用户名: 密码: 验证码:
PWM逆变器传导电磁干扰的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力电子技术的发展使得采用脉冲宽度调制(PWM)方式的逆变器得到了广泛
    的应用,如变频器、不间断电源(UPS)等。采用高速半导体开关器件,如 IGBT、
    MOSFET 等,可以大大加快逆变器的动态响应过程,然而,这些半导体开关产生的高
    频脉冲信号具有很大的dv dt 、di dt ,形成很强的电磁干扰(EMI),其频率可从几
    KHZ 直到数十 MHZ,有可能远远超出 EMC 标准要求的极限值。逆变器产生的电磁
    干扰不但影响负载的正常工作、缩短其使用寿命,而且对逆变器本身也带来很大的危
    害。本文主要内容就是关于 PWM 逆变器传导 EMI 的研究,主要进行了三个方面的工
    作:干扰源特性分析及干扰频谱预测,基于 EMI 滤波器的传导干扰的抑制,基于调制
    技术的共模 EMI 的抑制。
     阐明了 PWM 逆变器产生传导 EMI 的源和传播途径,分析指出:差模干扰的产生
    主要是由于快速开关引入的脉动电流,共模干扰主要是由于 PWM 逆变器中点对参考
    地的很大的dv dt 对寄生电容的充放电作用。文中首先分析了差模干扰的集总等效电
    路模型,同时提出了一种用于研究 PWM 逆变器共模传导干扰的等效电路。利用实验
    测得等效电路中无源器件的参数,对该等效电路进行时域分析,共模电流是一个衰减
    振荡的波形。对共模干扰等效电路在 10KHz-30MHz 频段进行了频域分析,计算的共
    模传导干扰频谱与实验结果进行对比基本一致,证明文中提出的共模传导干扰等效电
    路模型及其分析的正确性。
     分析了 EMI 滤波器噪声源和负载阻抗对插入损耗的影响,采用基于实验的“插入
    损耗法”估计噪声源的阻抗。基于对噪声源阻抗的分析,提出了一种用于设计 EMI
    滤波器的方法,经过共模和差模干扰的设计实例表明,该设计方法确实简单、有效。
    借鉴在 PWM 逆变器与电机之间插入共模变压器衰减轴电流的方法,提出在逆变器直
    流侧插入共模变压器来抑制共模电流的振荡,而且从时域和频域的角度对比了用共模
    电感和共模变压器衰减共模电流的本质。另外,由于缓冲电路可减小干扰源的干扰水
    平,而且使用的基本上是无源器件,也可将它看成是 EMI 滤波器,本文还探讨了从缓
    冲电路的角度减小传导 EMI 的方法,给出了缓冲电路的设计实例,实验结果表明采用
    关断缓冲电路之后,确实减小了射频干扰。
     研究了采用调制技术减小 PWM 逆变器共模 EMI 的可行性,针对单相逆变器,提
    出采用双极性调制减小共模干扰,同时分析了在对角开关驱动波形不一致时对共模干
    扰的影响。针对三相逆变器,文中首先分析了采用传统的空间矢量调制时,逆变器会
    产生较大的共模干扰。由于三桥臂逆变器的电路结构,不可能有效地抵消逆变器产生
    的dv dt ,于是采用四桥臂逆变器减小共模干扰,给出了一种三维空间矢量调制计划,
     I
    
    
    同时在传统的空间矢量调制的基础上,提出了一种改良的空间电压矢量调制,在输出
    谐波、调制比等性能没有恶化的前提下减小了共模干扰,仿真结果验证了它的有效性。
With the development of power electronics, PWM inverters are getting more widely
    use, such as PWM drives, UPS etc. The fast switching devices including IGBTs and
    MOSFETs can increase the dynamic response speed. However, the high frequency pulses
    have very large dv dt and di dt , which produce large electromagnetic interference (EMI)
    from several kilo to several million hertz frequency and the electromagnetic compatibility
    (EMC) standard is not submitted. The EMI is not only influences the load’s usual work and
    withdraws the load’s work life but also has detrimental effects on inverter itself. The
    research in this dissertation is mainly about the conducted EMI in PWM inverter. The
    research works include three aspects: analysis of EMI typical characteristic and prediction
    of conducted EMI spectrum, conducted EMI suppression based on EMI filter, CM EMI
    suppression based modulation technology.
     The origin and propagation path of EMI are investigated. The conclusions are that
    differential mode (DM) EMI is due to the pulsating current from the fast switch and
    common mode (CM) EMI is due to the dv dt charging and discharging the parasitic
    capacitor. The DM lumped equivalent circuit model is analyzed. a simple equivalent circuit
    is proposed to study the CM EMI. The parameters of passive element are measured by
    experiment. Time and frequency domain analysis are conducted to obtain CM current
    waveforms and noise spectra in 10KHz-30MHz frequencies. The CM current is a decaying
    oscillatory waveform. The simulated CM EMI waveforms are compared with the actual
    experiments to verify the validity of the proposed model.
     The effects of noise source and noise load impedances on the insertion loss of EMI
    filter are discussed. The noise source impedance is estimated by insertion loss method
    based on experiment. A method of designing EMI filter is proposed, which simplifies the
    design of EMI filter. Practical design examples including CM and DM EMI filter indicate
    that the EMI filter design method is simple and effective. Referencing the method of
    inserting CM transformer between PWM inverter and motor, CM transformer inserted in dc
    input port is used to damp the resonant CM current. The mechanism of the two methods is
    compared in time and frequency domain. Experimental results verify the validity of theory
    analysis. The snubber circuit can decrease the interference level. The snubber circuit is
     III
    
    
    thought as EMI filter because the device is basic passive elements. The snubber circuit used
    to reduce radio frequency EMI is investigated and design methods are given. The results are
    experimental verified.
     The impacts of inverter modulation strategy on CM conducted emissions are
    addressed. The bipolar SPWM is proposed for CM EMI reduction in single phase PWM
    inverter. The CM EMI is existed due to the inconsistency of diagonal drive waveforms. In
    typical three-phase inverter, there exists substantial CM EMI when traditional space vector
    modulation is adopted. An active topology is obtained by adding a fourth phase to a typical
    three-phase inverter. The three-dimension space vector modulation is effective for CM EMI
    cancellation but the modulation index is reduced. In addition a modified space vector
    modulation is proposed for CM cancellation while output harmonic and modulation index
    are not detrimental.
引文
[1] 钱照明,程肇基.电力电子系统电磁兼容设计基础及干扰抑制技术.杭州:浙江大学出版社,
     2000.
    [2] 刘鹏程. 邱扬. 电磁兼容原理及技术. 高等教育出版社, 1993.
    [3] 邵智民, 徐进. 电磁兼容性原理与技术. 电子工业部第十四研究所.
    [4] 王定华, 赵家升. 电磁兼容原理与设计. 电子科技大学出版社. 1995.
    [5] 高攸纲.电磁兼容总论.北京:北京邮电大学出版社,2001
    [6] 白同云,吕晓德. 电磁兼容设计. 北京邮电大学出版社, 2001.
    [7] 陈淑凤,马蔚宇,马晓庆. 电磁兼容试验技术. 北京邮电大学出版社,2001.
    [8] 中华人民共和国国家军用标准:GJB152A-97. 军用设备和分系统电磁发射和敏感度测量. 国
     防科学技术委员会发布, 1997.
    [9] J.C. Crebier, J. Roudet, J.L. Schanen. Problems using LISN in EMI characterization of power
     electronic converters. Power Electronics Specialists Conference, 1999, pp.307 – 312.
    [10]T. Williams, G.R. Orford. Best practice use of the CISPR AMN/LISN. International Conference and
     Exhibition on Electromagnetic Compatibility, 1999, pp.173 – 179.
    [11]D.N. Heirman. ANSI C63.4 and CISPR 22-harmony at last? International Symposium on
     Electromagnetic Compatibility, 1997, pp. 112 – 117.
    [12] 和军平, 姜建国, 陈斌. 电力电子装置传导电磁干扰特性测量的新方法. 电力电子技术,
     2001, (5): 32-35.
    [13] 顾希如. 电磁兼容的原理、规范和测试. 国防工业出版社,1988.
    [14] 蔡仁钢. 电磁兼容原理、设计和预测技术. 北京航空航天大学出版社, 1997.
    [15] 陈坚. 电力电子学—电力电子变换和控制技术. 北京:高等教育出版社,2002.
    [16] Mark I. Montrose. 电磁兼容和印刷电路板. 人民邮电出版社, 2002.
    [17] 汪东艳, 张林昌. 电力电子装置电磁兼容性的研究进展. 电工技术学报, 2002, 2: 47-51.
    [18] S. Qu, D. Chen. Mixed-mode EMI noise and its implications to filter design in offline switching
     power supplies. Applied Power Electronics Conference and Exposition, 2000, pp. 707 – 713.
    [19] S. Qu, D. Chen. Mixed-mode EMI noise and its implications to filter design in offline switching
     power supplies. IEEE Transactions on Power Electronics, Vol. 17, 2002, pp.502 – 507.
    [20] Song Qu. Non-Intrinsic Differential-Mode Noise in Switching Power Supplies and Its Implications
     to EMI Filter Design. [Master Thesis], Virginia: Virginia Polytechnic Institute and State University,
     1999.
    [21] D.B. Zhang, D. Chen, D. Sable. Non-intrinsic differential mode noise caused by ground current in
     an off-line power supply. Power Electronics Specialists Conference Record, 1998, pp.1131 – 1133.
    [22]M. Nave. Prediction of conducted emissions in switched mode power supplies. IEEE Symposium on
     EMC, 1986, pp. 167-173.
    [23]M. Nave. The effect of duty cycle on SMPS common mode Emissions: Theory and Experiment.
     IEEE Symposium on EMC, 1989, pp. 211-216.
    [24]Guttowski, S, Jorgensen, H.; Keumann, K. The possibilities of reducing conducted line emissions by
     modifying the basic parameters of voltage-fed pulsed inverters. IEEE PESC 1997, pp. 1535 – 1540.
    [25]K. Frank, J. Petzodlt, H. Volker. Experiment and simulative investigations of conducted EMI
     112
    
    
    performance of IGBTs for 5-10KVA onverters. IEEE PESC 1996, pp. 1986-1991.
    [26]I. Zverev, S. Konrad,H. Voelker, J. Petzoldt, F.Klotz. Influence of the gate drive techniques on the
     conducted EMI behavior of a power converter. IEEE PESC 1997, pp. 1522 – 1528.
    [27]A. Consoli,S. Musumec,,G. Oriti, A. Testa. An innovative EMI reduction design technique in power
     converters. IEEE Transactions on Electromagnetic Compatibility, Vol. 38, no.4, Nov. 1996, pp.567 –
     575.
    [28]G. Hua, C.S Leu, F.C Lee. Novel zero-voltage-transition PWM converters. IEEE PESC 1992, pp.
     55-61.
    [29]P. Caldeira, R. Liu, D. Dalal, W.J Gu. Comparison of EMI performance of PWM and resonant power
     converters. IEEE PESC 1993, pp. 134-140.
    [30]D.B. Zhang, D. Y. Chen, F. C. Lee. A experimental comparison of conducted EMI emissions
     between a zero voltage transition circuit and a hard switching circuit. IEEE PESC 1996, pp
     1992-1997.
    [31]Xuejun Pei, Jian Xiong, Yong Kang, Jian Chen. Analysis and suppression of conducted EMI
     emission in PWM inverter. Electric Machines and Drives Conference, 2003, pp. 1787 – 1792.
    [32]W. Zhang, M.T Zhang, F.C Lee, J. Roudet, E. Clavel. Conducted EMI analysis of a boost PFC
     circuit. IEEE APEC 1997, pp. 223-229.
    [33]M.N. Gitau. Modeling conducted EMI noise generation and propagation in boost converters. IEEE
     ISIE 2000, pp. 353-358.
    [34]M. Kchikack, Y.S Yuan, Z.M Qian, M.H Pong. Simple modeling for conducted common-mode
     current in switching circuits. IEEE PESC 2001, pp. 91 – 95.
    [35]M.H Nagrial, A. Hellany. Radiated and conducted EMI emissions in switch mode power supplies
     (SMPS): sources, causes and predictions. IEEE INMIC 2001, pp.54 – 61.
    [36] Michael Tao. Electrical, Thermal, and EMI Designs of High-Density, Low-Profile Power Supplies.
     [Doctor Thesis]. Virginia: Virginia Polytechnic Institute and State University, 1998.
    [37] Wei Zhang. Integrated EMI/Thermal Design for Switching Power Supplies. [Master Thesis],
     Virginia: Virginia Polytechnic Institute and State University, 1998.
    [38] Erik M Hertz. Thermal and EMI Modeling and Analysis of a Boost PFC Circuit Designed Using a
     Genetic-based Optimization Algorithm. [Master Thesis], Virginia: Virginia Polytechnic Institute and
     State University, 2001.
    [39] Liyu Yang. Modeling and Characterization of a PFC Converter in the Medium and High Frequency
     Ranges for Predicting the Conducted EMI. [Master Thesis]. Virginia: Virginia Polytechnic Institute
     and State University, 2003.
    [40]E. Zhong, T. Lipo, and J.Jaeschker. Analytical Estimation and Reduction of Conducted EMI
     Emissions in High Power PWM Inverter Drives. IEEE PESC 1996, pp. 1169-1175.
    [41]Li Ran, Sunil Gokani, and Jon Clare. Conducted Electromagnetic Emission in Induction Motor
     Drive Systems Part 1: Time Domain Analysis and Identification of Dominant Modes. IEEE
     Transactions on Power Electronics. 1998, 13(4): pp. 757-767.
    [42] H. Zhu, J. Lai, and A. R. Hefner, Jr, et all., “Analysis of conducted EMI emissions from PWM
     inverter based on empirical models and comparative experiments,” IEEE PESC’99, 1999, pp.
     113
    
    
    1727-1733.
    [43] H. Zhu, J. Lai, and A. R. Hefner, Jr. Modeling-Based Examination of Conducted EMI Emissions
     Form Hard- and Soft-Switching PWM Inverters. IEEE Transactions on Industry Applications. 2001,
     37(5): pp. 1383-1393.
    [44] R.K Jardan, J. Hamar, I. Nagy, P. Korondi, P. Gogos. Time domain analysis of common-mode EMI
     noise in the power lines at electronics production plants. IEEE IECON 2002, pp. 938 – 943.
    [45] N.K Poon, B.M.H. Pong, C.P. Liu, C.K Tse. Essential-coupling-path models for non-contact EMI in
     switching power converters using lumped circuit elements. IEEE Transactions on Power
     Electronics, 2003, Vol. 18, pp. 686 – 695.
    [46] A. Boglietti, E. Carpaneto. An accurate high frequency model of AC PWM drive systems for EMC
     analysis. IEEE IAS 2001, pp. 1111 – 1117.
    [47] R.K. Jardan, J. Hamar, I. Nagy, P. Korondi, P. Gogos. Time domain analysis of common-mode EMI
     noise in the power lines at electronics production plants. IECON 2002, pp. 938 – 943.
    [48] T.P. Robbins. Electromagnetic interference prediction of a flyback switchmode power supply using
     simulation techniques. Telecommunications Energy Conference, 1989, pp. 16.2/1 - 16.2/7.
    [49] P.F. Okyere, L. Heinemann. Computer-aided analysis and reduction of conducted EMI in
     switched-mode power converter. Applied Power Electronics Conference and Exposition, 1998, pp.
     924 – 928.
    [50] M.K.W. Wu, C.K. Tse, O.B.P. Chan. IEEE Transactions on Industry Applications, Vol.
     34(2), 1998, pp.364 – 373.
    [51]M. Kchikach., 袁义生, 钱照明, M.H.PONG. 应用 StatMod 对开关电路传导共模电流的建模,
     电力电子技术,2001, 45-47.
    [52] 孟进,马伟明,刘德志,张磊. 交流发电机整流系统传导电磁干扰的时域模型与仿真分析. 中
     国电机工程学报, 2002, 22(6): 75-79.
    [53]孟进. 带三相整流器的交流网侧传导干扰预测研究:[硕士论文].海军工程大学.2002.
    [54]刘德红. 电力电子装置电磁干扰传播特性的研究:[博士论文].清华大学.2002.
    [55] 陈斌,姜建国,孙旭东. PWM 逆变器-感应电机驱动系统中接地电流 EMI 问题的分析. 中国
     电机工程学报. 2003, 23(2): 58-62.
    [56]和平军, 姜建国. 离线式 PWM 变换器传导电磁干扰的分析研究. 台达电力电子年会, 2002,
    [57] R. Scheich and J. Roudet, S. Bigot, and J. P. Ferrieux. Common mode RFI of a HF power converter:
     phenomenon, its modeling and its measurement. IEEE EPE, 1993, pp. 164-169.
    [58] J. Mahdavi, J. Roudet, R. Scheich. Common mode conducted RFI emission of an AC/DC converter
     with sinusoidal input current. IEEE PEVSD, 1994, pp. 632-637.
    [59] R. Scheich,J. Roudet. V. Handel. EMI conducted emission in differential mode emanating from a
     SCR: phenomena and noise level prediction. IEEE APEC, 1993, pp. 815 – 821.
    [60] R. Scheich,J. Roudet. EMI conducted emission in the differential mode emanating from an SCR:
     phenomena and noise level prediction. IEEE Transactions on Power Electronics. 1995, Vol.10, pp.
     105-110.
    [61] Li Ran, Sunil Gokani, and Jon Clare. Conducted Electromagnetic Emission in Induction Motor
     Drive Systems Part 2: Frequency Domain Models. IEEE Transactions on Power Electronics,
     114
    
    
    1998,13(4): pp. 768-776.
    [62]J.C Crebier, M. Brunello, J.P Ferrieux. A new method for EMI study in boost derived PFC rectifiers.
     IEEE PESC 1999, pp. 855 – 860.
    [63] J. Shao, R.L. Lin, F.C. Lee, D.Y. Chen. Characterization of EMI performance for hard and
     soft-switched inverters. IEEE APEC 2000 pp. 1009 – 1014.
    [64] D. Gonzalez, J. Gago, J. Balcells. Analysis and simulation of conducted EMI generated by switched
     power converters: application to a voltage source inverter. IEEE ISIE 2002, pp. 801 – 806.
    [65] A. Farhadi. A new approach to analyze and reduction of RF conducted emission due to PWM in a
     buck converter. IEEE CIRED 2001, pp.
    [66] B. Revol, J. Roudet, J.L Schanen, P. Loizelet. Fast EMI prediction method for three-phase inverter
     based on Laplace transforms. IEEE PESC 2003, pp. 1133 – 1138.
    [67] Q. Liu, W. Shen, F. Wang, D. Boroyevich, V. Stefanovic, M. Arpilliere. Experimental evaluation of
     IGBTs for characterizing and modeling conducted EMI emission in PWM inverters. IEEE PESC
     2003, pp. 1951 – 1956.
    [68] R. Zhang, X. Wu, T. Wang. Analysis of common mode EMI for three-phase voltage source
     converters. IEEE PESC 2003, pp. 1510 – 1515.
    [69] 单潮龙,马伟明,王铁军,张俊洪. 挂接三相逆变器的直流电网共模传导干扰研究. 中国电机
     工程学报, 2003, 23(4): 134-139.
    [70]H. K Yun, Y. Kim, C.Y Won, Y.R Kim, Y.S Kim, S.W Choi. A study on inverter and motor winding
     for conducted EMI prediction. IEEE ISIE 2001, pp. 752 – 758.
    [71] J. Shao, R. Lin, F. Lee and D. Chen. Characterization of EMI Performance for Hard and Soft
     Switched Inverters. IEEE APEC, 1997, pp. 1009-1014.
    [72] C. Serporta, G. Tine, G. Vitale, M.C Di Piazza. Conducted EMI in power converters feeding AC
     motors: experimental investigation and modeling. IEEE ISIE 2000, pp. 359 – 364.
    [73] A. Kempski, R. Smolenski, R. Strzellecki. Common Mode Current Paths and Their Modeling in
     PWM Inverter-Fed Drives, in Proc IEEE PESC 2001, pp.
    [74] J.A. Ferreira, P.R. Willcock, S.R. Holm. Sources, paths and traps of conducted EMI in switch mode
     circuits Industry Applications Conference, IEEE IAS, 1997, Vol.2, pp. 1584 – 1591.
    [75]A. Nagel, R.W. De Doncker. Systematic design of EMI-filters for power converters. IEEE IAS 2000,
     pp.2523 – 2525.
    [76] A. Chand, A. Sachdeva. Conducted noise compliance through good filter design. The International
     Conference on Electromagnetic Interference and Compatibility, 2002, pp. 257-261.
    [77] X. Jing, I. Celanovic, D. Borojevic. Device evaluation and filter design for 20 kW inverter for
     hybrid electric vehicle applications. Power Electronics in Transportation, 1998, pp. 29 – 36.
    [78]K.Y Liao, H.L Su, K.H Lin, W.J Ho. Evaluation of EMI filter performance for uninterruptible power
     systems. IEEE International Symposium on Electromagnetic Compatibility, 2001 pp. 505 – 510.
    [79] W. Khan-ngern, Y. Prempaneerach. Reduction of conducted emission for UPSs using passive EMI
     filters. IEEE Asia-Pacific Conference on Circuits and Systems, 1998, pp. 189 – 192.
    [80] M. Mardiguian, J. Raimbourg. An alternate, complementary method for characterizing EMI filters.
     IEEE International Symposium on Electromagnetic Compatibility, 1999, pp. 882 – 886.
     115
    
    
    [81] H.A Munir, M.Z.M Jenu, M.F.L. Abdullah. Analysis and design of EMI filters to mitigate
     conducted emissions. Student Conference on Research and Development, 2002, pp. 204 – 207.
    [82] Z.Y He, F.Y Shih, Y.T Chen, Y.P Wu. Analysis and design of EMI filter for multi-output switching
     mode power supply. IEEE INTELEC 1994, pp. 457 – 463.
    [83] D.B. Zhang, D.Y. Chen, D. Sable. A new method to characterize EMI filters. IEEE APEC 1998, pp.
     929 – 933.
    [84] T.F. Wu, K. Siri, C.Q Lee. A systematic method in designing line filters for switching regulators.
     IEEE APEC 1992, pp. 179 – 185.
    [85] B. Choi, B.H. Cho. Intermediate line filter design to meet both impedance compatibility and EMI
     specifications. IEEE Transactions on Power Electronics, Vol. 10, 1995, pp. 583–588.
    [86] F. Y. Shih. D.Y. Chen, Y. P. Wu, Y. T. Chen. A procedure for designing EMI filters for AC line
     applications. IEEE Transactions on Power Electronics, Vol. 11, 1996, pp. 170-181.
    [87] F.S. Dos Reis, J.C.M. de Lima, V.M. Canalli, J.A. Pomilio, J. Sebastian, J. Uceda. Matching
     conducted EMI to international standards. IEEE PESC 2002 pp. 388 – 393.
    [88] C.S. Moo, H.C. Yen, Y.C. Hsieh, Y.C. Chuang. Integrated design of EMI filter and PFC low-pass
     filter for power electronic converters. IEE Proceedings of Electric Power Applications, 2003, pp. 39
     – 44.
    [89] S. Wang, F.C. Lee, W.G. Odendaal. Improving the performance of boost PFC EMI filters. IEEE
     APEC 2003, pp. 368–374.
    [90] S. Ye. Y.F. Liu. EMI filter design method for communication power sub-system. IEEE APEC 2003,
     pp. 483–489.
    [91] D.B. Zhang, D.Y. Chen, M. J. Nave, D. Sable. Measurement of noise source impedance of off-line
     converters. IEEE APEC 1998, pp. 918 – 923.
    [92] D.B. Zhang, D.Y. Chen, M. J. Nave, D. Sable. Measurement of noise source impedance of off-line
     converters. IEEE Transactions on Power Electronics, Vol. 15, 2000 pp. 820-825.
    [93] K.Y. See, L. Yang. Measurement of noise source impedance of SMPS using two current probes.
     Electronics Letters Vol. 36, 2000, pp. 1774–1776.
    [94]K.Y. See; J.H. Deng. Measurement of noise source impedance of SMPS using a two probes
     approach. IEEE Transactions on Power Electronics, Vol. 19, 2004 pp. 862–868.
    [95] J.B. Wang. Reduction in conducted EMI noises of a switching power supply after thermal
     management design. IEE Proceedings of Electric Power Applications, 2003 pp. 301–310.
    [96] C. Hua, C. Shen, G. Peng. Design of an input filter to suppress conducted EMI of a single phase
     UPS inverter. Proceedings of the 1996 IEEE IECON pp. 1699–1704.
    [97]M.C. Caponet, F. Profumo, A. Tenconi. EMI filters design for power electronics. IEEE PESC 2002,
     pp. 2027–2032.
    [98] H. Akagi, H. Hasegawa, T. Doumoto. Design and performance of a passive EMI filter for use with a
     voltage-source PWM inverter having sinusoidal output voltage and zero common-mode voltage.
     IEEE PESC 2002, pp. 1543–1550.
    [99] C.R. Paul, K.B. Hardin. Diagnosis and reduction of conducted noise emissions. IEEE Transactions
     on Electromagnetic Compatibility, Vol. 30, 1988, pp.553 – 560.
     116
    
    
    [100] K.Y. See, C.S. Ng. Diagnosis of conducted interference with discrimination network. Proceedings
     of Power Electronics and Drive Systems, 1995 pp. 433 – 437.
    [101] G. Ting, D.Y. Chen, F.C. Lee. Separation of the common-mode- and differential-mode-conducted
     EMI noise. IEEE Transactions on Power Electronics, Vol. 11,1996, pp.480 – 488.
    [102] M.C. Caponet, F. Profumo, L. Ferraris, A. Bertoz, D. Marzella. Power Electronics Specialists
     Conference, 2001, pp. 1383 – 1388.
    [103] M.C. Caponet, F. Profumo. Devices for the separation of the common and differential mode noise:
     design and realization. Applied Power Electronics Conference and Exposition, 2002, pp. 100 – 105.
    [104] K.K. Tse, S.H.C. Henry, S.Y. Ron Hui, H.C. So. A comparative study of carrier-frequency
     modulation techniques for conducted EMI suppression in PWM converters. IEEE Transactions on
     Industrial Electronics, Vol. 49(3), 2002, pp. 618 – 627.
    [105] K.K. Tse, R.W.M. Ng, H.S.H. Chung, S.Y.R. Hui. An evaluation of the spectral characteristics of
     switching converters with chaotic carrier-frequency modulation. IEEE Transactions on Industrial
     Electronics, Vol. 50(1), 2003, pp. 171 – 182.
    [106] M. Rahkala, T. Suntio, K. Kalliomaki. Effects of switching frequency modulation on EMI
     performance of a converter using spread spectrum approach. Applied Power Electronics Conference
     and Exposition, 2002, pp. 93 – 99.
    [107] M. Zigliotto, A.M. Trzynadlowski. Effective random space vector modulation for EMI reduction
     in low-cost PWM inverters. Power Electronics and Variable Speed Drives, 1998, pp. 163 – 168.
    [108] F. Lin, D.Y. Chen. Reduction of power supply EMI emission by switching frequency modulation.
     IEEE Transactions on Power Electronics, Vol. 9(1), 1994, pp. 132 – 137.
    [109] A.M. Stankovic, G.C. Verghese, D.J. Perreault. Analysis and synthesis of random modulation
     schemes for power converters. Power Electronics Specialists Conference, 1993, pp. 1068 – 1074.
    [110] K.K. Tse, H.S.H. Chung, S.Y.R. Hui, H.C. So. A comparative investigation on the use of random
     modulation schemes for DC/DC converters. IEEE Transactions on Industrial Electronics, Vol. 47(2),
     2000, pp.253 – 263.
    [111] L. Rossetto, S. Buso, G. Spiazzi. Conducted EMI issues in a boost PFC design.
     Telecommunications Energy Conference, 1998, pp. 188 – 195.
    [112] L. Rossetto, S. Buso, G. Spiazzi. Conducted EMI issues in a 600-W single-phase boost PFC
     design. IEEE Transactions on Industry Applications, Vol. 36, 2000, pp. 578 – 585.
    [113] J.C. Crebier, L. Jourdan, R. Popescu, J.P. Ferrieux. Common mode disturbance reduction of PFC
     full bridge rectifiers. Power Electronics Specialists Conference, 2000, pp. 922 – 927.
    [114] J.C. Crebier, J.P. Ferrieux. PFC full bridge rectifiers EMI modeling and analysis-common mode
     disturbance reduction. IEEE Transactions on Power Electronics, Vol. 19, 2004 pp. 378 – 387.
    [115] J.L. Schanen, L. Jourdan, J. Roudet. Layout optimization to reduce EMI of a switched mode
     power supply. Power Electronics Specialists Conference, 2002, pp. 2021 – 2026.
    [116] Y. Nishimura, T. Shimizu, G. Kimura, S. Igarashi. Series connection type common-mode current
     reduction circuit. Industrial Electronics Society, 1999, IECON’99, pp. 278 – 283.
    [117] F.P. Ridao, J.M. Carrasco, L.G. Franquelo. Conducted interference (EMI) suppression in a power
     supply of a linear power system. Industrial Electronics Society, 1999, IECON’99, pp. 261 – 265.
     117
    
    
    [118] F.P. Ridao, J.M. Carrasco, L.G. Franquelo. Electromagnetic interference suppression in a double
     AC/DC PWM converter with PFC to be used in a linear power system. Industrial Electronics Society,
     1999, IECON’99, pp. 256 – 260.
    [119] S.W. Mee, J.E. Teune. Reducing emissions in the buck converter SMPS. IEEE International
     Symposium on Electromagnetic Compatibility, 2002, pp. 179 – 183.
    [120] A. Rockhill, T.A. Lipo, A.L. Julian. High voltage buck converter topology for common mode
     voltage reduction. Applied Power Electronics Conference and Exposition, 1998, pp. 940 – 943.
    [121] Daniel Cochrane. Passive Cancellation of Common-Mode Electromagnetic Interference in
     Switching Power Converters. [Master Thesis]. Virginia: Virginia Polytechnic Institute and State
     University, 2002.
    [122] 袁义生, 钱照明. 功率变换器动态节点电位平衡共模 EMI 抑制技术. 浙江大学学报, 2003.
     37(1): 108-111.
    [123]T. Halkosaari, H. Tuusa. Reduction of conducted emissions and motor bearing
     currents in current source PWM inverter drives. Power Electronics Specialists
     Conference, 1999, pp. 959 – 964.
    [124] N. Allaith, D. Grant. Investigation of conducted emissions produced by a PWM inverter-fed motor
     drive. Proceedings of Harmonics And Quality of Power, 1998. pp.1218 – 1221.
    [125] N. Mutoh, M. Ogata, K. Gulez, F. Harashima. New methods to suppress EMI noises in motor
     drive systems. IEEE Transactions on Industrial Electronics, Vol. 49, 2002, pp.474 – 485.
    [126] N. Mutoh, M. Ogata, K. Gulez, F. Harashima. New methods to suppress EMI noises produced in
     the motor drive system. Proceedings of the Power Conversion Conference, 2002, pp. 1083 – 1089.
    [127] Y. Murai, T. Kubota, Y. Kawase. Leakage current reduction for a high-frequency carrier inverter
     feeding an induction motor. IEEE Transactions on Industry Applications, Vol. 28, 1992, pp. 858 –
     863.
    [128] Z. Erkuan, T.A. Lipo. Improvements in EMC performance of inverter-fed motor drives. IEEE
     Transactions on Industry Applications, Vol. 31(6), 1995, pp. 1247 – 1256.
    [129] S. Ogasawara, H. Akagi. Modeling and damping of high frequency leakage currents in PWM
     inverter fed AC motor drive systems, IEEE Transactions on Industry Applications, 1996, vol. 32(5),
     pp. 1105-1114.
    [130] A. von Jouanne, H. Zhang, A.K. Wallace. An evaluation of mitigation techniques for bearing
     currents, EMI and overvoltages in ASD applications. IEEE Transactions on Industry
     Applications, Vol. 34(5), 1998, pp. 1113 – 1122.
    [131] J.M. Erdman, R.J. Kerkman, D.W. Schlegel, G.L. Skibinski. Effect of PWM inverters on AC
     motor bearing currents and shaft voltages. IEEE Transactions on Industry Applications, Vol. 32(2),
     1996, pp. 250 – 259.
    [132] S.T. Chen, T.A. Lipo, D. Fitzgerald. Modeling of motor bearing currents in PWM inverter drives.
     IEEE Transactions on Industry Applications, Vol. 32(6), 1996, pp. 1365 – 1370.
    [133] M.M. Swamy, K. Yamada, T. Kume. Common mode current attenuation techniques for use with
     PWM drives. IEEE Transactions on Power Electronics, Vol. 16(2), 2001, pp. 248 – 255.
    [134] G. Sauerlaender, T. Duerbaum, T. Tolle, M. Albach, M. Ossmann. Common mode noise generated
     118
    
    
    by magnetic components-experimental test set-up and measurement results. Power Electronics
     Specialists Conference, 2000, pp. 911 – 915.
    [135] D.A. Rendusara, P.N. Enjeti. An improved inverter output filter configuration reduces common
     and differential modes dv/dt at the motor terminals in PWM drive systems. IEEE Transactions on
     Power Electronics, Vol. 13(6), 1998, pp. 1135 – 1143.
    [136] H.D. Lee, S.K. Sul, A common mode voltage reduction in boost rectifier/inverter system by
     shifting active voltage vector in a control period, IEEE Transactions on Power Electronics, Vol.
     15(6), 2000, pp. 1094 – 1101.
    [137] T.G. Habetler, R. Naik, T.A. Nondahl. Design and implementation of an inverter output LC filter
     used for dv/dt reduction. IEEE Transactions on Power Electronics, Vol. 17(3), 2002, pp. 327 – 331.
    [138] F. Zare, G.F. Ledwich. Reduced layer planar busbar for voltage source inverters. IEEE
     Transactions on Power Electronics, Vol. 17(4), 2002, pp. 508 – 516.
    [139] S.J. Kim, S.K. Sul, A novel filter design for suppression of high voltage gradient in voltage-fed
     PWM inverter, Applied Power Electronics Conference and Exposition, 1997, pp. 122 – 127.
    [140] R.J. Kerkman, D. Leggate, D. Schlegel, G. Skibinski. PWM inverters and their influence on motor
     overvoltage. Applied Power Electronics Conference and Exposition, 1997, pp. 103 – 113.
    [141] G. Skibinski, D. Leggate, R. Kerkman. Cable characteristics and their influence on
     motor over-voltages. Applied Power Electronics Conference and Exposition, 1997,
     pp.114 – 121.
    [142] S. Ogasawara, H. Akagi, Analysis and reduction of EMI conducted by a PWM inverter-fed AC
     motor drive system having long power cables. Power Electronics Specialists Conference, 2000, pp.
     928 – 933.
    [143] A. von Jouanne, D.A. Rendusara, P.N. Enjeti, J.W. Gray. Filtering techniques to minimize the
     effect of long motor leads on PWM inverter-fed AC motor drive systems. IEEE Transactions on
     Industry Applications, Vol. 32(4), 1996, pp. 919 – 926.
    [144] L. Palma, P. Enjeti. An inverter output filter to mitigate dV/dt effects in PWM drive system.
     Applied Power Electronics Conference and Exposition, 2002, pp. 550 – 556.
    [145] M. Cacciato, C. Cavallaro, G. Scarcella, A. Testa. Effects of connection cable length on conducted
     EMI in electric drives. Electric Machines and Drives, 1999,pp. 428 – 430.
    [146] I. Takahashi, A. Ogata, H. Kanazawa, A. Hiruma. Active EMI filter for switching noise of high
     frequency inverters. Power Conversion Conference - Nagaoka 1997, pp. 331 – 334.
    [147] S. Ogasawara, H. Ayano, H. Akagi. An active circuit for cancellation of common mode voltage
     generated by a PWM inverter, IEEE Transactions on Power Electronics, 1998, 13(5), pp. 835-841.
    [148] Y.C Son, S.K sul. Conducted EMI in PWM inverter for household electric sppliance, IEEE
     Transactions on Industry Applications, 2002, 38(5), pp. 1370-1379.
    [149] 姜艳姝,徐殿国,陈希有等. 一种新颖的用于消除 PWM 逆变器输出共模电压的有源滤波器.
     中国电机工程学报, 2002, 22(10): 125-129.
    [150] A.L. Julian, G. Oriti, T.A. Lipo. Elimination of common-mode voltage in three-phase sinusoidal
     power converters. IEEE Transactions on Power Electronics, Vol.14(5), 1999, pp. 982 – 989.
    [151] A.L. Julian, R. Cuzner, G. Oriti, T.A. Lipo. Active filtering for common mode conducted EMI
     119
    
    
    reduction in voltage source inverters. Applied Power Electronics Conference and Exposition, 1998,
     pp. 934 – 939.
    [152] H. Zhang, A. von Jouanne. Suppressing common-mode conducted EMI generated by PWM drive
     systems using a dual-bridge inverter. Applied Power Electronics Conference and Exposition, 1998,
     pp. 1017 – 1020.
    [153] A. Rao, T.A. Lipo, A.L. Julian. A modified single phase inverter topology with active common
     mode voltage cancellation. Power Electronics Specialists Conference, 1999, pp. 850 – 854.
    [154] M.D. Manjrekar, T.A. Lipo. An auxiliary zero state synthesizer to reduce common mode voltage in
     three-phase inverters. Industry Applications Conference, 1999, pp.54 – 59.
    [155] M. Cacciato, A. Consoli, G. Scarcella, A. Testa. Reduction of common-mode currents in PWM
     inverter motor drives. IEEE Transactions on Industry Applications, Vol. 35(2), 1999, pp. 469 – 476.
    [156] M. Cacciato, A. Consoli, G. Scarcella, A. Testa. Continuous PWM to square wave inverter control
     with low common mode emissions. Power Electronics Specialists Conference, 1998, pp. 871 – 877.
    [157] M. Cacciato, A. Consoli, G. Scarcella, A. Testa. Effects of PWM techniques on common mode
     currents in induction motor drives. Industrial Electronics, 1997. ISIE '97, pp. SS212 - SS217.
    [158] Y.C. Son, S.K. Sul. A novel active common-mode EMI filter for PWM inverter. Applied Power
     Electronics Conference and Exposition, 2002, pp. 545 – 549.
    [159] G. Oriti, A.L. Julian, T.A. Lipo. A new space vector modulation strategy for common mode
     voltage reduction. Power Electronics Specialists Conference, 1997, pp. 1541 – 1546.
    [160] F.B.J. Leferink. Inductance calculations; methods and equations. IEEE International Symposium
     on Electromagnetic Compatibility, 1995, 16-22.
    [161] F.B.J. Leferink. Inductance calculations; experimental investigations. IEEE International
     Symposium on Electromagnetic Compatibility, 1996, 235-240.
    [162] Q. Yu, T.W. Holmes, K. Naishadham. RF equivalent circuit modeling of ferrite-core inductors and
     characterization of core materials. IEEE Transactions on Electromagnetic Compatibility, Vol.
     44, 2002, pp. 258 – 262.
    [163] Q. Yu, T.W. Holmes. A study on stray capacitance modeling of inductors by using the finite
     element method. IEEE Transactions on Electromagnetic Compatibility, Vol. 43, 2001, pp. 88–93.
    [164] M.K Kazimierczuk, G. Sancineto, G. Grandi, U. Reggiani, A. Massarini. High-frequency
     small-signal model of ferrite core inductors. IEEE Transactions on Magnetics, Vol.35, 1999, pp.
     4185 – 4191.
    [165] A. Massarini, M.K. Kazimierczuk. Self-capacitance of inductors. IEEE Transactions on Power
     Electronics, Vol. 12, 1997, pp. 671 – 676.
    [166] D.H. Liu, J.G. Jiang. High frequency characteristic analysis of EMI filter in switch mode power
     supply (SMPS). IEEE PESC 2002, pp. 2039–2043.
    [167] M. Bartoli, A. Reatti, M.K. Kazimierczuk. High-frequency models of ferrite core inductors. IEEE
     IECON 1994, pp.1670–1675.
    [168] M. Bartoli, A. Reatti, M.K. Kazimierczuk. Modelling iron-powder inductors at high frequencies.
     IEEE Industry Applications Society Annual Meeting, 1994, pp. 1225 - 1232.
    [169] G.P. Muyshondt, W.M. Portnoy. Development of high frequency SPICE models for ferrite core
     120
    
    
    inductors and transformers. IEEE Industry Applications Conference 1989, pp. 1328-1333.
    [170] J.T. Strydom, J.D. van Wyk, J.A. Ferreira. Capacitor measurements for power electronic
     applications. IEEE Industry Applications Conference, 1999, pp. 2435-2440.
    [171] R. Prieto, R. Asensi, J.A. Cobos, O. Garcia, J. Uceda. Model of the capacitive effects in magnetic
     components. IEEE Power Electronics Specialists Conference Record 1995, pp. 678 – 683.
    [172] P.F. Okyere, E. Habiger. A novel physically-based PSPICE-compatible-model for common-mode
     chokes. International Symposium on Electromagnetic Compatibility, 1999, pp. 33 – 36.
    [173] M.K. Jutty, V. Swaminathan, M.K. Kazimierczuk. Frequency characteristics of ferrite core
     inductors. Proceedings of Electrical Electronics Insulation Conference and Electrical Manufacturing
     & Coil Winding Conference, 1993, pp. 369 – 372.
    [174] M.C. Caponet, F. Profumo, R.W. De Doncker, A. Tenconi. Low stray inductance bus bar design
     and construction for good EMC performance in power electronic circuits. IEEE Transactions on
     Power Electronics, Vol. 17, 2002, pp. 225 – 231.
    [175] M.C. Caponet, F. Profumo, J. Jacobs, R.W. De Doncker. Solutions to minimize conducted EMI in
     power electronic circuits. Applied Power Electronics Conference and Exposition, 2001, pp. 220 –
     224.
    [176] Jingen Qian. RF Models for Active IPEMs. [Master Thesis]. Virginia: Virginia Polytechnic
     Institute and State University, 2003.
    [177] 陈坚. 交流电机数学模型及调速系统. 北京:国防工业出版社,1989.
    [178] 康勇. 高频大功率 SPWM 逆变电源输出电压控制技术研究:[博士学位论文]. 武汉:华中科
     技大学图书馆,1994.
    [179] 熊健. 三相电压型高频 PWM 整流器研究:[博士学位论文]. 武汉:华中科技大学图书馆,1999.
    [180] 刘平. 用于超导磁储能系统的高性能电压源变换器控制技术研究:[博士学位论文]. 武汉:
     华中科技大学图书馆,2000.
    [181] 何仰赞,温增银. 电力系统分析. 武汉:华中科技大学出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700