用户名: 密码: 验证码:
微波接收机无源关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文主要对微波接收机无源电路进行研究。提出了多种小型化宽阻带低通滤波器、带阻滤波器、超宽带滤波器(UWB)和双模双通带滤波器的设计方案。针对毫米波接收前端设计了一款新型微带—波导过渡结构。所设计的电路具有结构紧凑,性能优良,易于集成等优点,有较好的应用前景。
     第一章介绍了微波接收前端的工作原理,微波滤波器的研究现状及其进展。对宽阻带低通滤波器,超宽带滤波器,双通带滤波器的研究现状进行了比较详细的介绍。同时对缺陷地结构(DGS)和槽线加载谐振器结构(PLS)的带阻特性及其应用也作了介绍。
     第二章系统研究了滤波器的设计理论。介绍了几种不同类型的低通原型滤波器,并给出了低通至高通、带阻、带通响应的频率变换公式。广义切比雪夫滤波器传递函数的综合及耦合矩阵的提取也在本章中有所阐述。
     第三章提出了一款平行耦合阶梯阻抗谐振器加载的发卡型谐振器。给出了此谐振器在低通滤波器设计中的LC模型和传输矩阵。并用此谐振器及其改进型设计了几款小型化、宽阻带的低通滤波器。同文献中报道的其他类型的低通滤波器相比,所设计的滤波器在体积,阻带宽度,带外抑制等方面有明显优势。
     第四章分析了DGS和PLS结构的带阻和慢波特性。提出了高Q值的DGS和PLS谐振器,并用此谐振器设计了多款带阻滤波器。利用DGS结构的慢波和带阻特性,与传统的高通滤波器结合,设计了宽阻带UWB,不仅在体积和阻带上有改进,也解决了传统PBG结构加载型UWB因微带线过细而制作困难的弊端。
     第五章研究了中心枝节加载型双模谐振器,并利用双模谐振器中两模式的相对独立性,设计出了带宽独立可调的双模双通带滤波器。此种滤波器的结构紧凑,并因抑制了寄生通带而获得比较宽的阻带。
     第六章分析了微带—波导过渡的研究背景。利用槽线天线的高增益、高方向性和超宽带特性,设计了全Ka波段新型微带—波导过渡。此过渡结构体积小,通带平坦度好,插损小,非常适合于实际的工程应用。
     第七章对全文工作进行总结,以及对未来工作的展望。
Microwave receiver and passive components including filters and microstrip-to-waveguide transition are studied. Several schemes for wide-stopband lowpass filters (LPF), ultra-wide band (UWB) filters, and dual-mode dual-band filters are proposed. Besides, a novel minimized waveguide-to-microstrip transition is designed which necessary in millimeter-wave receivers. All these passive components have merits of compact size, improved performances, and easy integrated, which can be used widely in future receiver systems.
     In chapter 1, the basic principle of microwave receiver and the background and the progresses of microwave filters are introduced, including wide-stopband LPF, ultra-wide band filter, and dual-mode dual-band filter. The stopband characteristics of the defected ground structures (DGS) and patch loaded slotline (PLS) are also mentioned in this chapter.
     In chapter 2, systematic research on the design theory of filters. Different types of lowpass prototype filters are introduced and element transformations for lowpass prototype to highpass, stopband, and bandpass responses are given. Besides, synthesis methods of transfer function and general coupling matrix for chebyshev filtering functions are also discussed in this chapter.
     In chapter 3, a parallel stepped impedance resonators (SIR) loaded hairpin resonator is proposed. The equivalent LC circuit and transmission matrix of the new resonator used in LPF design is given. Several LPFs with wide stopband are designed using this resonator and improved ones. Comparing with other LPFs reported in open literatures, the new LPFs designed in this chapter have merits of decreased size, wide-stopband, and improved stopband.
     In chapter 4, several classic characteristics of DGS and PLS are studied, such as stopband and slow-wave characteristics. A novel resonator with high Q factor is proposed and filters using the new resonator are designed. A UWB filter with DGS is investigated and it has a minimized size and a very wide stopband comparing with conventional ones. Furthermore, the DGS loaded UWB can avoid a disadvantage which the periodic bandgap (PBG) structures loaded UWB will met with that the line is too narrow to be fabricated.
     In chapter 5, characteristics of stub loaded dual-mode resonator are studied. A new kind of dual-mode dual-band filter using this resonator is designed and two passband of it can be adjusted separately. The new dual-mode dual-band filter is compact and has excellent stopband performances with the second harmonic was completely compressed.
     In chapter 6, the background of microstrip-to-waveguide transition is simply presented. A new kind of microstrip-to-waveguide transition is proposed using slot antenna, which has high gain, narrower beam, and wide radiation band. The new transition has compact size, small ripples and low insertion losses in the passband. Because of these characteristics, this transition is fit for practical circuit.
     In chapter 7, a summary of the whole dissertation and potential research topics are given.
引文
[1] D. M. Pozar. Microwave Engineering. 3rd ed., New York: Wiley, 2005
    [2] A. A. Oliner. Historical perspectives on microwave field theory. IEEE Trans. Microw. Theory Tech., 1984, 32 (9): 1022-1044
    [3] R. M. Fano and A. W. Lawson. Microwave filters using quarter-wave couplings. Proc. I.R.E., 1947,35(11):1318-1323
    [4] J. Hesselt, G. Goubaut, and L. R. Battersbyt. Microwave filter theory and design. Proc. I.R.E., 1949, 37(9):990-1002
    [5] G. C. Southworth. Principles and applications of waveguide transnmission. New York: D. Van Nostrand Company, 1950:285-319
    [6] H. J.Riblet. Synthesis of narrow-band direct coupled filters. Proc. I.R.E., 1952, 40(10): 1219-1223
    [7] S. B. Cohn. Direct-coupled-resonator filters. Proc. I.R.E., 1957, 45 (2): 187-196
    [8] R. M. Kurzrok. General three-resonator filters in waveguides. IEEE Trans. Microw. Theory Tech., 1966, 14(1): 46-47
    [9] R. M. Kurzrok. General four-resonator filters at microwave frequencies. IEEE Trans. Microw. Theory Tech., 1966, 14(6): 295-296
    [10] A. E. Williams. A four-cavity ellpitic waveguide filter. IEEE Trans. Microw. Theory Tech., 18(12):1109-1114
    [11] A. E. Atia and A. E. Williams. Narrow-bandpass waveguide filters. IEEE Trans. Microw.Theory Tech., 1972, 20 (4): 258-265
    [12] A. E. Atia, A. E. Williams, and R. W. Newcomb. Narrow-band multiple-coupled cavity synthesis. IEEE Trans. Circuit Syst., 1974, 21 (9) : 649-655
    [13] R. J. Cameron and J. D. Rhodes. Asymmetric realizations of dual-mode bandpass filters. IEEE Trans. Microw.Theory Tech., 1981, 29 (1): 51-58
    [14] R. J. Cameron. General coupling matrix synthesis methods for chebychev filtering functions. IEEE Trans. Microw. Theory Tech., 1999, 47(4): 433-442
    [15] S. Amari. Synthesis of cross-coupled resonator filters using an analytical gradient-based optimization technique. IEEE Trans. Microw. Theory Tech., 2000, 48 (9): 1559-1564
    [16] R. J. Cameron. Advanced coupling matrix synthesis techniques for microwave filters. IEEE Trans. Microw. Theory Tech., 2003, 51(1): 1-10
    [17] S. Amari, U. Rosenberg, and J. Bornemann. Adaptive synthesis and design of resonator filters with sourceload-multiresonator coupling. IEEE Trans. Microw. Theory Tech., 2002, 50 (8): 1969-1977
    [18] J.Y. Park, S. M. Han, and T. Itoh. A rectenna design with harmonic-rejecting circular-sector antenna. IEEE Antennas Wireless Propagat. Lett., 2004, 3: 52-54
    [19] C.-H.K.Chin, Q. Xue, and C.H. Chan. Design of a 5.8-GHz rectenna incorporating a new patch antenna. IEEE Antennas Wireless Propagat. Lett., 2005, 4:175-178
    [20] F. Gruson, G. Bergmann,and H.Schumacher. A frequency doubler with high conversion gain and good fundamental suppression. IEEE Microw. Wireless Compon. Lett., 2004, 14(3): 109-111
    [21] D.G. Thomas, G.R. Branner. Single-ended HEMT multiplier design using reflector networks. IEEE Trans. Microw. Theory Tech., 2001, 49 (5): 990-993
    [22] T.Y. Yum, Q. Xue, and C. H. Chan. Amplifier linearization using compact microstrip resonant cell-theory and experiment. IEEE Trans. Microw. Theory Tech., 2004, 52(3): 927-934
    [23] Q. Xue, K. M. Shum, and C. H. Chan. Low conversion-loss fourth subharmonic mixers incorporating CMRC for millimeter-wave applications. IEEE Trans. Microw. Theory Tech., 2003, 51 (5): 1449-1454
    [24] S.C. Lin, P.H. Deng, Y.S. Lin, et al. Wide-stopband microstrip bandpass filters using dissimilar quarter-wavelength stepped-impedance resonators. IEEE Trans. Microw. Theory Tech., 2006, 54 (3): 1011-1018
    [25] S.W. Wong and L. Zhu. Ultra-wideband bandpass filters with improved out-of-band behaviour via embedded electromagnetic-bandgap. Microw. Antennas Propag., 2008, 2(8): 854-862
    [26] M. I. Lai, S. K. Jeng. Compact microstrip dual-band bandpass filters design using genetic-algorithm techniques. IEEE Trans. Microw. Theory Tech., 2006, 54 (1): 160-168
    [27] R. Li and L. Zhu. Ultra-wideband microstrip-slotline bandpass filter with enhanced rejection skirts and widened upper stopband. Electron. Lett., 2007, 43(24): 1368-1369
    [28] A. Gorur, C. Karpuz. Miniature dual-Mode microstrip filters. IEEE Microw. Wireless Compon. Lett., 2007, 17(1): 37-39
    [29] Y. S. Lin, C.C. Liu, K.M. Li, et al. Design of an LTCC tri-band transceiver module for GPRS mobile applications. IEEE Trans. Microw. Theory Tech., 2004, 52 (12): 2718-2724
    [30] M. Makimoto and S. Yamashita. Compact bandpass filters using stepped impedance resonators. Proceedings of the IEEE. 1979,61(1):16-19
    [31] K. O. Sun, S. J. Ho, C. C. Yen, et al. A compact branch-line coupler using discontinuous microstrip lines. IEEE Microw. Wireless Compon. Lett., 2005, 15(8): 519-520
    [32] Z.M. Hejazi, P.S. Excell, and Z. Jiang. Compact dual-mode filters for HTS satellite communication systems. Electron. Lett., 1998, 8(8): 275-277
    [33] Q. L. Bao, Q.R. Zheng, and N.C. Yuan. IEEE Microw. Wireless Compon. Lett., 2006, 16(5): 269-271
    [34] D.-J. Woo and T.-K. Lee. Suppression of harmonics in Wilkinson power divider using dual-band rejection by asymmetric DGS. IEEE Trans. Microw. Theory Tech., 2005, 6 (2): 2139-2144
    [35] J.-S. Hong and M. J. Lancaster. Microstrip filters for RF/microwave applications. New York: Wiley, 2001
    [36] M. Miyazaky, H. Asas, and O. Ishida. A broad band dielectric diplexer using a snake strip-line. IEEE MTT-S Dig., 1991, 2:551-554
    [37] J.-W. Sheen. A compact semi-lumped low-pass filter for harmonics and spurious suppression IEEE Microw. Wireless Compon. Lett., 2000, 10(3): 92-93
    [38] L.-H. Hsieh, K. Chang. Compact lowpass filter using stepped impedance hairpin resonator. Electron. Lett., 2001, 37(14): 899-900
    [39] S.H. Dahlan, M.Esa. Miniaturized low pass filter using modified unifolded single hairpin-Line resonator for microwave communication systems. RF and Microwave Conference, RFM 2006. International 2006:16-20
    [40] J.-X. Chen, Q. Xue. Compact microstrip lowpass filter using slow-wave resonator. Microwave Conference, 2005 European, 2005, 2
    [41] W.H. Tu, K. Chang. Compact microstrip low-pass filter with sharp rejection. IEEE Microw. Wireless Compon. Lett., 2005, 15(6): 404-406
    [42] L.H. Hsieh, K.Chang. Compact elliptic-function low-pass filters using microstrip stepped-impedance hairpin resonators. IEEE Trans. Microw. Theory Tech., 2003,51(1): 193-199
    [43] I. Wolff, N. Knoppik. Microstrip ring resonator and dispersion measurement on microstrip lines. Electron. Lett., 1971, 7(26): 779-781
    [44] I. Wolff. Microstrip bandpass filter using degenerate modes of a microstrip ring resonator. Electron. Lett., 1972 , 8(12): 302-303
    [45] K.A.Zaki, C. Chen, and A.E. Atia. A circuit model of probes in dual-mode cavities. IEEE Trans. Microw. Theory Tech., 1988, 36 (12): 1740-1746
    [46] J.A. Curtis, S.J. Fiedziuszko. Multi-layered planar filters based on aperture coupled, dual mode microstrip or stripline resonators. IEEE MTT-S Int. Microw. Symp. Dige. 1992, 3: 1203–1206
    [47] J.S. Hong, M.J. Lancaster. Microstrip bandpass filter using degenerate modes of a novel meander loop resonator. IEEE Microw. Guided Wave Lett., 1995, 5(11): 371-372
    [48] L. Zhu, B. C. Tan, and S. J. Quek. Miniaturized dual-mode bandpass filter using inductively loaded cross-slotted patch resonator. IEEE Microw. Wireless Compon. Lett., 2005, 15(1): 22-24
    [49] A. Gorur, C. Karpuz, and M. Akpinar. A reduced-size dual-mode bandpass filter with capacitively loaded open-loop arms. IEEE Microw. Wireless Compon. Lett., 2003, 13(9): 385-387
    [50] W.-H Tu. Compact double-mode cross-coupled microstrip bandpass filter with tunable transmission zeros. Microw. Antennas Propag., 2008, 2(4):373-377
    [51] J. S. Hong, H. Shaman, and Y.H. Chun. Dual-mode microstrip open-loop resonators and filters. IEEE Trans. Microw. Theory Tech., 2007,55(8): 1764-1770
    [52] X. C. Zhang, Z. Y. Yu, and Jun Xu. Design of microstrip dual-mode filters bBased on source-load coupling. IEEE Microw. Wireless Compon. Lett., 2008, 18(10): 677-679
    [53] W. Shen, X. W. Sun, and W. Y. Yin. A novel microstrip filter using three-mode stepped impedance resonator (TSIR). IEEE Microw. Wireless Compon. Lett., 2009, 19(12): 774-776
    [54] M.H. Ren, D.Chen, and C.H. Cheng. A novel wideband bndpass filter using a cross-shaped multiple-mode resonator. IEEE Microw. Wireless Compon. Lett., 2008, 18(1): 13-15
    [55] S. Wu,B.Razavi. A 900-MHz/1.8-GHz CMOS receiver for dual-band applications. IEEE J. Solid-State Circuits. 1998, 33(12): 2178-2185
    [56] L. C.Tsai, C. W. Hsue. Dual-band bandpass filters using equal-length coupled-serial-shunted lines and Z-transform technique. IEEE Trans. Microw. Theory Tech., 2004,52(4): 1111-1117
    [57] S. F. Chang, Y. H. Jeng, and J. L. Cheng. Dual-band step-impedance bandpass filter for multimode wireless LANs. Electron. Lett., 2004, 40(1): 38-39
    [58] S. Sun, L. Zhu. Compact dual-band microstrip bandpass filter without external feeds. IEEE Microw. Wireless Compon. Lett., 2005, 15(10): 644-646
    [59] Y. P. Zhang, M. Sun. Dual-band microstrip bandpass filter using stepped-impedance resonators with new coupling schemes. IEEE Trans. Microw. Theory Tech., 2006,54(10): 3779-3785
    [60] J. T. Kuo, H. P. Lin. Dual-band bandpass filter with improved performance in extended upper rejection band. IEEE Trans. Microw. Theory Tech., 2009,57(4): 824-829
    [61] C.Y. Chen, C. Y. Hsu. A simple and effective method for microstrip dual-band filters design. IEEE Microw. Wireless Compon. Lett., 2006, 16(5): 246-248
    [62] C. Chen, C.Y. Hsu, and H.R. Chuang. Design of miniature planar dual-band filter using dual-feeding structures and embedded resonators. IEEE Microw. Wireless Compon. Lett., 2006, 16(2): 669-671
    [63] X.Y. Zhang, J. Shi, J.X. Chen, et al. Dual-band bandpass filter design using a novel feed scheme. IEEE Trans. Microw. Theory Tech., 2009,19(6): 350-352
    [64] J. X. Chen, T.Y. Yum, J. L. Li., et al. Dual-Mode Dual-Band Bandpass Filter Using Stacked-Loop Structure. IEEE Microw. Wireless Compon. Lett.,2006, 16(9): 502-504
    [65] X. Y. Zhang, J. X. Chen, Q. Xue, et al. Dual-band bandpass filters using stub-loaded resonators. IEEE Microw. Wireless Compon. Lett., 2007, 17(8): 583-585
    [66] Y.-C. Chiou, C.-Y. Wu, J.-T. Kuo. New miniaturized dual-mode dual-band ring resonator bandpass filter with microwave c-sections. IEEE Microw. Wireless Compon. Lett., 2010, 20(2): 67-69
    [67] G.R. Aiello, G.D. Rogerson. Ultra-wideband wireless systems. IEEE Microw. Mag., 2003, 4(2) 36-47
    [68] H. Ishida, K. Araki. Design and analysis of UWB band pass filter with ring filter. IEEE MTT-S Int. Microw. Symp. Dig., 2004, 3: 1307-1310
    [69] P. Cai; Z. Ma, X.H. Guan, et al. A compact UWB bandpass filter using two-section open-circuited stubs to realize transmission zeros. APMC. 2005
    [70] G.G. Joan, J. Bonache, and F. Martín. Application of electromagnetic bandgaps to the design of ultra-wide bandpass filters with good out-of-band performance. IEEE Trans. Microw. Theory Tech., 2006, 54(12): 4136-4140
    [71] H. Wang, L. Zhu, and W. Menzel. Ultra-wideband bandpass filter with hybrid microstrip/CPW structure. IEEE Microw. Wireless Compon. Lett., 2005, 15(12): 844-846
    [72] M.K. Mandal, S. Sanyal. Compact wideband bandpass filter. IEEE Microw. Wireless Compon. Lett., 2006, 16(1): 46-48
    [73] W.G. Menzel, L. Zhu, and K. Wu. On the design of novel compact broad-band planar filters. IEEE Trans. Microw. Theory Tech., 2003. 51(2): 364-370
    [74] S. W. Wong, L. Zhu. Implementation of compact UWB bandpass filter with a notch-band IEEE Microw. Wireless Compon. Lett., 2008, 18(1): 10-12
    [75] K.J. Song, Q. Xue. Inductance-Loaded Y-Shaped Resonators and Their Applications to Filters IEEE Microw. Wireless Compon. Lett., 2010, 58(4): 978-984
    [76] Z.-C. Hao, J.-S. Hong. Dual-band UWB filter using multilayer liquid crystal polymer technology. Electron. Lett., 2010, 46(3): 265–266
    [77] C.S. Kim, J.S. Park, D. Ahn, et al. A novel 1-D periodic defected ground structure for planar circuits. IEEE Microw. Guided Wave Lett., 2000, 10( 4): 131-133
    [78] C.S. Kim, J.S. Lim, J.S. Park, et al. A 10dB branch line coupler uUsing defected ground structure. Microw. Conf., 2000. 30th European. 2000: 1-4
    [79] Y.T. Lee, J.S. Lim, J.S. Park, et al. A novel phase noise reduction technique in oscillators using defected ground structure. IEEE Microw. Wireless Compon. Lett., 2002, 12(2): 39-41
    [80] J.S. Lim, J.S. Park, Y.T. Lee, et al. Application of defected ground structure in reducing the size of amplifiers. IEEE Microw. Wireless Compon. Lett., 2002, 12(7): 261-263
    [81] J. Park, J.P. Kim, S. Nam. Novel periodic structures for a slotline: patch loaded slotline. IEICE Trans. Electron. 2005, E88-C:135-138
    [82] J. Park, J.P. Kim, and S. Nam. Network modelling of periodic patch loaded slotline. Electron. Lett., 2006, 42(5):288-289
    [83] A.M.E. Safwat, S. Tretyakov, and A.V. Raisanen. Defected ground and patch-loaded planar transmission lines. Microw. Antennas Propag., 2009, 3(2):195-204
    [84] J.T. Kuo, M. J. Maa, P. H. Lu. A microstrip elliptic function filter with compact miniaturized hairpin resonators. Microw. Guided Wave Lett., IEEE 2000,10(3): 94-95
    [85] J. W Zhu, Z.H Feng. Microstrip interdigital hairpin resonator with an optimal physical length. IEEE Microw. Wireless Compon. Lett., 2006, 16(2): 672-674
    [86] C.H. Liang, C.H. Chen, and C.Y. Chang. Fabrication-tolerant microstrip quarter-wave stepped-impedance resonator filter IEEE Trans. Microw. Theory Tech., 2009, 57(5): 1163- 1172
    [87] V. Piatnitsa, E. Jakku, S. Leppaevuori. Design of a 2-pole LTCC filter for wireless communications. IEEE Trans. Microw. Theory Tech., 2004, 3(2): 379-381
    [88] W. Hattori, T. Yoshitake, K.Takahashi. An HTS 21-pole microstrip filter for IMT-2000 base stations with steep attenuation. IEEE Trans. Applied Superconductivity. 2001, 11(3):4091-4094
    [89] H. Herrmann, K.-D. Buchter, R. Ricken, et al. Tunable integrated electro-optic wavelength filter with programmable spectral response. Lightwave Tech., 2010, 28(7): 1051-1056
    [90] M.H. Yang and J. Xu. Design of compact, broad-stopband lowpass filter using modified stepped impedance hairpin resonators. Electron. Lett., 2008, 44(20):1198-1200
    [91] S. Luo, L. Zhu, and S. Sun. Stopband-expanded low-pass filters using microstrip coupled-line hairpin units. IEEE Microw. Wireless Compon. Lett., 2008, 18(8): 506-508
    [92] M. H. Yang, J. Xu, Q. Zhao, et al. Wide-stopband and miniaturized lowpass filters using SIRs-loaded hairpin resonators. J. of Electromagn. Waves and Appl., 2009, 23: 2385-2396
    [93] M. H. Yang, J. Xu, Q. Zhao, et al. Compact, broad-stopband lowpass filters using SIRs-loaded circular hairpin resonators. Progress In Electromagnetics Research., PIER 102, 2010: 95-106
    [94] N. C. Karmakar, S. M. Roy, and I. Balbin. Quasi-static modeling of defected ground structure. IEEE Trans. Microw. Theory Tech., 2006, 54(5): 2160-2168
    [95] D.-J. Woo, T.-K. Lee, J.-W. Lee, et al. Novel U-slot and V-slot DGSs for bandstop filter with improved Q factor. IEEE Trans. Microw. Theory Tech., 2006, 54(6): 2840-2847
    [96] K. I. Hamad Ehab, M. E. Safwat Amr, and S. O. Abbas. A MEMS reconfigurable DGS resonator for K-band applications. J. of Microelectronmechanical Systems, 2006, 15( 4): 756-762
    [97] L. Zhu, V.Devabhaktuni, C. Wang, et al. Adjustable bandwidth filter design based on interdigital capacitors. IEEE Microw. Wireless Compon. Lett., 2008, 18(1): 16-18
    [98] Y.-C. Chiou, J.-T. Kuo, and J.-S. Wu. Miniaturized dual-mode ring resonator bandpass filter with microstrip-to-CPW broadside-coupled structure. IEEE Microw. Wireless Compon. Lett., 2008, 18(2): 97-99
    [99] R. Levy. A new class of distributed prototype filters with applications to mixed lumped distributed component design. IEEE Trans. Applied Superconductivity. 1970, 18(12):1064-1071
    [100] C.-F.Chen, T.-Y. Huang, and R. B. Wu. Design of dual- and triple-passband filters using alternately cascaded multiband resonators. IEEE Trans. Microw. Theory Tech., 2006, 54(9): 3550-3558
    [101] S.Gao, Z.-Y. Xiao, and W.-F. Chen. Dual-band bandpass filter with source-load coupling. Electron. Lett., 2009, 45(17): 265-266
    [102] S. Sun and L. Zhu.Coupling dispersion of parallel-coupled microstrip lines for dual-band filters with controllable fractional pass bandwidths. IEEE MTT-S Int. Dig., 2005.
    [103] S.-F. Chang, Y-H. Jeng, J.L.Chen. Dual-band step-impedance bandpass filter for multimode wireless LANs. Electron. Lett., 2004, 40(1):38-39
    [104] M.-L. Chuang. Concurrent dual band filter using single set of microstrip open-loop resonators. Electron. Lett., 2005, 41(18):1013-1014
    [105] J. Wang, Y.-X. Gao, B.-Z. Wang, and et.al. High-selectivity dual-band stepped-impedance bandpass filter. Electron. Lett., 2006, 42(9):538-540
    [106] H.-W. Liu, Y.-F. Lv, and W. Zheng. Compact dual-band bandpass filter using trisection hairpin resonator for GPS and WLAN applications. Electron. Lett., 2009, 45(7):360-362
    [107] T. Q. Ho and Y. Shih. Spectral-domain analysis of E-plane waveguide to microstrip transition. IEEE Trans. Microw. Theory Tech., 1989, 37(2) :388-392
    [108] Y. C. Shih, T. N. Ton, and L. Q. Bu. Waveguide-to-microstrip transitions for millimeter-wave applications. IEEE MTT-S Int. Microw. Symposium Digest, 1988, 473-475
    [109] J. H. C. van Heuven. A new integrated waveguide-microstrip transition. IEEE Trans. Microw. Theory Tech., 1976, 24(3):144-147
    [110] C.A. W. Vale, and P. Meyer. Designing high-performance finline tapers with vector-based optimization. EEE Trans. Microw.Theory Tech., 1999, 47(12) :2467-2472
    [111] S. S. Moochalla and C. An. Ridge waveguide used in microstrip transition. Microwaves RF, 1984: 149-153
    [112] N. Kaneda, Y. Qian, and T. Itoh. A broadband microstrip-to-waveguide transition using quasi-Yagi antenna. IEEE Trans. Microw. Theory Tech., 1999, 47(12): 2562-2567
    [113] T.-H. Lin and R.-B. Wu. CPW to waveguide transition with tapered slotline probe. IEEE Microw. Wireless Compon. Lett., 2001, 11(7):314-316
    [114] T.-H. Lin and R.-B. Wu. A broadband microstrip-to-waveguide transition with tapered CPS probe. in Proc. 32nd. Eur. Microw. Conf., 2002: 1-4
    [115] Y.L, C.H.Chan, and Q.Xue. An in-Line waveguide-to-microstrip transition using radial-shaped probe. IEEE Microw. Wireless Compon. Lett., 2008, 18(5): 311-313
    [116] S. N. Prasad, and S. Mahapatra. A new MIC slot-line aerial. IEEE Trans. Antennas and Propagation, 1983 , 31(3): 525-31
    [117] R. Janaswamy, and D. H. Schaubert. Characteristic impedance of a wide sotline on low-permittivity substrates. IEEE Trans. Microw. Theory Tech., 1986, 34(8): 900-902
    [118] B. Schuppert. Micros trip/Slotline Transitions: Modeling and experimental investigation. IEEE Trans. Microw. Theory Tech., 1988, 36(8): 1272-1282

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700