用户名: 密码: 验证码:
微带多通带和宽带滤波器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线通信行业在21世纪获得了巨大的发展。随着GSM、WIMAX、WCDMA、WLAN、UWB等各种无线通信协议的提出、验证、实现以及应用,极大地刺激了滤波器技术的快速发展。为了进一步提高频谱资源的利用率和通信频段的兼容性,多通带和宽带滤波器技术成为近年来的研究热点。本文主要围绕无线通信频段的微带多通带和宽带滤波器设计展开,针对缺陷地面结构,微带并联枝节和枝节加载谐振器等多种微带结构,利用对比设计思想和协同仿真技术,设计了多款工作于无线通信频段的多通带和宽带滤波器。本文的主要工作如下:
     (1)系统研究了基于缺陷地面谐振器的带通和双通带滤波器设计方法。基于缺陷谐振环单元的谐振和耦合特性分析,采用不同谐振单元的通带组合和馈线的缝隙耦合实现了带源和负载耦合的并联型双通带滤波器;采用同步参数提取技术揭示了嵌套缺陷开口谐振环的双谐振特性,并利用其作为谐振单元实现了结构紧凑的双通带滤波器设计;基于微带缺陷地面双模谐振器结构,设计出非对称零点的缺陷地面双模单通带及双通带滤波器。
     (2)提出了并联电感耦合的带通和双通带滤波器设计方法。利用微带短路枝节的并联电感耦合作用,实现了谐振腔耦合带通滤波器设计;由于并联电感在高频时等效的强耦合作用,进一步将该结构与枝节加载谐振器相结合,采用协同仿真技术快速设计了通带带宽悬殊的双通带滤波器。
     (3)基于对枝节加载谐振器的谐振特性和耦合特性分析,利用其作为基本谐振单元设计了交叉耦合形式和带源和负载耦合形式的高选择性双通带滤波器;根据开口谐振环和缺陷谐振环的外部耦合特点,提出了一种能同时实现宽边耦合和缝隙耦合的公共馈电结构,实现了通带独立设计的混合型双通带滤波器和双工器,并进一步利用该馈电结构实现了带源和负载耦合的微带三通带滤波器;提出了一种外部耦合可调的“T”型馈电结构,较好地解决了混合采用枝节加载谐振器与缺陷谐振器两种谐振结构的微带三通带滤波器设计问题。
     (4)提出了一种采用微带元件高低通特性组合设计超宽带滤波器的新方法。首先利用微带短路枝节和微带交指耦合电容实现准高通特性,并与微带枝节线的准低通特性结合,利用协同仿真实现了准确快速的超宽带滤波器设计;进一步研究了短路阶梯阻抗枝节和一种改进的兰格耦合器结构的传输特性,并与微带开路枝节结合,利用单元特性的网络级联和协同仿真实现了超宽带滤波器的快速设计。
With the phenomenal development in the communication industry, wireless communication has become one of the most popular technologies in this century. And many new wireless communication systems are proposed, verified, realized and adopted, (such as GSM, WIMAX, WCDMA, WLAN, UWB and so on), which have spurred a tremendous development in microwave filter. The demand on sufficient usage of frequency spectrum and compatible of different communication system has spured and improved the multiband and wideband filter design technology. The research work presented in this dissertation focuses on the multiband and wideband filter design in wireless communication. Based on the analysis of microstrip structures, such as Defected Ground Structure(DGS), parallel stubs, Stub Loaded Resonator(SLR) and so on, many multiband and wideband fitlers working at the wireless communication band are designed, in which the comparison and co-simulation method are adopted. The author’s works mainly consist of:
     (1) Systemically Study on the bandpass and dualband filter design based on the DGS. The resonant and coupling prorperties of the DGS resonator is analyzed. Making use it as the resonant unit, bandpass and dual-band filters with source-load coupling are designed. The dual-resonant property of the nesting DGS Open Loop Ring Resonator (OLRR) is studied and a compact dualband filter is designed and achieved on this structure. Based on the resonant property of the DGS dualmode resonator, bandpass and dualband response with unsymmetrical transmission zeros are achieved.
     (2) The bandpass and dualband filter design method based on the parallel inductance coupling is proposed. The parallel inductance coupling effect of the parallel shorted stub is studied and utilized to design resonator-coupled bandpass filter. Because the parallel stub is with strong coupling in the high frequency, so a dualband filter with wider second pass-band is realized by combing it with SLR, in which the co-simulation si used..
     (3) Some novel type of dualband and triband filters are designed, which are based on the SLR and hybrid structure. The multi resonant frequency property and coupling property of the SLR is carefully studied and used to design dualband filter with high selectivity. Based on the research on the feed structure of the Defected SIR(DSIR) and OLRR, and a common coupling structure with the property of provided independent external coupling to each resonator is realized. A dualband filter and duplexier with independent passband design are achieved on this feed structure. And a triband filter is also achieved on this coupling structure. By using the SLR and DSIR as resonant unit, the tri-band filters working at the wireless communication band are designed, in which a‘T’-shaped feed structure and a novel couplings structure used between SLRs are proposed
     (4) Study on the co-simulation of Ultra-Wideband filter (UWB) design by the method of assembling lowpass and highpass property of components. The interdigital coupling capacitance combined with the parallel shorted stub is used to form the highpass response and the high impedance microstrip stubs are used to form lowpass response. A UWB performance is achieved with the two filters in co-simulation design method. And the transmission property of an improved Lange coupling structure and the shorted SIR stub is proposed and studied. By combing the Lange coupler structure with shorted SIR stub, a UWB filter is fastly designed based on the usage of cascaded network idea and co-simulation method.
引文
[1] M.Makimoto,S.Yamashita著,赵宏锦译,无线通信中的微波谐振器与滤波器,北京:国防工业出版社,2002.
    [2]刘长军,黄卡玛,闫丽萍,射频通信电路设计,北京:科学出版社,2005.
    [3]樊振芳,无线通信的发展与未来,中国科技信息,2005,51:45-51.
    [4]高峻,唐晋生,微波滤波器的回顾与展望,应用与设计,2005,11:70-72.
    [5] R. G. L. Mattaei, L. Yong, and E. M. T. Jones, Microwave filters, Impedance-matching networks and coupling structures, New York, McGraw-Hill, 1964.
    [6]清华大学《微带电路》编写组,微带电路.人民邮电出版社,1976.
    [7] Barrett R M, Microwave Printed Circuits - A Historical Survey[J]. IEEE Transactions on Microwave Theory and Techniques, March 1955. 3(2): 1-9.
    [8] McQuiddy D N, Wassel J W, LaGrange J B, et al. Monolithic microwave integrated circuits: an historical perspective [J]. IEEE Transactions on microwave theory and techniques, September 1984. 32(9):997-1008.
    [9] Howe H, Microwave Integrated Circuits-An Historical Perspective [J]. IEEE Transactions on microwave theory and techniques, September 1984. 32(9):991-996.
    [10] E.Yablonovitch, T. J. Gmitter, and K. M. Leung, Photonic band structure: The face centered cubic case employing nonspherical atoms, Physical Review Letters, 1991, 67(17): 2295-2298.
    [11] J. I. Park, C. S. Kim, J. Kim, et al, Modeling of a photonic bandgap and its application for the low-pass filter design, Singapore: Asia Pacific Microwave Conference,1999.
    [12] C. S.Kim, J. I. Park, A. Dal, et al, A novel 1-D periodic defected ground structure for planar circuits, IEEE Microwave Guided Wave Lett., 2000,10(4): 131–133.
    [13] Younkyu Chung, Seong-Sik Jeon, Shinho Kim, Dal Ahn, Jae-Ick Choi, and Tatsuo Itoh, Multifunctional Microstrip Transmission Lines Integrated With Defected Ground Structure for RF Front-End Application, IEEE Trans. Microw. Theory andTech., 2004, 52(5), 1425-1432
    [14] Yong-Chae Jeong, and Jong-Sik, A Novel Frequency Doubler Using Feedforward Technique and Defected Ground Structure, IEEE MicrowaveWireless Compon. Lett., 2004, 14(12), 557-559
    [15] Jong-Sik Lim, Chul-Soo Kim, Jun-Seok Park, Dal Ahn and Sangwook Nam, Design of 10dB 90" branch line coupler using microstrip line with defected ground structure, electronic letters, 2000, 36(21), 1784-1785
    [16] M. Makimoto and S. Yamashita, Bandpass Filters Using Parallel Coupled Stripline Stepped Impedance Resonators, IEEE Trans. Microw. Theory and Tech.,, 1980 28(12), 1413-1417
    [17] M. Sagawa, M. Makimoto, and S. Yamashita, Design Method of Bandpass Filters Using Dielectric-Filled Coaxial Resonators, IEEE Trans. Microw. Theory and Tech.,, 1985, 33(2), 152-157
    [18] M. Sagawa, M. Makimoto and S. Yamashita, Geometrical Structures and Fundamental Characteristics of Microwave Stepped-Impedance Resonators, IEEE. Trans. Microw. Theory and Tech., 1997, 45(7), 1078-1085
    [19] M. Sagawa, K. Takashita and M. Makimoto, Miniaturized Hairpin Resonator Filters and Their Application to Receiver Front-End MIC’s, IEEE Trans. Microw. Theory and Tech., 1989, 37(12), 1991-1997
    [20] J.T. Kuo and E. Shih, Microstrip Stepped Impedance Resonator Bandpass Filter With an Extended Optimal Rejection Bandwidth, IEEE Trans. Microw. Theory and Tech., 2003, 51(5), 1554-1559
    [21] A. Djaiz and T.A. Denidni, A New Compact Microstrip Two-Layer Bandpass Filter Using Aperture-Coupled SIR-Hairpin Resonators With Transmission Zeros, IEEE Trans. Microw. Theory and Tech., 2006, 54(5), 1929-1936
    [22]Y. Cassivi, L. Perregrini, P. Arcioni, et al,“Dispersion characteristics of substrate integrated rectangular waveguide,”IEEE Microw. Wireless Compon. Lett., vol. 12, no. 9, pp. 333-335, Sep. 2002.
    [23]F. Xu, Y. L. Zhang, W. Hong, et al,“Finite-difference frequency-domain algorithm for modeling guided-wave properties of substrate integrated waveguide,”IEEE Trans. Microw. Theroy Tech., vol. 51, no. 11, pp. 2221-2226, Nov. 2003.
    [24]Y. L. Zhang, W. Hong, F. Xu, et al,“Analysis of guided-wave problems in substrate integrated waveguides numerical simulations and experimental results,”in IEEE MTT-S Int. Microwave Symp. Dig., pp. 2049-2052, Jun. 2003.
    [25]Z. C. Hao, W. Hong, H. Li, et al,“A broadband substrate integrated waveguides (SIW) filter,”in IEEE MTT-S Int. Microwave Symp. Dig., pp. 598-601, 2005.
    [26]X. P. Chen, W. Hong, J. X. Chen, et al,“Substrate integrated waveguide elliptic filter with high mode,”in APMC’05 Proceedings, 2005.
    [27]Z. C. Hao, W. Hong, J. X. Chen, et al,“Compact super-wide bandpass substrate integrated waveguide (SIW) filters,”IEEE Trans. Microw. Theroy Tech., 2005, 53(9), 2968-2977.
    [28]Y. L. Zhang, W. Hong, K. Wu, et al, Novel substrate integrated waveguide cavity filter with defected ground structure, IEEE Trans. Microw. Theroy Tech., 2005, 53(4), 1280-1287.
    [29]吴万春,甘本祓,现代微波滤波器的结构与设计,北京:科学出版社,1973.
    [30] G.L.Matthaei, L.Young, E.M.T.Jones, Microwave filters, Impedance-matching networks and coupling structures, New York:McGraw-Hill, 1964.
    [31] S.B.Cohn, Direct Coupled Cavity Filters, Proc. IRE, 1957, 45(2): 187-196.
    [32] L. Young, Direct-coupled cavity filters for wide and narrow bandwidths, IEEE Trans. on Microwave Theory and Techniques, 1963,11(5):162-178.
    [33] R.Levy, Theory of Direct-Coupled Cavity Filters, IEEE Trans. Microw. Theory and Tech.,1967,15(6):340-348.
    [34] H. J. Orchard, Filter Design by Iterrated Analysis, IEEE Trans. Circuit Systems, 1985, 32(11): 1089-1096.
    [35] A.E.Atia , A.E.Williamsand R.W.Newcomb, Narrow-band multiple-coupled cavity synthesis. IEEE Trans.on Circuits and Systems, 1974,21(5): 649-655.
    [36] R.J.Cameron, General Coupling Matric Synthesis Methods for Chebyshev Filtering Function, IEEE Trans. Microw. Theory and Tech.,1999, 47(4): 433-442.
    [37] R.J.Cameron, Advanced Coupling Matrix Synthesis Techniques for Microwave Filters, IEEE Trans. Microw. Theory and Tech., 2003, 51(1):1-10.
    [38] S.Amari, Synthesis of Cross-Coupled Resonator Filters Using an Analytical Gradient-Based Optimization Technique, IEEE Trans. Microw. Theory and Tech., 2000,48(9):1559-1564.
    [39] S. Amari, U. Rosenberg, J. Bornemann, Adaptive Synthesis and Design of Resonator Filters With Source/Load-Multiresonator Coupling, IEEE Trans. Microw. Theory and Tech., 2002,50(8): 1969-1978.
    [40] http://www.bscfilters.com.
    [41] http://www.klmicrowave.com.
    [42] R.R. Mansour, Filter technologies for wireless base stations, IEEE MicrowaveMagazine, 2004, 5(1):68-74.
    [43]王小林,微波滤波技术在通信系统中的应用,空间电子技术,2001,4:52-54.
    [44]森荣二(日),LC滤波器设计与制作,北京:科学出版社,2006.
    [45] K.-Y.Wong, W.-Y. Tam, Analysis of the Frequency Response of SAW Filters Using Finite-Difference Time-Domain Method, IEEE Trans. Microwave Theory Tech., 2005, 53(11):3364–3370.
    [46] J.S. Hong and M.J. Lancaster, Cross-coupled microstrip hairpin-resonator filters,”IEEE Trans. Microw. Theory Tech., 1998, 46(1), 118–122.
    [47] J.T. Kuo, M.J. Maa, and P.H. Lu, A microstrip elliptic function filter with compact miniaturized hairpin resonators,”IEEE Microw. Guided Wave Lett., 2000, 10(3), 94–95.
    [48] C.M. Tsai, S.Y. Lee, and C.C. Tsai, Performance of a planar filter using a 0 feed structure, IEEE Trans. Microw. Theory Tech., 2002, 50(10), 2362–2367.
    [49] G. L. Matthaei, Interdigital bandpass filters, IEEE Trans. Microw. Theory Tech., vol. IEEE Trans. Microw. Theory Tech., 1962, 10(11), 479–491.
    [50] E. G. Cristal,“Tapped-line coupled transmission lines with applications to interdigital and combline filter,”IEEE Trans. Microw. Theory Tech., vol. IEEE Trans. Microw. Theory Tech., 1975, 23(12), 1007–1012.
    [51] Y.-C. Zhang, K.A. Zaki, A. J. Piloto, and J. Tallo, Miniature Broadband Bandpass Filters Using Double-Layer Coupled Stripline Resonators, IEEE Trans. Microwave Theory Tech., 2006,54(8) :3370- 3377.
    [52] J.-T. Kuo, and M. Jiang, Enhanced Microstrip Filter Design With a Uniform Dielectric Overlay for Suppressing the Second Harmonic Response, IEEE MicrowaveWireless Compon. Lett., 2004,14(9): 419- 421.
    [53]徐鸿飞,朱成枉,刘坚,孙忠良,同轴腔带通滤波器的一种设计方法,微波学报,2004,20(2):5-8.
    [54] Nicola Coetzee, Asymmetrical S-Band Coupled Resonator Filters,Thesis for the Master degree at the University of Stellenbosch, Dec.2005.
    [55] J. Brian Thomas, Cross-Coupling in Coaxial Cavity Filters—A Tutorial Overview, IEEE Trans. Microwave Theory Tech., 2003,51(4), 1368–1376.
    [56]钱云福,特高频通信设备中带通滤波器──螺旋谐振腔滤波器的设计与制作,常州技术师范学院学报, 1995, 1:10-14.
    [57]吴振金,六腔螺旋滤波器设计,中国有线电视,1998,4:35-37.
    [58] Peter Vizmuller, Filters with Helical and Folded Helical Resonators, Artech Hose,Inc. Norwood, MA, 1987,
    [59] J.K.A. Everard, K.K.M. Cheng, Dallas, P.A., High-Q helical resonator for oscillators and filters in mobile communications systems, Electronics Letters, 1989, 25(23), 1648–1650
    [60] S.J.Fiedziuszko, R.S Kwok, Novel helical resonator filter structures, Microwave Symposium Digest, 1998 IEEE MTT-S International, 1998, 3, 1323 - 1326
    [61] Kwok, R.S.; Fiedziuszko, S.J.;“Dual-mode helical resonators”, IEEE Trans. Microwave Theory Tech., 2000, 48(3), 474-477
    [62] G.I. Panaitov, R.Ott, and N.Klein, Dielectric Resonator With Discrete Electromechanical Frequency Tuning, IEEE Trans. Microwave Theory Tech., 2005,53 (11):1-7.
    [63] D. Kajfez and P. Guillon,et al, Dielectric Resonators, MA: Artech House, 1998.
    [64] J.S. Sun, Y.L. Huang, Design and implementation of an X-Band DR bandpass fitler, Microwave journal, 1999, 42(11), 92-103
    [65] Okaya and Barash, the dielectric microwave resonator, Proc. IRE. 1962, 50, 2081-2092
    [66] A.W. Glisson, D. Kajfez, J. James, Evaluation of modes in dielectric resonators using a surface integral equation formulation, IEEE Trans. Microwave Theory Tech., 1983, 31, 1023-1029
    [67] J.V. Bladel, On the resonances of a dielectric resonator of very high permittivity, IEEE Trans. Microwave Theory Tech., 1979, 23, 195-208
    [68] Christen Rauscher, Design of Dielectric-Filled Cavity Filters With Ultrawide Stopband Characteristics, IEEE Trans. Microwave Theory Tech., 2005, 53(5), 1777-1786
    [69] N.Marcuvitz. Waveguide Handbook, McGraw-Hill, New York,1951.
    [70] A.Wexler, Solution of waveguide discontinuities by modal analysis, IEEE Trans. Microwave Theory Tech., 1967, 15(7):508-517.
    [71] R.Mittra, S.W.Lee, Analytic techniques in the theory of guided waves, New York: Macmillan,1971.
    [72] J. Bornemann. A new class of E-plane integrated millimeter-wave filters, IEEE MTT-S Int. Microwave Symp.,1989, 599-602.
    [73] S. Amari and J. Bornemann, Using frequency-dependent coupling to generate finite attenuation poles in direct-coupled resonator bandpass filters, IEEE Microw. Guided Wave Lett., 1999, 9(10), 404–406
    [74] M. Piloni, R. Ravenelli, and M. Guglielmi, Resonant aperture filters in rectangularwaveguide, IEEE MTT-S Int. Microwave Symp. Dig., Anaheim, CA, 1999, 911–914.
    [75] C. Quendo, E. Rius, and C. Person, Narrow bandpass filters using dualbehavior resonators, IEEE Trans. Microw. Theory Tech., 2003, 51(3), 734–743
    [76]李胜先,傅君眉,吴须大,星载高功率微波波导低通滤波器的精确设计,西安交通大学学报,2006,40(2):195-202.
    [77]杨小明,模式匹配法在微波波导器件中的应用,西安电子科技大学硕士学位论文,2007.
    [78] J. Bornemann, S. Amari, J. Uher and R.Vahldieck, Analysis and design of circular ridged waveguide components, IEEE Trans. Microwave Theory Tech., 1999,47(3): 330-335.
    [79] Marco Morelli, Ian Hunter, Richard Parry, and Vasil Postoyalko, Stopband Performance Improvement of Rectangular Waveguide Filters Using Stepped-Impedance Resonators, IEEE Trans. Microwave Theory Tech., 2002, 50(7): 1657-1664.
    [80] http://www.ansoft.com.
    [81] http://www.cst-china.cn.
    [82] http://www.feko.info.
    [83] http://bbs.rfeda.cn.
    [84] http://www.mwhrf.com.
    [85] Samantha Kerr,Dual Mode Dielectric Resonator Filters,Thesis for the Master degree at the University of Queensland.
    [86]崔学民,周济等,低温共烧陶瓷(LTCC)材料的应用和发展现状,材料导报,2005,19(4):1-4
    [87]胡新军,低温共烧陶瓷技术前景,现代技术陶瓷,2005,3:41-42
    [88]苏宏,杨邦朝,杜晓松,丁晓鸿,层叠式LTCC低通滤波器设计,电子元件与材料,2006(7):72-74
    [89] C.Q.Scrantom and J.C. Lawson. LTCC technology: where we are and where we are going-Ⅱ. IEEE MTT-S Dig. 1999. 193-200
    [90]魏启甫,基于LTCC的多层基片集成波导滤波器的研究,上海交通大学博士论文,2008
    [91]欧阳炜霞,张永华,王超,郭兴龙,赖宗声,基于MEMS技术的微波滤波器研究进展,MEMS器件与技术,2008,45:214-218
    [92]郭伟光,MEMS技术的现状与应用,合肥学院学报(自然科学版),2005,15:53-55
    [93]杨宏,王鹤.微电子机械技术的发展与现状[ J ].微电子学, 2001,6:394.
    [94] G.-H. Liu, C.-M. Kang, Developing status and trend ofMEMS technology. Journal of Transducer Technology, 2001, 20 (1): 52- 56.
    [95] S.-V. Robertson, L.-P.-B. Katehi, G.-M. Rebeiz, Micromachined W-band filters. IEEE Transactions on Microwave Theory and Techniques, 1996, 44 (4) : 598- 606.
    [96] K. Entesari, G.-M. Rebeiz, A differential 4-bit 6.5- 10 GHz RF MEMS tunable filter, IEEE Transactions on Microwave Theory and Techniques, 2005, 53(3),1103-1110.
    [97]季来运,陈勤文,等. CDMA移动通信系统用高温超导滤波器的研制,低温物理学报,2005,27(4):365-370
    [98] J. Zhou, M.-J. Lancaster, H. Frederick, et al. HTS narrow band filters at UHF band for radio astronomy applications. IEEE trans. on Applied Superconductivity, 2005,15(2):1004-1007
    [99]金建勋,郑陆海,高温超导材料与技术的发展及应用,电子科技大学学报,2006,35(4):612-627
    [100]王家素等.超导技术应用,成都:成都科技大学出版社,1995
    [1]吴万春,甘本祓,现代微波滤波器的结构与设计,北京:科学出版社,1973.
    [2] S.B. Cohn, Direct-coupled resonator filters, Proc. IRE, 1957,45(2):187–196.
    [3] G.L.Matthaei, L.Young, and E.M.T.Jones, Microwave Filters, Impedance Matching Networks and Coupling Structures, New York: McGraw-Hill, 1964.
    [4]褚庆昕,微波网络讲义,西安:西安电子科技大学,1999
    [5]梁昌洪,计算微波,西北电讯工程学院出版社,1985
    [6]吴万春,梁昌洪,微波网络及其应用,国防工业出版社,1980
    [7]林为干,微波网络,国防工业出版社,1978
    [8]李嗣范,微波元件原理与设计,1982
    [9]黄宏嘉,微波原理,科学出版社,1964
    [10]宋丽川等,网路综合与宽带匹配,国防工业出版社,1981
    [11] A. E. Williams. A Four-cavity Elliptic Waveguide Filters. IEEE Trans. Microwave Theory Tech., 1970,18(12), 1109-1114.
    [12]强锐,王蕴仪.准椭圆函数滤波器原型电路参数的优化提取.微波学报.
    [13] A.E.Atia , A.E.Williamsand R.W.Newcomb, Narrow-band multiple-coupled cavity synthesis, IEEE Trans.on circuits and systems, 1974, 21(5), 649-655.
    [14] A. E. Atia, ALBERT E. Williams, Narrow-Band pass Waveguide Filters. IEEETrans. Microwave Theory Tech., 1972, 20, 258-265.
    [15] R. J. Cameron. General coupling matrix synthesis methods for Chebyshev filtering function. IEEE Trans. Microwave Theory Tech., 1999, 47(4): 433-442.
    [16] J. B. Thomas. Cross-coupling in coaxial cavity filters--- A tutorial overview. IEEE Trans. Microwave Theory Tech., 2003, 51(4):1368-1376.
    [17] R. J. Cameron, Advanced coupling matrix synthesis techniques for microwave filters, IEEE Trans. Microwave Theory Tech., 2003, 51(1), 1-10.
    [18] C. Wang, H.-W. Yao, K.-A. Zaki, Mixed Modes Cylindrical Planar Dielectric Resonator Filters with Rectangular Enclosure, IEEE Trans. Microwave Theory Tech., 1995, 43(12), 2817-2823.
    [19] R. J. Cameron, H. Gregg, C.J. Radcliffe and J. D. Rhodes, Extracted-Pole Filter Manifold Multiplexing, IEEE Trans. Microwave Theory Tech., 1982, 30(7), 1041-1050
    [20] Smain Amari, Synthesis of Cross-Coupled Resonator Filters Using an Analytical Gradient-Based Optimization Technique, IEEE Trans. Microwave Theory Tech., 2000, 48(9), 1559-1563.
    [21] Smain Amari, Uwe Rosenberg, and Jens Bornemann, Adaptive Synthesis and Design of Resonator Filters With Source/Load-Multiresonator Coupling, IEEE Trans. Microwave Theory Tech., 2002, 50(8),1969-1978.
    [22]苏涛,多路耦合器及其相关理论和技术研究,西安电子科技大学博士学位论文,2004.
    [23] J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, Wiley, New York, 2001.
    [24] Giuseppe Macchiarella, Stefano Tamiazzo, Design Techniques for Dual-Passband Filters, IEEE Trans. Microwave Theory Tech., 2005, 53(11), 3265-3271.
    [25] R. J.Cameron, M. Yu, and Y. Wang, Direct-coupled microwave filters with single and dual stopbands, IEEE Trans. Microw. Theory and Tech., 2005, 53(11): 3288-3279.
    [26] X. Guan, Z. Ma, P. Cai, Y. Kobayashi, T. Anada, and G. Hagiwara, Synthesis of dual-band bandpass filters using successive frequency transformations and circuit conversions, IEEE Microw. Wireless Compon. Lett., 2006, 16(3), 110–112.
    [27] R. Levy, Generalized rational function approximation in finite intervals using Zolotarev functions, IEEE Trans. Microw. Theory Tech., 1970, 18(12), 1052–1064.
    [28] H. C. Bell, Zolotarev bandpass filters, in IEEE MTT-S Int. Microwave Symp. Dig.,Phoenix, AZ, May 2001, pp. 1495–1498.
    [29] J. Lee, M. S. Uhm, and I. B. Yom, A dual-passband filter of canonical structure for satellite applications, IEEE Microw.Wireless Compon. Lett., 2004, 14(6), 271–273.
    [30] S. Holme, Multiple passband filters for satellite applications, in Proc. 20th AIAA Int. Communications Satellite Systems Conf. and Exhibit, Montreal, QC, Canada, May 2002, pp. 1993–1996.
    [31] T.-H. Huang, H.-J. Chen, C.-S. Chang, L.-S. Chen, Y.-H. Wang and M.-P. Houng, A novel compact ring dual-mode filter with adjustable second-passband for dual-band applications, IEEE Microw. Wireless Compon. Lett., 2006, 16(6), 360–362.
    [32] S Sun and L Zhu, Compact dual-band microstrip bandpass filter without external feeds, IEEE Microw. Wireless Compon. Lett., 2005, 15(10), 644–646.
    [33] S.-F Chang, Y.-H Jeng, and J.-L Chen, Dual-band step-impedance bandpass filter for multimode wireless LANs, Electron. Lett., 2004, 40(1), 38–39.
    [34] J Wang, Y.-X Guo, B.-Z Wang, L. C. Ong, and S. Xiao, High-selectivity dual-band stepped-impedance bandpass filter, Electron. Lett., 2006, 42(7), 538–539.
    [35] J.-T Kuo, T.-H Yeh and C.-C Yeh, Design of microstrip bandpass filter with a dual-passband response, IEEE Trans. Microw. Theory Tech., 2005, 53(4), 1331–1337.
    [36] Y.-P Zhang and M Sun, Dual-band microstrip bandpass filter using stepped-impedance resonators with new coupling schemes, IEEE Trans. Microw. Theory Tech., 2006, 54, (10), pp. 3779–3885.
    [37] X.-Y Zhang, J.-X Chen and X Quan, Dual-band bandpass filter using stub-loaded resonators, IEEE Microw. Wirel. Compon. Lett., 2007, 17, (8), 583–585.
    [38] P Mondal and M.-K Mandal, Design of dual-band bandpass filters using stub-loaded open-loop resonators, IEEE Trans. Microw. Theory Tech., 2008, 56, (1), 150–155.
    [39] H.-M Lee, C.-R Chen, C.-C Tsai and C.-M Tsai, Dual-band coupling and feed structure for microstrip filter design, in IEEE MTT-S Int. Microw. Symp. Dig., 2004, 3, 1971–1974.
    [40] M.-L Chuang, Concurrent dual band filter using single set of microstrip open-loop resonators, Electron. Lett., 2005, 41, 1013–1014.
    [41] J.-T Kuo and H.-S Cheng, Design of quasi-elliptic function filters with a dual-passband response, IEEE Microw.Wireless Compon. Lett., 2004, 14, 472–474
    [42] M.-Q Zhou, X.-H Tang and F Xiao, Compact Dual Band Bandpass Filter Using Novel E-Type Resonators With Controllable Bandwidths, IEEE Microw.WirelessCompon. Lett., 2008, 18(12), 779-781.
    [43] C.-H Lee, C.-I.-G Hsu and H.-K Jhuang, Design of a new Tri-band microstrip BPF using combined quarter-wavelength SIRs, IEEE Microw. Wire. Compon. Lett., 2006, 16, (11), 594–596.
    [44] C.-I.-G. Hsu, C.-H Lee, and Y.-H Hsieh, Tri-band bandpass filter with sharp passband skirts designed using tri-section SIRs, IEEE Microw. Wirel. Compon. Lett., 2008, 18, (1), 19–21.
    [45] Q.-X Chu and X.-M Lin, Advanced triple-band bandpass filter using tri-section SIR, Electron. Lett., 2008, 44, (4), 295–296.
    [46] F. C. Chen, Q. X. Chu, and Z. H. Tu,“Tri-band bandpass filter using stub loaded resonators,”Electron. Lett., 2008, 44(12), 747–749.
    [47] C. Quendo, E. Rius, A. Manchec, Y. Clavet, B. Potelon, J. Favennec and C. Person, Planar tri-band filter based on dual behavior resonator (DBR), in Proc. 35th Eur. Microw. Conf., Oct. 2005, 269–272.
    [48] H. Zhang and K.-J Chen, A tri-section stepped-impedance resonator for cross-coupled bandpass filters, IEEE Microw. Wireless Compon. Lett., 2005, 15(6), 401–403.
    [49] D. Packiaraj, M. Ramesh and A.-T Kalghatgi, Design of a tri-section folded SIR filter, IEEE Microw. Wireless Compon. Lett., 2006, 16(5), 317–319.
    [50] C.M. Tsai, S.Y. Lee, and C.C. Tsai, Performance of a planar filter using a 0 feed structure, IEEE Trans. Microw. Theory Tech., 2002, 50(10), 2362–2367.
    [51] C.-F Chen, T.-Y Huang and R.-B Wu, Design of dual- and triplepassband filters using alternately cascaded multiband resonators’, IEEE Trans. Microw. Theory Tech., 2006, 54, (9), 3550–3558.
    [52] B-J Chen, T.-M Shen and R.-B Wu, Design of Tri-Band Filters With Improved Band Allocation,IEEE Trans. Microw. Theory Tech., 2009, 57(7), 1790-1797.
    [53] C.-Y Chen and C.-Y Hsu, A simple and effective method for microstrip dual-band filters design, IEEE Microw. Wireless Compon. Lett., 2006, 16(5), 246–248.
    [54] F.-C Chen and Q.-X Chu, Design of Compact Tri-Band Bandpass Filters Using Assembled Resonators, IEEE Trans. Microw. Theory Tech., 2009, 57(1), 165-171.
    [55] M.-H Weng, H.-W Wu, K Shu, J.-R Chen, R.-Y Yang and Y.-K Su, A novel triple-band bandpass filter using Multilayer-based substrates for WiMAX, European Microwave Conference, Oct. 2007, 325–328.
    [56] B.-C Chen, T.-M Shen, T.-Y Huang and R.-B Wu, A Dual Pass Band Filter withEmbedded CPW Resonator, Asia-Pacific Microwave Conference, Dec. 2007, 1-4.
    [57] B Wu, C.-H Liang, Q Li, and P.-Y Qin, Novel Dual-Band Filter Incorporating Defected SIR and Microstrip SIR, IEEE Microw. Wirel. Compon. Lett., 2008, 18(6), 392–394.
    [58] J.-X Chen, T.-Y Yum, J.-L. Li and Q. Xue, Dual-mode dual-band bandpass filter using stacked-loop structure, IEEE Microw. Wireless Compon. Lett., 2006, 16(9), 502–504.
    [59] J.-W Baik, S Pyo, W.-S Yoon and Y.-S Kim, Dual-mode dual-band bandpass filter for single substrate configuration, Electron. Lett., 2009, 45(19).
    [60] X.-Y Zhang and Q. Xue, Novel Dual-Mode Dual-Band Filters Using Coplanar-Waveguide-Fed Ring Resonators, IEEE Microw. Wireless Compon. Lett., 2007, 55(10), 2183-2190.
    [61] C. Quendo, E. Rius, and C. Person, An original topology of dual-band filter with transmission zeros, in IEEE MTT-S Int. Microw. Symp. Dig., 2003, 2, 1093–1096.
    [62] L.-C Tsai and C.-W Hsue, Dual-band bandpass filters using equallength coupled-serial-shunted lines and Z-transform technique, IEEE Trans. Microw. Theory Tech., 2004, 52(4), 1111–1117.
    [63] C. M. Tasi, H. M. Lee, and C. C. Tsai,“Planar filter design with fully controllable second passband,”IEEE Trans. Microw. Theory Tech., 2005, 53(11), 3429–3439.
    [64] K.-C Lin, C.-F Chang, M.-C Wu and S.-J Chung, Dual-Bandpass Filters With Serial Configuration Using LTCC Technology, IEEE Trans. Microw. Theory Tech., 2006, 54(6), 2321-2328.
    [65] C.-W Tang, S.-F You and I.-C Liu, Design of a Dual-Band Bandpass Filter With Low-Temperature Co-Fired Ceramic Technology, IEEE Trans. Microw. Theory Tech., 2006, 54(8), 3327-3332.
    [66] J.W.Bandler, R.M.Biernacki, S.H.Chen, et al, Space mapping technique for electromagnetic optimization. IEEE Trans. Microwave Theory Tech., 1994, 42(12):2536–2544.
    [67] J.W.Bandler, Q.S.Cheng, S.A. Dakroury, et al, Space mapping: The state of the art, IEEE Trans. Microwave Theory Tech., 2004, 52(1):337–361.
    [1] E.Yablonovitch, T. J. Gmitter, and K. M. Leung, Photonic band structure: The face centered cubic case employing nonspherical atoms, Physical Review Letters, 1991, 67(17): 2295-2298.
    [2] J. I. Park, C. S. Kim, J. Kim, et al, Modeling of a photonic bandgap and itsapplication for the low-pass filter design, Singapore: Asia Pacific Microwave Conference,1999.
    [3] C. S.Kim, J. I. Park, A. Dal, et al, A novel 1-D periodic defected ground structure for planar circuits, IEEE Microwave Guided Wave Lett., 2000, 10(4), 131–133.
    [4] J. B.Pendry, A. J. Holden, D.J. Robbins, et al, Magnetism from Conductors and Enhanced Nonlinear Phenomena, IEEE Trans. Microwave Theory Tech., 1999, 47(11), 2075-2084.
    [5] J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, Wiley, New York, 2001.
    [6] J.Bonache, F. Martin, F. Falcone, et al, Application of complementary split-ring resonators to the design of compact narrow band-pass structures in microstrip technology, Microwave and Optical Technology Letters, 2005, 46(5), 508–512.
    [7] D.Ahn, J.-S. Park, C.-S. Kim, J. Kim, Y. Qian, and T. Itoh, A Design of the Low-Pass Filter Using the Novel Microstrip Defected Ground Structure, IEEE Trans. Microwave Theory Tech., 1999, 49(1), 86–93.
    [8] J.-S. Lim, C.-S. Kim, D. Ahn, et al, Design of Low-Pass Filters Using Defected Ground Structure, IEEE Trans. Microwave Theory Tech., 2005, 53(8), 2539-2545.
    [9] H.-W. Liu, Z.-F. Li, X.-W. Sun, and J.-F. Mao, An Improved 1-D Periodic Defected Ground Structure for Microstrip Line, IEEE Microwave and Wireless Components Letters, 2004,14(4):180-182.
    [10] J.-S. Park, J.-S. Yun, and D. Ahn, A Design of the Novel Coupled-Line Bandpass Filter Using Defected Ground Structure With Wide Stopband Performance, IEEE Trans. Microwave Theory Tech., 2002, 50(9):2037-2043.
    [11] A. Abdel-Rahman, A. K. Verma, A. Boutejdar, and A. S. Omar, Compact Stub Type Microstrip Bandpass Filter Using Defected Ground Plane, IEEE Microwave and Wireless Components Letters, 2004, 14(4):136-138.
    [12] B.Wu, B. Li, C. H. Liang, Design of Lowpass Filter Using a Novel Split-ring Resonator Defected Ground Structure, Microwave and Optical Technology Letters,2007, 49(2): 288-291.
    [13] A. A-Rahman, A. R. Ali, S. Amari, and A. S. Omar, Compact bandpass filters using defected ground structure (DGS) coupled resonators, in IEEE MTT-S Int. Dig., 2005, 1479–1482.
    [14] B.Wu, C.-H. Liang, Q.Li, and P.-Y.Qin, Novel Dual-Band Filter Incorporating Defected SIR and Microstrip SIR, IEEE Microwave and Wireless ComponentsLetters, 2008,18(6):392-394.
    [15] S. Amari, Direct Synthesis of Folded Symmetric Resonator Filters with Source- Load Coupling IEEE Microwave and Wireless Components Letters, 2001, 11(6), 264– 266.
    [16] Smain Amari, Uwe Rosenberg, and Jens Bornemann, Adaptive Synthesis and Design of Resonator Filters With Source/Load-Multiresonator Coupling, IEEE Trans. Microwave Theory Tech., 2002, 50(8),1969-1978.
    [17] R. J. Cameron, Advanced coupling matrix synthesis techniques for microwave filters, IEEE Trans. Microwave Theory Tech., 2003, 51(1), 1-10.
    [18] S. Amari, Synthesis of Cross-Coupled Resonator Filters Using an Analytical Gradiant-Based Optimization Technique, IEEE Trans. Microwave Theory Tech., 2000, 48(9): 1559-1564.
    [19] J.-D. Baena, J. Bonache, F. Martín, et. Equivalent-Circuit Models for Split-Ring Resonators and Complementary Split-Ring Resonators Coupled to Planar Transmission Lines , IEEE Trans. Microwave Theory Tech., 2005, 53(4), 1451-1461
    [20] P. Mondal, M. K. Mandal, A. Chaktabarty and S. Sanyal, Compact Bandpass Filters With Wide Controllable Fractional Bandwidth, IEEE Microwave and Wireless Components Letters, 2006, 16(10), 540-542.
    [21] J. Bonache, M. Gil, I. Gil, et. On the Electrical Characteristics of Complementary Metamaterial Resonators, IEEE Microwave and Wireless Components Letters, 2006, 16(10), 543-545.
    [22] I. Wolff, Microstrip bandpass filter using degenerate modes of a microstrip ring resonator, Electron. Lett., 1972, 8(12), 302–303.
    [23] A. G?rür,Description of Coupling Between Degenerate Modes of a Dual-Mode Microstrip Loop Resonator Using a Novel Perturbation Arrangement and Its Dual-Mode Bandpass Filter Applications, IEEE Trans. Microwave Theory Tech., 2004, 52(2), 671-677.
    [24] S.-W Fok, P. Cheong, K.-W Tam and R.-P Martins, A Novel Microstrip Square-Loop Dual-Mode Bandpass Filter With Simultaneous Size Reduction and Spurious Response Suppression, 2006, 54(5), 2033-2041.
    [25]张均等,微带天线理论与工程,国防工业出版社,1988.
    [26] J.-X. Chen, T. Y. Yum, J.-L. Li, and Q. Xue, Dual-mode dual-band bandpass filter using stacked-loop structure, IEEE Microw. Wireless Compon.Lett., 2006,16(9): 502-504.
    [1]清华大学《微带电路》编写组,微带电路.人民邮电出版社,1976.
    [2]吴万春,甘本祓,现代微波滤波器的结构与设计,北京:科学出版社,1973.
    [3] G.L.Matthaei, L.Young, and E.M.T.Jones, Microwave Filters, Impedance Matching Networks and Coupling Structures, New York: McGraw-Hill, 1964.
    [4]Y. Cassivi, L. Perregrini, P. Arcioni, et al,“Dispersion characteristics of substrate integrated rectangular waveguide,”IEEE Microw. Wireless Compon. Lett., 2002, 12(9), 333-335.
    [5]X. P. Chen, W. Hong, J. X. Chen, et al,“Substrate integrated waveguide elliptic filter with high mode,”in APMC’05 Proceedings, 2005.
    [6]Z. C. Hao, W. Hong, J. X. Chen, et al,“Compact super-wide bandpass substrate integrated waveguide (SIW) filters,”IEEE Trans. Microw. Theroy Tech., 2005, 53(9), 2968-2977.
    [7]张玉林,基片集成波导传播特性及滤波器的理论与实验研究,东南大学博士论文,2005.
    [8] J. I. Park, C. S. Kim, J. Kim, et al, Modeling of a photonic bandgap and its application for the low-pass filter design, Singapore: Asia Pacific Microwave Conference,1999.
    [9] Younkyu Chung, Seong-Sik Jeon, Shinho Kim, Dal Ahn, Jae-Ick Choi, and Tatsuo Itoh, Multifunctional Microstrip Transmission Lines Integrated With Defected Ground Structure for RF Front-End Application, IEEE Trans. Microw. Theory and Tech., 2004, 52(5), 1425-1432.
    [10] Yong-Chae Jeong, and Jong-Sik, A Novel Frequency Doubler Using Feedforward Technique and Defected Ground Structure, IEEE MicrowaveWireless Compon. Lett., 2004, 14(12), 557-559.
    [11] Jong-Sik Lim, Chul-Soo Kim, Jun-Seok Park, Dal Ahn and Sangwook Nam, Design of 10dB 90" branch line coupler using microstrip line with defected ground structure, electronic letters, 2000, 36(21), 1784-1785.
    [12] M. Makimoto and S. Yamashita, Bandpass Filters Using Parallel Coupled Stripline Stepped Impedance Resonators, IEEE Trans. Microw. Theory and Tech., 1980 28(12), 1413-1417.
    [13]褚庆昕,微波网络讲义,西安:西安电子科技大学,1999.
    [14] David M Pozar, Microwave Engineering, John Wiley & Sons Inc. 2005.
    [15]梁昌洪,计算微波,西北电讯工程学院出版社,1985.
    [16] M.Makimoto,S.Yamashita著,赵宏锦译,无线通信中的微波谐振器与滤波器,北京:国防工业出版社,2002.
    [17] X.-Y Zhang, J.-X Chen and X Quan, Dual-band bandpass filter using stub-loaded resonators, IEEE Microw. Wirel. Compon. Lett., 2007, 17, (8), 583–585.
    [18] C.-F Chen, T.-Y Huang and R.-B Wu, Design of dual- and triplepassband filters using alternately cascaded multiband resonators’, IEEE Trans. Microw. Theory Tech., 2006, 54, (9), 3550–3558.
    [19] http://bbs.rfeda.cn.
    [1] T.-H Huang, H.-J Chen, C.-S Chang, L.-S Chen, Y.-H Wang and M.-P Houng, A novel compact ring dual-mode filter with adjustable second-passband for dual-band applications, IEEE Microw. Wireless Compon. Lett., 2006, 16(6), 360–362.
    [2] S Sun and L Zhu, Compact dual-band microstrip bandpass filter without external feeds, IEEE Microw. Wireless Compon. Lett., 2005, 15(10), 644–646.
    [3] S.-F Chang, Y.-H Jeng, and J.-L Chen, Dual-band step-impedance bandpass filter for multimode wireless LANs, Electron. Lett., 2004, 40(1), 38–39.
    [4] J Wang, Y.-X Guo, B.-Z Wang, L. C. Ong, and S. Xiao, High-selectivity dual-band stepped-impedance bandpass filter, Electron. Lett., 2006, 42(7), 538–539.
    [5] J.-T Kuo, T.-H Yeh and C.-C Yeh, Design of microstrip bandpass filter with a dual-passband response, IEEE Trans. Microw. Theory Tech., 2005, 53(4), 1331–1337.
    [6] Y.-P Zhang and M Sun, Dual-band microstrip bandpass filter using stepped-impedance resonators with new coupling schemes, IEEE Trans. Microw. Theory Tech., 2006, 54, (10), 3779–3885.
    [7] X.-Y Zhang, J.-X Chen and X Quan, Dual-band bandpass filter using stub-loaded resonators, IEEE Microw. Wirel. Compon. Lett., 2007, 17, (8), 583–585.
    [8] P Mondal and M.-K Mandal, Design of dual-band bandpass filters using stub-loaded open-loop resonators, IEEE Trans. Microw. Theory Tech., 2008, 56, (1), 150–155.
    [9] H.-M Lee, C.-R Chen, C.-C Tsai and C.-M Tsai, Dual-band coupling and feed structure for microstrip filter design, in IEEE MTT-S Int. Microw. Symp. Dig., 2004, 3, 1971–1974.
    [10] M.-L Chuang, Concurrent dual band filter using single set of microstrip open-loop resonators, Electron. Lett., 2005, 41, 1013–1014.
    [11] J.-T Kuo and H.-S Cheng, Design of quasi-elliptic function filters with a dual-passband response, IEEE Microw.Wireless Compon. Lett., 2004, 14, 472–474
    [12] M.-Q Zhou, X.-H Tang and F Xiao, Compact Dual Band Bandpass Filter Using Novel E-Type Resonators With Controllable Bandwidths, IEEE Microw.Wireless Compon. Lett., 2008, 18(12), 779-781.
    [13] C.-H Lee, C.-I.-G Hsu and H.-K Jhuang, Design of a new Tri-band microstrip BPF using combined quarter-wavelength SIRs, IEEE Microw. Wire. Compon. Lett., 2006, 16, (11), 594–596.
    [14] C.-I.-G. Hsu, C.-H Lee, and Y.-H Hsieh, Tri-band bandpass filter with sharp passband skirts designed using tri-section SIRs, IEEE Microw. Wirel. Compon. Lett., 2008, 18, (1), 19–21.
    [15] Q.-X Chu and X.-M Lin, Advanced triple-band bandpass filter using tri-section SIR, Electron. Lett., 2008, 44, (4), 295–296.
    [16] F. C. Chen, Q. X. Chu, and Z. H. Tu,“Tri-band bandpass filter using stub loaded resonators,”Electron. Lett., 2008, 44(12), 747–749.
    [17] C. Quendo, E. Rius, A. Manchec, Y. Clavet, B. Potelon, J. Favennec and C. Person, Planar tri-band filter based on dual behavior resonator (DBR), in Proc. 35th Eur. Microw. Conf., Oct. 2005, 269–272.
    [18] H. Zhang and K.-J Chen, A tri-section stepped-impedance resonator for cross-coupled bandpass filters, IEEE Microw. Wireless Compon. Lett., 2005, 15(6), 401–403.
    [19] D. Packiaraj, M. Ramesh and A.-T Kalghatgi, Design of a tri-section folded SIR filter, IEEE Microw. Wireless Compon. Lett., 2006, 16(5), 317–319.
    [20] C.M. Tsai, S.Y. Lee, and C.C. Tsai, Performance of a planar filter using a 0 feed structure, IEEE Trans. Microw. Theory Tech., vol. 50, no. 10, pp. 2362–2367, Oct. 2002.
    [21] C.-F Chen, T.-Y Huang and R.-B Wu, Design of dual- and triplepassband filters using alternately cascaded multiband resonators’, IEEE Trans. Microw. Theory Tech., 2006, 54, (9), 3550–3558.
    [22] B-J Chen, T.-M Shen and R.-B Wu, Design of Tri-Band Filters With Improved Band Allocation,IEEE Trans. Microw. Theory Tech., 2009, 57(7), 1790-1797.
    [23] F.-C Chen and Q.-X Chu, Design of Compact Tri-Band Bandpass Filters Using Assembled Resonators, IEEE Trans. Microw. Theory Tech., 2009, 57(1), 165-171.
    [24] M.-H Weng, H.-W Wu, K Shu, J.-R Chen, R.-Y Yang and Y.-K Su, A novel triple-band bandpass filter using Multilayer-based substrates for WiMAX, European Microwave Conference, Oct. 2007, 325–328.
    [25] C.-Y Chen and C.-Y Hsu, A simple and effective method for microstrip dual-band filters design, IEEE Microw. Wireless Compon. Lett., 2006, 16(5), 246–248.
    [26] B.-C Chen, T.-M Shen, T.-Y Huang and R.-B Wu, A Dual Pass Band Filter with Embedded CPW Resonator, Asia-Pacific Microwave Conference, Dec. 2007, 1-4.
    [27] B Wu, C.-H Liang, Q Li, and P.-Y Qin, Novel Dual-Band Filter Incorporating Defected SIR and Microstrip SIR, IEEE Microw. Wirel. Compon. Lett., 2008, 18(6), 392–394.
    [28] R.J.Cameron, General Coupling Matric Synthesis Methods for Chebyshev Filtering Function, IEEE Trans. Microw. Theory and Tech.,1999, 47(4): 433-442.
    [29] J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, Wiley, New York, 2001.
    [1] C.-L Hsu, F.-C Hsu, and J.-T Kuo, Microstrip bandpass filters for ultra-wideband (UWB) wireless communications, in IEEE MTT-S Int. Dig., Jun. 2005, pp. 679–682.
    [2] Z.-C Hao, W Hong, J.-X Chen, X.-P Chen and K Wu, Compact Super-Wide Bandpass Substrate Integrated Waveguide (SIW) Filters, Microw. Theory and Tech., 2005, 53(9), 2968-2977
    [3] Guo-Min Yang, Gaobiao Xiao, Ronghong Jin, Junping Geng, Wei He, and Min Ding, Design of ultra-wide band (UWB) bandpass filter based on defected ground structure, Microwave and optical tech. lett., 2007, 49(6), 1374-1377
    [4] D. Kaddour, J.-D. Arnould and P. Ferrari, Design of a miniaturized ultra wideband bandpass filter based on a hybrid lumped capacitors– distributed transmission lines topology, Microwave Conference, 2006. 36th European
    [5] B.-S. Kwon, S.-S. Myoung, Y.-H. Kim, J.-G. Yook, Co-planar Waveguide Filter with Ground Perforation for Ultra-wideband System, IEEE APMC2005 Proceedings.
    [6] J. Gao, L. Zhu, W. Menzel and F. B?gelsack, Short-Circuited CPW Multiple-Mode Resonator for Ultra-Wideband (UWB) Bandpass Filter, IEEE Microw. Wireless Compon. Lett., 2006, 16(3), 104-106.
    [7] L. Zhu and H. Wang, Ultra-wideband bandpass filter on aperture-backed microstrip line, ELECTRONICS LETTERS 1st September 2005, 41(18).
    [8] H. Wang, L. Zhu and W. Menzel, Ultra-Wideband Bandpass Filter With Hybrid Microstrip/CPW Structure, IEEE Microw. Wireless Compon. Lett., 2005, 15(12), 844-846
    [9] L. Zhu, S. Sun, andW. Menzel, Ultra-wideband (UWB) bandpass filters usingmultiple-mode resonator, IEEE Microw. Wireless Compon. Lett., 2005, 15(11), 796–798.
    [10] A.-M. Abbosh, Planar Bandpass Filters for Ultra-Wideband Applications, IEEE Trans. Microw. Theory and Tech., 2007, 55(10), 2262-2269.
    [11] Q.-X. Chu and S.-T. Li, Compact UWB bandpass filter with improved upper-stopband performance, Electron. Lett., 2008, 44(12).
    [12] C.-P. Chen, Z. Ma, T. Anada1, Synthesis of ultra-wideband bandpass filter employing parallel-coupled stepped-impedance resonators, IET Microw. Antennas Propag., 2008, 2(8), 766–772.
    [13] W.-T. Wong, Y.-S. Lin, C.-H. Wang and C.-H. Chen, Highly Selective Microstrip Bandpass Filters for Ultra-Wideband (UWB) Applications, IEEE. APMC2005 Proceedings
    [14] J.-T. Kuo and E. Shih, Wideband bandpass filter design with three-line microstrip structures IEE Microw. Antennas Propag., 2002, 149(516), OctoberlDecenzher.
    [15] W. Menzel, M.-S. Rahman Tito and L. Zhu, Low-Loss Ultra-Wideband (UWB) Filters Using Suspended Stripline, IEEE. APMC2005 Proceedings
    [16] P.-K. Singh, S. Basu and Y.-H. Wang, Planar Ultra-Wideband Bandpass Filter Using Edge Coupled Microstrip Lines and Stepped Impedance Open Stub, IEEE Microw. Wireless Compon. Lett., 2007, 17(9), 649-651.
    [17] J.-A. Ruiz-Cruz, Y.-C. Zhang, K.-A. Zaki, A.-J. Piloto and J. Tallo, Ultra-Wideband LTCC Ridge Waveguide Filters, IEEE Microw. Wireless Compon. Lett., 2007, 17(2), 115-117.
    [18] J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, Wiley, New York, 2001.
    [19] David M Pozar, Microwave Engineering, John Wiley & Sons Inc. 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700