成及光催化分解水产氢活性,无机化学学报,2009,25:1903-1907.
    [17]周锋,万欣,傅迎庆,氧化石墨还原法制备石墨烯及其吸附性能,深圳大学学报理工版,2011,28:436-439.
    [18]李芳柏,古国榜,黎永津,WO3-TiO2复合半导体的光催化性能研究,环境科学,1999,20:75-78.
    [19]A. Houas, H. Lachheb, M. Ksibi, et al., Photocatalytic degradation pathway of methylene blue in water, Applied Catalysis B:Environmental,2001,31:145-157.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700