用户名: 密码: 验证码:
康滇地轴东缘典型铅锌矿床分散元素镉锗镓的富集规律及富集机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
康滇地轴东缘位于环太平洋构造域与特提斯构造域的结合部位,是松潘—甘孜印支褶皱带中的一个重要单元,自晚太古代以来,本区经历了长期、复杂的地质构造演化历史,形成了大量的金属矿产资源,其中包括富含分散元素镉、锗、镓的铅锌矿床。本文以康滇地轴东缘几个大(特大)型典型铅锌矿床(如四川天宝山矿床、大梁子矿床和云南会泽矿床)为解剖对象,在系统野外工作的基础上,详细描述了天宝山、大梁子和会泽三个典型铅锌矿床的地质、地球化学特征。室内研究在常规光片、薄片观测的基础上,综合运用化学分析、等离子质谱分析、电子探针等技术手段,对矿床的岩石(矿石)和硫化物单矿物的常量元素、微量元素及铅、硫、碳等的同位素地球化学、分散元素镉、锗、镓含量、分散元素镉、锗、镓的赋存状态和富集特征等方面进行了系统研究。结合区域地质构造演化,论文探讨了康滇地轴东缘铅锌矿床形成的地质构造条件和成矿作用,揭示了分散元素镉、锗、镓在铅锌矿床中的富集规律与富集机制。本论文取得如下新认识:
     1.康滇地轴东缘典型铅锌矿床赋矿围岩均为碳酸盐岩,其中天宝山和大梁子矿床为上震旦统灯影组白云岩,会泽矿床为下石炭统摆佐组白云岩(或灰质白云岩),这些地层都富含成矿元素Zn和Pb以及分散元素Cd。未受蚀变的赋矿围岩中Zn含量显著高于地壳同类岩石的丰度,一些岩石可高出地壳丰度1~2个数量级;Pb在各类岩石中也有一定程度的富集,但富集程度低于Zn;分散元素Cd在岩石中的含量普遍高于地壳同类岩石丰度一个数量级以上,而Ga和Ge的含量与地壳同类岩石的丰度相近。由此可见,Zn、Pb和Cd等元素在区域岩石中的高背景值,为本区铅锌成矿及分散元素富集提供了物质基础。
     2.等离子质谱分析和电子探针分析表明,分散元素Cd、Ge、Ga主要以类质同象形式赋存于原生硫化物闪锌矿、方铅矿和黄铁矿中,少量可能以超显微独立矿物的形式存在。其中Cd主要赋存于闪锌矿中,Ge、Ga主要赋存于方铅矿中。
     3.根据矿体的产出特征,结合矿床的铅同位素模式年龄资料,认为康滇地轴东缘铅锌矿床的成矿时代晚于赋矿地层时代,属典型的后生矿床,铅同位素构造演化表明康滇地轴东缘铅锌矿床的矿石铅主要来自于上地壳,特别是造山带。
     4.赋矿围岩、矿石和闪锌矿具有相似的稀土元素地球化学特征,总体表现为轻稀土相对富集,Eu和Ce呈弱负异常,稀土元素分布曲线向右倾斜。说明矿石中的稀土元素组成特征继承了赋矿围岩稀土元素组成的特征,反映出矿石的稀土元素主要来自赋矿地层。
     5.康滇地轴东缘典型铅锌矿床硫化物的硫同位素组成总体上与赋矿地层形成时期的海相硫酸盐的硫同位素组成相近,说明矿床的硫主要来自赋矿地层。但天宝山矿床硫化物的δ~(34)S值明显低于震旦纪时期海相硫酸盐的δ~(34)S值,可能为细菌还原所致,成矿处于相对还原的环境。
     6.首次总结了康滇地轴东缘铅锌矿床分散元素的赋存状态和空间分布规律:分散元素Cd、Ge、Ga主要以类质同象和机械混入物形式赋存与硫化物矿物中,特别是闪锌矿和方铅矿中,但富集程度相对较低。自西向东,即由天宝山—大梁子—会泽矿床,分散元素富集有明显的空间分带现象,表现为矿床有富镉镓—富镉—富锗之变化趋势。
     7.Pb、Zn等金属元素主要呈氯化物络合物的形式活化迁移,Cd、Ge、Ga等分散元素也可能形成了部分氯化物络合物或者被Pb、Zn的络合物吸附而随之一起搬运;含矿热液带来的热能造成矿化围岩中有机质的热降解作用产生甲烷,从而导致硫酸盐的还原和金属硫化物的沉淀。
The Eastern edge of Kangdian axis, is located in the combined zone of circum-Pacific tectonic and Tethys tectonic domains. It is a important tectonic cell of the Songpan—Ganzhi in India-China folded zone. The area has gone through a long and complex geologic-tectonic evolutionary history since late Archean. A great quantity of metal mineral resources had been formed in this area. There into, they include lead-zinc deposits of enrichment dispersed elements such as cadmium (Cd), germanium (Ge) and gallium (Ga). Several giant (supergiant) typical lead-zinc deposits (such as Tianbaoshan deposit in Sichuan, Daliangzi deposit in Sichuan and Huize deposit in Yunnan) were studied in this article. Based on systematic field investigations, the article described in detail the geologic and geochemical characteristics of three typical Pb-Zn deposits from Tianbaoshan, Daliangzi and Huize. Study in door, based on common observation of polished sections and thin sections, the author synthesize to use chemical analysis, ICP-MS analysis and electronic microprobe (EMP) analysis to technical means. The thesis has finished systematic research in many aspects such as the major elements, trace elements and lead, sulfur, carbon isotope geochemistry of rocks (ores) and minerals in deposits, the content of dispersed elements cadmium (Cd) and germanium(Ge) and gallium(Ga), the occurrence and characteristics of enrichment of dispersed elements cadmium(Cd) and germanium(Ge) and gallium(Ga). Combined with the evolution of the regional geology and structure, the article has researched the geological and structure conditions and the mineralization of lead-zinc deposits in the eastern edge Kangdian axis, revealed the enrichment occurrence and enrichment mechanism of dispersed elements cadmium (Cd), germanium(Ge) and gallium(Ga) in the lead-zinc deposits, and summed up the enrichment regularity of dispersed elements cadmium(Cd), germanium(Ge) and gallium(Ga). In this paper, to obtain new understanding as following:
     1. The host rock of occurrence ore are all carbonate rock in typical lead-zinc deposits in the eastern edge of Kangdian axis. There into, deposits of Tianbaoshan and Daliangzi are dolomite of the upper Sinian Dengying group, Huize deposit is dolomite (or gray dolomite) of under Carboniferous Baizuo group. These layers are all rich ore-forming elements Zn and Pb, as well as dispersed elements cadmium (Cd) et al. The contents of Zn in no-alteration host rocks of occurrence ore were obviously higher than Clarke number of similar rocks in the earth's crust. Some of rocks may be higher to over several-ten times of Clarke number. Lead also has a degree of enrichment in various types of rock, but degree of enrichment is below than Zn. The contents of dispersed element cadmium(Cd) is commonly higher upper ten times of Clarke number of similar rocks in the earth's crust. But the contents of dispersed element germanium and gallium are similar to Clarke number of same rocks in the earth's crust. From this we can see, the high based value of zinc,lead and cadmium et al elements in region rocks, supply the matter foundation for the Pb-Zn mineralization and the enrichment of dispersed elements.
     2. ICP-MS analysis and electronic microprobe (EMP) analysis showed that disposed elements cadmium(Cd), germanium(Ge)and gallium(Ga) are mainly as the form of isomorphism occurrence in the primary sulfide such as sphalerite, galena and pyrite. A small amount of them may be occurrence as ultra-micro independence minerals. Cadmium(Cd) is major occurrence in sphalerite , germanium(Ge) and gallium(Ga) are major occurrence in galena.
     3. .According to the characteristics of the ore bodies occurrence, combined with the data of lead isotope model age of deposits, the author thought that the forming ore times are later than layers of occurrence ore in the eastern edge of Kangdian axis. They are typical epigenetic deposits. The lead isotope tectonic evolution showed that ore leads of lead- zinc deposits in the eastern edge of Kangdian axis come mainly from the upper crust, especially the orogenic belt.
     4. The host rocks of occurrence ore, ores and sphalerite have similar geochemistry characteristics of rare earth elements. They showed in total relatively enrichment light rare earth, europium(Eu) and cerium(Ce) were weak negative anomaly, the distribution curve of rare earth elements trended to right. It illustrated that the rare earth elements composition characteristics of ores inherited the characteristics of rare earth elements composition of the host rock of occurrence ore. They reflected that the rare earth elements of ore come from the layers of occurrence ore.
     5. The sulfur isotope composition of sulfide from typical lead-zinc deposits in the eastern edge of Kangdian axis are totally similar to the sulfur isotope composition of marine sulphate which the layers of occurrence ore form times. They illustrated that sulfur of deposits mainly come from the layers of occurrence ore. Butδ~(34)S value of sulphide from the Tianbaoshan deposit is obviously lower thanδ~(34)S value of sulphide from marine sulphate of Sinian period. It may be caused by bacterial reduction, mineralization was in the environment of relatively reduction.
     6. For the first time, this article summed up the state of occurrence and distribution laws in space of dispersed elements from the typical lead-zinc deposits in the eastern edge of Kang-Dian axis. Dispersed elements cadmium(Cd), germanium(Ge) and gallium(Ga) are mainly as omorphism and mechanical mixed matters in single minerals of sulfides, especially in sphalerite and galena, but the degrees of enrichment are relatively lower. From west to east, in other words, from Tianbaoshan deposit to Daliangzi deposit to Huize deposit, enrichment of dispersed elements had clearly zoning appearance in space. They showed that deposits had the varying tendency of cadmium and gallium -rich to cadmium - rich to germanium-rich.
     7. Pb, Zn et al metal elements mainly were activated and moved as complex compound of chloride. Cadmium(Cd), germanium(Ge) and gallium(Ga) et al dispersed elements may be also to form part of a complex compound of chloride or to be adsorbed together by complex compound of Pb, Zn and to move with them. The heat energy brought by ore-bearing hydrothermal caused that the thermal degradation of organic matter in mineralization host rocks produced methane. It resulted reduction of sulphate and deposition of metal sulfides.
引文
[1].陈德潜,陈刚编著.实用稀土元素地球化学[M].北京:冶金工业出版社,1990.
    [2].陈好寿.铅同位素地质研究的基本问题[M].北京:地质出版社,1979.
    [3].陈宏明,吴祥和,张瑛等.中国南方石炭纪岩相古地理与成矿作用[M].北京:地质出版社,1994.
    [4].陈进,高德荣,吴代城等.云南省会泽县麒麟厂矿区八号锌铅矿体地质勘探报告[R].2001.
    [5].陈进.麒麟厂铅锌硫化矿矿床成因及成矿模式探讨[J].有色金属矿床与勘探,1993,2(2):85-89.
    [6].陈毓川,银剑钊,周剑雄等.四川石棉县大水沟独立碲矿床地质特征[J].地质科学,1994,29(2):165-167.
    [7].从柏林主编.攀西裂谷的形成与演化[M].北京:科学出版社,1988:175-309.
    [8].方华,杨继林,吴代城等.麒麟厂铅锌矿床稳定同位素特征及成因探讨[J].有色金属矿产与勘查,2000,9(1-2):114-116.
    [9].付绍洪.扬子地块西南缘铅锌成矿作用与分散元素镉镓锗富集规律[D].成都理工大学博士学位论文,2004,6.
    [10].傅英祺,叶鹏遥,杨季楷等编.古生物地史学简明教程[M].北京:地质出版社,1981,7.
    [11].高子英.云南主要铅锌矿床的铅同位素特征[J].云南地质,1997,16(4):359-367.
    [12].顾雪祥,王乾,付绍洪等.分散元素超常富集的资源与环境效应:研究现状与发展趋势[J].成都理工大学学报/自然科学版,2004,31(1):15-21.
    [13].谷团,李朝阳.分散元素镉的资源概况及其研究意义—来自牛角塘铅锌矿的线索[J].地质地球化学,1998,26(4):38-42.
    [14].谷团,刘玉平,李朝阳.分散元素的超常富集与共生[J].矿物岩石地球化学通报,2000,19(1):60-63.
    [15].管士平,李忠雄.康滇地轴东缘铅锌矿床岩石与矿石稀土元素地球化学研究[J].地质地球化学,1999,27(3):5-16.
    [16].管士平,李忠雄.康滇地轴东缘铅锌矿床铅硫同位素地球化学研究[J].地质地球化学,1999,27(4):45-54.
    [17].郭承基.稀有元素地球化学[M].北京:科学出版社,1965:519-520.
    [18].韩润生,陈进,李元等.云南会泽铅锌矿床构造控矿规律及其隐伏矿预测[J].矿物学报,2001,21(2):265-269.
    [19].韩润生,刘丛强,黄智龙等.论云南会泽富铅锌矿床成矿模式[J].矿物学报,2001,21(4):674-680.
    [20].胡瑞忠,毕献武.临沧锗矿床成因初探[J].矿物学报,1996,16(2):97-102.
    [21].胡瑞忠,苏文超,戚华文等.锗的地球化学、赋存状态和成矿作用[J].矿物岩石地球化学通报,2000,19(4):215-217.
    [22].黄汲清.中国大陆构造特征的新研究[J].中国地质科学院院报,1984,(9):1-17.
    [23].黄思静.川西北甘溪中、上泥盆统海相碳酸盐岩地碳、锶同位素组成及其地质意义[J].岩石学报,1993,9:214-220.
    [24].黄智龙,陈进,韩润生等.云南会泽铅锌矿床脉石矿物方解石REE地球化学[J].矿物学报,2001,21(4):659-666.
    [25].黄智龙,陈进,刘丛强等.峨眉山玄武岩与铅锌矿床成矿关系初探-以云南会泽铅锌矿床为例[J].矿物学报,2001,21(4):681-688.
    [26].李发源.MVT铅锌铅锌矿床中分散元素赋存状态和富集机理研究—以四川天宝山、大梁子铅锌矿床为例[D].成都理工大学硕士学位论文,2003,5.
    [27].李复汉,覃嘉铭,申玉连等.康滇地区的前震旦系[M].重庆:重庆出版社,1988.
    [28].李连举,刘洪滔,刘继顺.滇东北铅、锌、银矿床矿源层问题探讨[J].有色金属矿产与勘查,1999,8(6):333-339.
    [29].李文博,黄智龙,陈进等.会泽超大型铅锌矿床成矿时代研究[J].矿物学报,2004,24(12):112-116.
    [30].廖文.矿山厂型铅锌矿床成因问题的初步探讨[R].地质干部管理学院科研报告,1977.
    [31].廖文.川滇黔交界地区层控铅锌矿床成矿模式的若干问题[J].西南矿产地质,1987(2).
    [32].廖文.滇东黔西铅锌金属区硫、铅同位素组成特征与成矿模式探讨[J].地质与勘探71984(1):1-6.
    [33].廖文.川滇黔交界地区层控铅锌矿床的混合成矿模式[J].西南矿产地质,1990(4).
    [34].廖文等.矿山厂—麒麟厂铅锌矿床成因探讨[R].有色地质干部管理学院科研报告,2002.
    [35].刘斌,段光贤.NaCl—H2O溶液包裹体的密度式和等容式及其应用[J].矿物学报,1987,7(4):345-351.
    [36].刘家军,郑明华.拉尔玛层控金矿中金的赋存状态研究[J].黄金,1994,15(11):7-12.
    [37].林方成.四川会东大梁子铅锌矿床成因新探[J].矿床地质,1994,13(2):126-136.
    [38].林方成.康滇地轴东缘铅锌矿床铅同位素组成特征及其成因意义[J].特提斯地质,1995,(19):131-139.
    [39].刘杰.康滇地轴东缘震旦系灯影组层控铅锌矿床成矿规律[D].成都地质学院研究生毕业论文,1988.
    [40].刘铁庚,裘愉卓,叶霖.闪锌矿的颜色成分和硫同位素之间的密切关系[J].矿物学 报,1994,14(2):199-205.
    [41].刘文钧,田洪钧等.稳定同位素在古环境研究中的应用[J].岩相古地理,1988,3-4:98-107.
    [42].刘文周,徐新煌.论川滇黔铅锌成矿带矿床与构造的关系[J].成都理工学院学报,1996,23(1):71-77.
    [43].刘英俊,曹励明,李兆麟等编著.元素地球化学[M].北京:科学出版社,1984.
    [44].刘玉平,谷团.分散元素独立矿床刍议[J].矿物岩石地球化学通报,2000,19(4):362-364.
    [45].刘玉平,李朝阳,刘家军.都龙矿床含矿层状夕卡岩成因的地质地球化学证据[J].矿物学报,2000,20(4):378-384.
    [46].刘肇昌,李凡友,钟康惠等.扬子地台西缘构造演化与成矿[M].成都:电子科技大学出版社,1996.
    [47].骆耀南,曹志敏.石棉县大水沟脉型碲化物矿床地球化学—世界首例独立碲矿床成因[J].四川地质学报,1996,16(1):80-84.
    [48].柳贺昌.滇川黔成矿区的铅锌矿源层(岩)[J].地质与勘探,1996,32(2):12-18.
    [49].柳贺昌.峨眉山玄武岩与铅锌成矿[J].地质与勘探,1995,31(4):1-6.
    [50].柳贺昌.滇川黔铅锌成矿区的成矿模式[J].云南地质,1996,15(1):41-51.
    [51].柳贺昌,林达文编著.滇东北铅锌银矿床规律研究[M].昆明:云南大学出版社,1999.
    [52].卢家烂,庄汉平,傅家谟等.临沧超大型锗矿床的沉积环境、成岩过程和热液作用与锗的富集[J].地球化学,1998,29(1):36-42.
    [53].卢武长主编.稳定同位素地球化学[M].成都:成都地质学院出版社,1986.
    [54].卢武长,崔秉荃,杨绍全.上扬子石炭纪锶、碳同位素和微量元素铝与海平面变化的关系[J].成都地质学院院报,1993,3:33-37.
    [55].罗一月,魏明基,马光中.浅析康滇地轴构造运动与油成矿的关系[J],铀矿地质,1995,14(4):350-354.
    [56].毛景文,魏家秀,杨百川.四川省石棉县大水沟碲矿床成因的初步探讨[J].矿物岩石地球化学通报,1995,1:23-24.
    [57].戚华文,胡瑞忠,苏文超等.临沧锗矿含碳硅质灰岩的成因及其与锗的成矿关系[J].地球化学,2002,31(2):161-167.
    [58].邱柱国主编.矿相学[M].北京:地质出版社,1981.
    [59].邱检生,王德滋,任启江等.我国首例碲金型浅成低温热液矿床—山东平邑归来庄金矿床[J].地质与勘探,1994,1:7-12
    [60].任纪舜,姜春发,张正坤等.中国大地构造及其演化[M].北京:科学出版社,1980.
    [61].佘跃新.四川大梁子铅锌矿床地质特征及其成因探讨[D].成都地质学院研究生毕业论文,1988.
    [62].沈渭洲编.稳定同位素地质[M].北京:原子能出版社,1987:189-243.
    [63].宋成祖.鄂西南鱼塘坝硒矿区硒污染成因探讨[J].地质论评,1995,4l(2):121-126.
    [64].四川省地质矿产局.四川省区域地质志[M].北京:地质出版社,1991.
    [65].司荣军.云南富乐分散元素多金属矿床地球化学研究[D].中科院贵阳地球化学研究所博士学位论文,2005,12.
    [66].汤耀庆,冯益民.中国板块构造研究的某些新进展[J].中国地质科学院院报,1984,(10):49-58.
    [67].涂光炽.分散元素可以形成独立矿床——一个有待开拓深化的新领域[A].欧阳自远.中国矿物学岩石学地球化学研究新进展[C].兰州:兰州大学出版社,1994:234
    [68].涂光炽,高振敏,胡瑞忠等.分散元素地球化学及成矿机制[M].北京:地质出版社,2003,424.
    [69].王鸿祯.从活动论观点论中国大地构造分区[J].地球科学,1981,(1):42-65.
    [70].王奖臻,李朝阳,李泽琴等.川滇地区密西西比河谷型铅锌矿床成矿地质背景及成因探讨[J].地质地球化学,2001,29(2):41-45.
    [71].王奖臻,李朝阳,李泽琴等.川、滇、黔交界地区密西西比河谷型铅锌矿床与美国同类矿床对比[J].矿物岩石地球化学通报,2002,21(2):127-132.
    [72].王乾,顾雪祥,付绍洪等.四川天宝山铅锌矿床硫同位素地球化学特征,矿床学理论与实践[M].北京:科学出版社,2004年9月,P237-241.
    [73].王乾,顾雪祥,付绍洪等.四川大梁子铅锌矿床闪锌矿镉富集规律及其意义[J].矿物岩石地球化学通报,2006,25(3):291-292.
    [74].王小春.康滇地轴中段东缘震旦系灯影组层控铅锌矿床成矿机理——以天宝山和大梁子矿床为例[D].成都地质学院研究生毕业论文,1988.
    [75].王小春.四川大梁子铅锌矿床的成因分析[J].矿产与地质,1991,5(3):151-156.
    [76].王小春.天宝山铅锌矿床成因分析[J].成都地质学院学报,1992,19(3):10-20.
    [77].王宗哲,杨杰东,孙卫国.扬子地台震旦纪海水碳同位素的变化[J].高校地质学报,1996,2(1):112-119.
    [78].王真光,张姿旭.矿物包裹体成分物理化学参数的计算程序[J].地质与勘探,1991,27(7):22-27.
    [79].杨敏之.分散元素矿床类型、成矿规律及成矿预测[J].矿物岩石地球化学通报,2000,19(4):381-383.
    [80].姚林波,高振敏,龙洪波.分散元素硒的地球化学循环及其富集作用[J].地质地球化学,1999,27(3):62-67.
    [81].叶霖,刘铁庚.贵州都匀牛角塘富镉锌矿床中镉的分布及赋存状态探讨[J].矿物学报,2001,21(1):115-118.
    [82].于炳松,裘愉卓.扬子地块西南部沉积地球化学演化与成矿作用[M].北京:地震出版 社,1998.
    [83].于炳松,裘愉卓,李娟.扬子地块西南部晚元古代—三叠纪沉积地球化学演化[J].沉积学报,1997,15(4):127-134.
    [84].喻安光,郭建强.扬子地台西缘构造格局[J].中国区域地质,1998,17(3):255-261.
    [85].袁海华.康演地轴结晶基底的时代归属[J].成都地质学院学报,1986,(4):26-32.
    [86].张宝贵,王三学,张盅等.南华砷铊矿床铊黄铁矿的发现和研究[J].1998,18(2):174-178.
    [87].张理刚.稳定同位素在地质科学中的应用[M].西安:陕西科学技术出版社,1985.
    [88].张淑苓,尹金双,王淑英等.云南帮卖盆地含铀煤中锗的存在形式研究[J].沉积学报,1988,3:29-40.
    [89].张秀莲.碳酸盐岩中氧、碳同位素与古盐度、古水温的关系[J].沉积学报,1985,3:17-30.
    [90].张云湘主编.中国攀西裂谷文集[M].北京:地质出版社,1985:1-25.
    [91].张忠,陈国丽,张宝贵等.富集铊汞砷的生物是滥木厂找矿和铊矿区污染的标志[J].地质与勘探,2000,36(5):27-30.
    [92].章明,顾雪祥,付绍洪等.锗的地球化学性质与锗矿床[J].矿物岩石地球化学通报,2003,22(1):82-87.
    [93].章明.云南会泽铅锌锗镉矿床地球化学特征及锗镉富集机制[D].成都理工大学硕士学位论文,2003,5.
    [94].赵伦山,张本仁编著.地球化学[M].北京:高等学校出版社,1988,404.
    [95].赵准.滇东、滇东北地区铅锌矿床的成矿模式[J].云南地质,1998,14(2):72-81.
    [96].郑庆鳌.云南会泽矿山厂麒麟厂铅锌矿床对流循环成矿及热水溶硐赋存块状富铅锌矿的实践与认识[J].西南矿产地质,1997,(1-2):8-16.
    [97].周朝宪.滇东北麒麟厂铅锌矿床成矿金属来源、成矿流体特征和成矿机理研究[J].矿物岩石地球化学通报,1998,17(1):34-36.
    [98].周朝宪,魏春生,叶造军.密西西比河谷型铅锌矿床[J].地质地球化学,1997(1):65-73
    [99].朱炳泉等著.地球科学中同位素体系理论与应用——兼论中国大陆壳幔演化[M].北京:科学出版社,1998.
    [100].朱赖民.底苏大梁子铅锌矿床地质地球化学特征及成因探讨[D].成都地质学院研究生毕业论文,1992.
    [101].Barton P B.,JR Skinner B J..硫化物矿物的稳定性.H.L.Barnes主编,热液矿床地球化学(上册)[M].北京:地质出版社,1985:295-390.
    [102].Sangster D.F.密西西比河谷型铅锌矿床是一类地质特点差异很大的矿床[J].国外地质科技,1985a,5:25-36.
    [103].Sangster D.F.密西西比河谷型与沉积喷气型矿床的对比[J].国外地质科 技,1991,8:5-20.
    [104].Sangster D.F.以碳酸盐岩为容矿岩石的铅—锌矿床(密西西比河谷型铅—锌矿床)[J].国外矿床地质,1985b,增刊:54-68.
    [105].Anderson G.M.Organic maturation and ore precipitation in southeast Missouri[J].Econmic Geology,1991,86(5):909-925.
    [106].Anderson GM.Precipitation of Mississippi Valley-Typeores[J].Economic Geology,1975(70):937-942.
    [107].Barbanson L.and Geldron A.Distribution of germanium,silver and cadmium between schists and sphalerite-siderite stratiform and vein mineralizations in Saint-Salvy,Tarn[J].Chronique de la Recherche Miniere,1983,51(470):33-42.
    [108].Bau M and Dulski P.Comparative study of yttrium and rare-earth element behaviors in fluorine-rich hydrothermal fluids[J].Contrib.Mineral.Petrol.,1995,119:213-223.
    [109].Bernstein L R.Germanium geochemistry and mineralogy[J].Geochemica et Cosmochemica Acta,1985,49,240-242.
    [110].Borshershiy Yu.A.Oxygen and Hydrogen isotope data on the nature of hydrothermal mineralizing fluids.Geochemistry International,1980,17(6):40-51.
    [111].Chaoxian Zhou et.al.The Source of Metals in the Qilinchang Zn-Pb Deposit,Northeastern Yunnan,China:Pb-Sr Isotope Constraints[J].Economic Geology,2001:583-598.
    [112].Crocetti C A,Holland H D,Mckenna L W.Isotopic composition of lead in galenas from the Viburnum Trend,Missouri.Economic Geology,1988(83):355-376.
    [113].Chung S L and John B M.Plume-lithosphere interaction in generation of the Emeishan flood basalts at the Permian-Triassic boundary[J].Gology,1995,23:889-892.
    [114].David L.Leach et al.Mississippi Valley-type Pb-Zn deposits,in:Preliminary compilation of descriptive geoenvironmental mineral deposit models.U.S.Dept.of the interior[J],U.S.Geological Survey,1995:234-243.
    [115].Doe B.R.and Zartman R.E.Plumbotectonics:The planerozoic.In:Geochemistry of hydrothermal ore deposits[J].Wiley-Interscience,New York,1979:22-70.
    [116].Doe B R,Stacey J S.The Application of lead isotopes to the problems of ore genesis and ore prospect evaluation:A review.Economic Geology,1974(69):757-776.
    [117]. Doe B. R. and Zartman R. E. Plumbotectonics: The planerozoic. In: Geochemistry of hydrothermal ore deposits. Wiley-Interscience, New York, 1979: 22-70.
    [118]. Edward A.du Bray. Preliminary compilation of descriptive geoenviromental mineral deposit models. U. S. Department of the interior [J] . U. S. Geological Survey. Open-file report, 1995: 234-243.
    [119].Goldhaber M B, Church S E, Doe B R. Lead and sulfur isotope investigation of Paleozoic sedimentary rocks from the Southern Midcontinent of the United States: implications for Paleohydrology and ore genesis of the Southeast Missouri lead belts. Economic Geology, 1995(90): 1875-1910.
    [120]. Hall W. E. and Heyl A. V. Distribution of minor elements in ore and host rock, Illinois-Kentucky fluorite district and upper Mississippi Valley zinc-lead district [J]. Mining Engineering, 1968, 20 (8) :25-32.
    [121]. Hoefs. J. Stable isotope geochemistry [M] . Springer-Verlag Berlin Heidelberg, 1980.
    [122].Holsen W. T. and Kaplan I. R. Isotope geochemistry of sedimentary sulfates [J]. Chemical Geology, 1966, 1(2) :93-135.
    [123]. Keith ML, Weber JN. Carbonand oxygen isotopic composition of select edlimest one sand fossils [J] . Geochi. et. Cosmoch. Acta, 1964, 28:1786—1816.
    [124]. Kesler S E, Appold M S, dimming G L et al. Lead isotope geochemistry of Mississippi Valley-Type mineralization in the Central Appalachians. Economic Geology, 1994(89): 1492-1500.
    [125].Krahn L, Baumann A. Lead isotope systematics of epigenetic lead-zinc mineralization in the western part of the Rheinisches Schiefergebirge, Germany. Minerlium Deposita, 1996(31) :225-237.
    [126]. Lottermoser B G. Rare earth elements and hydrothermal ore formation processes [J]. Ore Geol. Rev., 1992,7: 12-28.
    [127].Malevskiy A. Yu. Form of germanium in sphalerite [J] .Acad. Sci. USSR, Dokl., Earth Sci. Sect. :Akad.Nauk SSSR, 1966,167 (1-6) :81-83.
    [128].Michiard A. Rare earth element systerratics in hydrothermal fluids [J] . Geochim. Cosmochim. Acta, 1989, 53: 745—750.
    [129]. Moller P., Dulski P., Hoefs J. and Parekh P. P. The origin of the bearing solution in the Pb-Zn veins of the western Harz/Germany as deduced from rare earth element and isotope distributions in calcite [J] . Chemical Geology, 1979,26: 197-215.
    [130]. Shelton KL, Burstein IB, Hagni RD etal. Sulfur isotope evidence for penetration of MVT fluids into igneous basemen rocks, south east Missouri, USA [M]. Mineralium Deposita, 1995(30): 339-350.
    [131]. Sverjensky D A, Rye D M, Doe B R. The lead and sulfur isotopic compositions of galena from a Mississippi Valley-Type deposit in the new lead belt, Southeast Missouri[J]. Economic Geology, 1979(74): 149-153.
    [132].Thode H. G., Monster J. and Dunford H. B. Sulfer isotope geochemistry [J] . Geochim. Cosmochim. Acta, 1961, 25: 159-174.
    [133]. Velasco F, Pesquera A, Herrero J M. Lead isotope study of Zn-Pb ore deposits associated with the Basque-Cantabrian basin and Paleozoic basement, Northern Spain. Mineralium Deposita, 1996(31): 84—92.
    [134]. Zartman R. E, Doe B. R. Plumbotectonics — The model. Tectonophysics, 1981 (75): 135-162.
    [135]. Zhou C, Wei C, Guo J, ed al. The Source of metals in the Qilinchang Zn-Pb deposit, Northeastern Yunnan, China: Pb-Sr isotope constraints. Economic Geology, 2001, 96:583-598.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700