用户名: 密码: 验证码:
西北太平洋热带气旋气候特征及风场计算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用热带气旋资料和NCEP再分析资料,分析了西北太平洋热带气旋的频数、强度、源地和周期等方面的基本气候特征,研究了大尺度环流因子对热带风暴活动长期变化趋势的影响;利用热带气旋的累积能量(ACE),分析了不同等级热带气旋在频数、持续时间和强度等方面与ENSO的关系,揭示和分析了超强台风与ENSO循环的联系和原因;利用参与IPCCAR4的两个新一代全球大气海洋环流耦合模式产品,研究和分析了CO2浓度增加对模式热带风暴气候特征的影响和影响途径;推导和提出了海面热带气旋域内非对称最大风速半径和风速分布的数值计算方案。得到的主要结论如下:
     一、西北太平洋热带气旋基本气候特征再分析
     1960-2005年期间,西北太平洋共发生热带气旋1559个,年均34个,其中热带风暴1280个,年均27.8个,台风781,年均17个。热带气旋的发生具有明显的季节性变化,发生频数最高的是8月,最少的是2月,7、8、9、10四个月发生的热带气旋、热带风暴或者台风均占全年的70%以上;热带气旋的强度以990-1000hPa最多,随着强度的增加,热带气旋的数量迅速减少;热带气旋集中发生在三个地区:中国南海、菲律宾群岛以东和马里亚纳群岛附近,超强台风与热带气旋的源地并不重合,发生最多的区域是马里亚纳群岛以东的海域,中国南海没有强台风的生成。热带气旋的发生源地也有明显的季节变化,5月份源地向北扩张,8、9月份达到最北30。N附近,10月份逐月向南移动。热带气旋、热带风暴、台风的活动都存在着3-4a和5-6a的短周期,而且周期能量比较显著,在热带气旋多发的60年代中期到70年代中期,波谱能量通过了95%的信度检验;
     二、大尺度环流因子对热带风暴活动长期变化趋势的影响
     46年期间热带风暴级长期活动存在4个时期,1960-1974年高频期HFP1,1975-1986年低频期LFP1,1987-1995年高频期HFP2,1996-2005年低频期LFP2,2002年后呈上升趋势,这表明热带风暴活动可能进入了一个新的高频期。大尺度环流因子对热带风暴活动长期趋势的影响在于:高频期海平面气压偏低,对流层的垂直风切变偏小,西太平洋副热带高压偏北,南亚高压偏弱,500hPa偏东风场强,反之,低频期海平面气压偏高,对流层的垂直风切变偏大,西太平洋副热带高压偏南,南亚高压偏强,500hPa偏东风场弱;西北太平洋地区的海表温度、总降水量与TS活动长期趋势的对应关系不明显,高频期有较大的高层散度和低层相对涡度,低频期则反之。
     三、ENSO循环对超强台风气候特征的影响
     ENSO事件对超强台风频数、持续时间以及累积持续时间的影响远大于其它等级热带气旋,显著性相关时间可持续近一年。El Nino年超强台风频数、持续时间(Lifetime)以及累积持续时间(SuperTY Days)显著增加,而La Nina年则相反。ENSO事件主要是通过改变超强台风频数进而影响到超强台风ACE指数的改变。超强台风活动有明显的季节性,主要发生在下半年(7-12月),1951-2006年间下半年的超强台风频数为494个,平均每年9个,上半年(1-6月)有82个,平均每年1.5个。平常年超强台风的频数和源地与ENSO年存在明显差异,7、8月ENSO暖事件和冷事件均会引起SuperTY频数比平常年有明显增多,9、10月暖事件期间超强台风频数比平常年增多,而冷事件相反,11、12月暖事件和冷事件期间超强台风频数均比平常年明显减少。比较下半年源地关键区的大尺度环流因子发现:相对涡度及海表温度与SuperTY源地及频数的改变有非常好的对应关系,是ENSO影响超强台风源地及频数变化的重要途径。超强台风主要发生于850-200hPa垂直风切变绝对值小于8m/s的区域,与对流层中层相对湿度以及对流层高低层水平风切变的相关不明显。
     四、CO_2浓度增加对模式热带风暴气候特征的影响和影响途径
     针对ECHAM5和GFDL两个模式特点,合理地提出了模式热带风暴判别标准,识别出的模式热带风暴与NCEP热带风暴在径向风、切向风、暖心结构、海平面气压、850hPa相对涡度、200hPa散度、底层流场、降水的平均结构方面有非常好的相似。20C3M试验表明,两个模式的模式热带风暴与观测的热带风暴在路径、季节分布、年际变化方面均有一定的相似性,但相对于观测的热带风暴,GFDL的模式热带风暴的发生位置和路径更偏向低纬,ECHAM5则更偏向高纬。2X和4X试验表明,随着CO_2浓度增加,模式热带风暴频数在减少,2X试验相对于20C3M试验MTS频数减少15.1-34.1%,4X试验减少13.5-89.7%,降水增加,主要源地和活动地区西移,持续时间和季节分布没有显著的影响变化,活跃季仍是7-10月。不同模式模式热带风暴强度出现差异,用中心海平面气压和暖心衡量MTS的强度变化,温室效应导致GFDL的模式热带风暴增强,强模式热带风暴增多,ECHAM5模式热带风暴强度没有显著变化,强模式热带风暴减少。高CO_2浓度时期与低CO_2浓度时期的大尺度环流因子差异分析表明,海平面气压升高、对流层垂直风切变增强,导致模式热带风暴频数减少,相反,当海平面气压降低、对流层垂直风切变减弱时,则增多。海表面温度升高、对流层中层相对湿度增加对MTS频数和强度的变化不起主导作用。
     五、海面热带气旋域内风场计算方案。
     在含有摩擦阻力的梯度风方程的惯性项中考虑移动对热带气旋风速的作用,通过改进Fujita气压公式和合理确定外围气压,经过合理的简化和推导后,得到了热带气旋最大风速半径、最大风速和风速的计算方案,据此方案讨论了摩擦阻力对热带气旋内部结构的影响,结果表明,给定环境气压和摩擦阻力后,静止热带气旋的结构是轴对称的;当给定摩擦系数以后,摩擦阻力顺时针偏离风矢量反方向的角度越小,风向内偏角和最大风速半径就越大;当给定摩擦阻力的方向后,摩擦系数(摩擦阻力)越大,风向内偏角和最大风速、半径就越小假定环境气压和摩擦阻力为均匀分布时,移动热带气旋的结构是非对称的,风向内偏角关于移动方向对称,正右侧的最大风速半径小于左侧,最大风速出现在热带气旋移动方向的正右侧;摩擦阻力的大小和方向对热带气旋最大风速的大小基本上没有什么影响,但是对最大风速半径的作用却很大,这样将影响热带气旋的结构,进而影响热带气旋域内的风速分布,说明该方案能够合理刻画热带气旋内部结构的非对称性,并能够更加准确地计算台风域内各个方向的最大风速。最大风速计算的实例表明,在等值线间隔为2.5hPa的海平面气压形势场中,取环境气压为热带气旋域内最外围一根近似圆形的闭合等压线的数值是合理的。计算结果和观测进行了对比分析表明,计算风场和分析风场的合成结果与观测非常一致,合理地反映了热带气旋域内的风速分布特征。
Based on tropical cyclones data and NCEP reanalysis data, the basic climatic characteristics, such as frequency, intensity, genesis region and period of tropical cyclones (TC) over Western North Pacific (WNP) are analyzed, as well as the effect of large-scale circulation factors on long-term tendencies of tropical storm activity. The relationship between ENSO and the frequency, duration, strength of different-level TC are investigated adopting TC accumulated cyclone energy (ACE), which shows the relationship between super typhoon(TY) and ENSO cycle. The products of two new-generation Coupled Ocean-Atmospheric Global Circulation Models (CGCM) are used to study how the increase of CO2 concentration affects the climatic characteristics of model TC. At last, the numerical calculation method of the maximum wind speed radius and asymmetric wind speed distribution within the domain of a TC on sea are derived and presented. The main conclusions are shown as follows.
     1. The reanalysis of the basic climatic characteristics of Tropical Storms (TSs) over WNP
     During 1946 to 2005, there occurred 1559 TCs over WNP, including 1280 TSs and 781 typhoons, with an annual average of 34 TCs,27.8 TSs and 17 typhoons respectively. The occurrences of TCs change evidently with season. The highest frequency is in August, and the least is in February. More than 70 percent TCs, including TSs and typhoons, occurred mainly in July, August, September and October. The central air pressure of most TCs is between 990 and 1000hPa. The number of TCs decreases rapidly with the increase of their intensity. Most TCs generated mainly in the South China Sea, east of the Philippine Islands and the Marianas Islands, whereas most super typhoon generated in east of the Mariana Islands and almost none in the South China Sea. The genesis region of tropical cyclones also has a significant seasonal variation, which extends northward in May, reaches the most northern position near 30°N in August and September, then moves to south after October. Tropical cyclone, tropical storm and typhoon activities have 3-4a and 5-6a short period cycle with significant period energy, especially in mid-1960s to mid 1970s with high TC occurrence frequency, which spectrum energy passed 95% significance level.
     2. Impacts of large-scale circulation factors on long-term variation trend of TS activity
     There are 4 stages of TSs long-term activities during 1960 to 2005, i.e. the first high frequency period between 1960 and 1974 (HFP1), the first low frequency period between 1975 and 1986 (LFP1), the second high frequency period between 1987 and 1995 (HFP2), and the second low frequency period between 1996 and 2005(LFP2). TS activity increased again from 2002, which indicated that a new high frequency period starts possibly. Large-scale circulation factors affect long-term activity trend of TSs in some ways. During the high frequency period, there is a lower sea level pressure, lower tropospheric vertical wind shear, northward West Pacific subtropical high, weaker South Asia high and stronger easterly jet on 500hPa, and vice versa during the low frequency period. Sea surface temperature and total precipitation have no obvious relation to the long-term trend of TS activity. During the high frequency period, high-level divergence and low-level relative vorticity are large and vice versa during the the low frequency period.
     3. Impacts of ENSO cycle on climatic characteristics of Super Typhoon
     Impacts of ENSO events on frequency, lifetime, and cumulative duration of the super typhoon are much greater than other levels of TCs, with significant relative time sustaining near one year. In El Nino years, the frequency, lifetime and SuperTY Days increase significantly and vice versa in the La Nina years. ENSO events mainly affect the entire ACE index of super TY through changing their frequency. SuperTYs have significant seasonal activities, and most of them occurs in the second half of year (July~December). During 1951 to 2006, the total amount of SuperTY is 494 in the second half years, with an average of 9 per year. Comparatively, there is only 82 in the first half year (January~June), with an average of 1.5 per year. The frequency and genesis region of super typhoon in ENSO years are obvious different from those in usual years. In July and August, Super TY frequencies in both warm and cold events of ENSO years are significantly more than those in usual years. In September and October, all warm and cold ENSO events may cause the evident increase of super TY frequency. In November and December, the frequencies decrease significantly both in warm and cold events. Comparing the large-scale circulation factors of the key areas in the second half years, it is found that:relative vorticity and sea-surface temperature relate closely with the genesis region and frequency of SuperTY, which are the important ways of ENSO to affect SuperTY. SuperTY occurrs mainly when the vertical wind shear in the absolute value is less than 8 m/s between 850 and 200hPa, has no significant correlation with relative humidity of the middle troposphere and neither the lower nor higher level troposphere horizontal wind shear.
     4. Impacts of CO2 concentration increasing on the climatic characteristics of model tropical storms
     Considering the characteristic of ECHAM5 and GFDL model, the criterias for identifying model tropical storm (MTS) are proposed reasonably. The identified MTS has a very good structural similarity with the NCEP tropical storm in radial wind, tangential wind, warm core structure, sea level pressure,850hPa relative vorticity,200hPa divergence, the underlying flow field and the average precipitation. The experiments of 20C3M show that there are certain similarity in the path of tropical storms, seasonal distribution, inter-annual change between MTS identified from the two models and the observed tropical storms, but genesis region and path of MTS identified from GFDL model are in lower latitude than the observed tropical storms, and which from ECHAM5 model are biased further to higher latitudes than the observed tropical storms. The 2X and the 4X tests show that frequencies of MTS decreases with the increase of CO2 concentration. Compared with 20C3M test, the MTS frequencies of the 2X test decrease from 15.1 to 34.1%, and 4X test reduce from 13.5 to 89.7%, precipitation increased, main genesis regions and activities region have a westward movement trend, lifetime and seasonal distribution of MTS has no significantly changes, and their active season remains from July to October. MTS intensities from different models are not the same. With central sea level pressure and warm core of MTS to measure MTS intensity, Greenhouse effect enhances MTS intensity and strong MTS frequency in the GFDL model, while in ECHAM5 model MTS strength do not change significantly, strong MTS reduces. The large-scale circulation factor changes are analyzed during the period of the high and low CO2 concentration, the result shows that the MTS frequency is reduced, when sea level pressure gets higher and tropospheric vertical wind shear increases. On the contrary, when the sea level pressure and tropospheric vertical wind shear reduced, then the frequency increases. Enhancing sea surface temperature and increasing relative humidity of the middle Troposphere do not play major role to MTS frequency and intensity.
     5. The calculation program of wind field within the domain of a tropical cyclone area on sea
     Based on gradient wind equations including frictional force, and considering the effect of the movement of a tropical cyclone on wind speed, the Fujita Formula is improved and further simplified, and the numerical scheme for calculating the maximum wind speed radius and wind velocity distribution of a moving tropical cyclone is derived. In addition, the effect of frictional force on the internal structure of the tropical cyclone is discussed. Results show that when the environmental air pressure and friction are given, the structure of a motionless tropical cyclone is axially symmetrical. When the frictional coefficient is given, the smaller the clockwise departure of friction from the opposite direction of the wind vector is, the larger the wind direction inner deflection angle and the maximum wind speed radius are. When the direction of friction is given, the larger the frictional coefficient (friction), and the smaller the wind direction inner deflection angle and maximum wind speed radius. Supposing the environment air pressure and friction are evenly distributed, then the structure of the moving tropical cyclone is asymmetrical. The wind direction inner deflection angle is symmetrical in relation to the direction of movement, and the maximum wind speed radius on the straight right side is smaller than that on the straight left side. The maximum wind speed occurs on the straight right side of the moving direction of the tropical cyclone. The value and direction of friction have basically little effect on the value of maximum wind speed of a tropical cyclone. However, they can cause huge impact on the maximum wind speed radius. This will affect the structure of the tropical cyclone and thereby influence the wind speed distribution within the domain of the tropical cyclone. The example of calculating the maximum wind speed showed that it is reasonable to assume the environment air pressure to be the numerical value of the near circular closed isobar in the outermost periphery of a tropical cyclone. The calculated peripheral wind field of a tropical cyclone is relatively weak, and its synthetic result with the reanalyzed field corresponds perfectly with observation. Therefore, it reflects rationally the distributional characteristics of wind speed within the domain of a tropical cyclone.
引文
[1]陈联寿,丁一汇.西太平洋台风概论[M].北京:科学出版社.1979,399~410.
    [2]陈联寿,孟智勇.我国热带气旋研究十年进展[J].大气科学,2001,25(3):420~432.
    [3]李英,陈联寿,张胜军.登陆我国热带气旋的统计特征[J].热带气象学报,2004,20(1):14~23.
    [4]CHRISTOPHER W L. Climate Variability of Tropical Cyclones:Past, Present and Future[EB/OL]. http://www.aoml. noaa.gov/hrd/Landsea/climvari/index.html.1999-12-10.
    [5]FRANK W M. Tropical Cyclone Formation. A Global View Of Tropical Cyclones [M]. Chicago:University of Chicago Press,1987.
    [6]RUSSELL L E. A Global View Of Tropical Cyclones [M]. 陈联寿译, 北京:气象出版社, 1994.
    [7]陈世荣.西北太平洋的热带风暴源地[J].气象,1990,16:23~26.
    [8]陈敏,郑永光,陶祖钰.近50年(1949-1996)西北太平洋热带气旋气候特征的再分析[J].热带气象学报,1999,15:10~16.
    [9]陈锡璋.西北太平洋热带气旋强度的若干气候特征[J].海洋通报Aug.1997,Vol.16,No:16~25.
    [10]穆海振,屠其璞.1949—1995年西北太平洋热带气旋活动的气候学特征[J].南京气象学院学报,Mar.2000,Vol.23,No.1:81-86.
    [11]叶英,董波.西北太平洋强热带气旋活动的年代际变化[J].气象,Vol.24,No.7:29-34.
    [12]Chan J. C. L. J. E. Shi and C. M. Lam. Seasonal forecasting of tropical cyclone activity over the western North Pacific and the South China Sea. Wea. Forecasting,13,1998: 997~1004.
    [13]Chan J. C. L., J. E. Shi.and K. S. Liu. Improvements in the seasonal forecasting of tropical cyclone activity over the western North Pacific. Wea. Forecasting,16,2001:491~498.
    [14]Johnny C.L.Chan. Tropical Cyclone Activity in the Western North Pacific in Relation to the Stratosphric Quasi-Bennial Oscillation[J].Notes and Correspondence,Aug 1995:2567~2571.
    [15]周俊华,史培军,陈学文.1949—1999年西北太平洋热带气旋活动时空分异研究[J].自然灾害学报,Aug.2002,Vol.11,No.3:44-49.
    [16]张秀芝.西北太平洋热带气旋增强的气候特征分析[J].海洋预报Feb.1996,Vol.13,No.1:1-9.
    [17]吴达铭.西北太平洋热带气旋强度突变的分布特征[J].大气科学Mar.1997,Vol.21,No.2:191~198.
    [18]Chan J.C.L. Tropical Cyclone Activity in the Northwest Pacific in Relation to the El.Nino/Southern Oscillation Phenomenon[J].Mon.Wea.Rev.,1985,113:599~606.
    [19]Maruyama T. The Quasi-Biennial Oscillation (QBO) and equatorial waves-A historical review[J]. Meteorology and Geophysics 1997,Vol.48, No.1:1~17.
    [20]Gray,J.D.Sheaffer,J.A.Knaff. Influence of the Stratospheric QBO on ENSO Variability [J].Meteor.Soi,Japan,70,1992:975~994.
    [21]Lau.R,M.Y.Chan.Equatorial Stratospheric Flow Patterns and Quasia-biennial/Pentaenial Oscillations[J].East Asia and Western Pacific Meteorology and Climate,1993:31~38.
    [22]Johnny C.L.Chan. Tropical Cyclone Activity in the Western North Pacific in Relation to the Stratosphric Quasi-Bennial Oscillation[J].Notes and Correspondence,Aug 1995:2567~2571.
    [23]Nakazawa T. Intraseasonal variation of OLR in the tropics during the FGGE year[J]. Meteor Soc Japan,1986,64:17~34.
    [24]Libemann.B.H.H.Hendon and J.D.Glick. the Relation between Tropical Cyclones of Western Pacific and Indian Oceans and the Madden-Julian Oscillation[J]. Meteor.Soc.Japan, 1994:72,401~411.
    [25]Hall J A, Matthews J, Karoly D J. The modulation of tropical cyclone activity in the Australian region by the Madden-Julian Oscillation[J]. Mon.Wea.Rev,2001,129:2970~2982.
    [26]祝从文,李建平.大气季节内震荡对印度洋-西太平洋地区热带低压/气旋生成的影响[J].气象学报,Vol.62,No.1,Feb.2004:42-51.
    [27]TSUTSUI J I and KASAHARA A. Simulated tropical cyclones using the National Center for Atmospheric Research community climate model (1996)[J]. Geophys. Res., 1996,101(D10):15013~15032.
    [28]HO C H, BAIK J J and KIM J H. Interdecadal change in summertime typhoon tracks[J]. American Met.Soc,2004,17(17):1767~1776.
    [29]张庆云,彭京备.夏季东亚环流年际和年代际变化对登陆中国台风的影响[J].大气科学,Jan.2003,27(1):97-106.
    [30]张艳霞,钱永莆,王谦谦.西北太平洋热带气旋的年际和年代际变化及其与南亚高压的关系[J].应用气象学报,2004,15(1):74~80.
    [31]徐晶,陈联寿,徐祥德.青藏高原高空流型对西北太平洋台风路径影响的诊断分析[J].应用气象学报,1999,10(4):410~420.
    [32]杨淑瑞,林玉英,王永亮.1998年西北太平洋特带气旋和副热带高压特征[J].海洋预报,1998,15(4):70~78.
    [33]Chan.J.C.L.and J.E.Shi. Long-term trends and interannual variability in tropical cyclone activity over the western North Pacific[J], Geophys. Res.Lett,1996,23:2765~2767.
    [34]Johnny C.L.Chan and Kin Sik Liu. Global Wanning and Western North Pacific Typhoon Activity from an Observational Perspective[J]. Journal of Climate,2004,Vol.17:4590-4602.
    [35]Chang-Hoi Ho,Jong-Jin Baik and Joo-Hong Kim. Interdecadal Changes in Summertime Typhoon Tracks[J]. Journal of Climate,May.2004:1767-1776.
    [36]薛宗元,C.J.Neumann西北太平洋热带气旋的频率和运动[J].热带气象,Feb.1985,Vol.1 No.1:53~64.
    [37]余晖,端义宏.西北太平洋热带气旋强度变化的统计特这[J].气象学报,Dec.2002,Vol.60,No.6:680-687.
    [38]Gray W M. Global View of the Origin of Tropical Disturbance and Storms. Mon.Wea.Rev,1968,96:669-700.
    [39]Gray W M and J.D Sheaffer. El Nino and QBO Influences on Tropical Cyclone Activity. Teleconnections Linking Worldwide Climate Anomalies, M. H. Glantz, R. W. Katz, and N. Nicholls,Eds., Cambridge University Press,1991:257~284.
    [40]Landsea, C. W., G. D. Bell, W. M. Gary, and S. B. Goldenberg,:The extremely active 1995 Atlantic hurricane season:Environmental conditions and verification of seasonal forecasts. Mon.Wea.Rev.,1998,126:1174~1193.
    [41]Goldenberg, S. B., and L. J. Shapiro. Physical mechanisms for the association of El Nino and West Africa rainfall with Atlantic major hurricane activity. J. Climate,9,1996:1169~1187.
    [42]Pao-shin Chu. Large-Scale Circulation Features Associated with Decadal Variations of Tropical Cyclone Activity over the Central North Pacafic. Journal of Climate, Vol.15,2002:2678~2689.
    [43]Michiaki Yumoto and Tomonori Matsuura. Interdecal Variability of Tropical Cyclone Activity in the Western North Pacific. Journal of the Meteorological Society of Japan,Vol.79,No.1,2001:23-35.
    [44]Atkinson, G. Proposed system for near real time monitoring of global tropical circulation and weather patterns[J].11th Tech. Conf. on Hurricanes and Tropical Meteorology, Amer. Meteor.Soc.,1977:645~652.
    [45]Ramage, C. S. and A. M. Hori. Meteorological aspects of El Ni-no[J]. Mon. Wea. Rev., 1981,109:1827~1835.
    [46]Pan, Y. H. The effect of the thermal state of equatorial eastern Pacific on the frequency of typhoon over the western Pacific[J]. Acta Meteorol. Sin.,1982,40:24~34.
    [47]Dong, K. El Ni-no and tropical cyclone frequency in the Australian region and the Northwestern Pacific[J]. Aust. Meteor. Mag.,1988,36:219~255.
    [48]Wu, G. and N. C. Lau. A GCM Simulation of the relationship between tropical storm formation and ENSO[J]. Mon. Wea. Rev.,1992,120:958~977.
    [49]Pudov, V. D. and S. A. Petrichenko. Relationship between the evolution of tropical cyclones in the Northwestern Pacific and El Ni-no. Oceanology,1998,38:447~452,
    [50]Pudov, V. D. and S. A. Petrichenko.1997-1998 El Ni-no and tropical cyclone genesis in the Northwestern Pacific.Izvestiya, Atmospheric and Oceanic Physics,2001,37:576~583.
    [51]Wang B. and J. C. L. Chan. How strong ENSO events affect tropical storm activity over the western North Pacific[J]. Climate,2002,15:1643~1658.
    [52]Lander, M. A. An exploratory analysis of the relationship between tropical storm formation in the western North Pacific and ENSO[J]. Mon. Wea. Rev.,1994,122:636~651.
    [53]Suzana J. Camargo and Adam H.Sobel. Western North Pacific Tropical Cyclone Intensity and ENSO[R]. http://iri.columbia.edu/outreach/publication/report/04-03/report04-03.pdf, 2004.09.
    [54]Chia, H. H. and C. F. Ropelewski. The interannual variability in the genesis location of tropical cyclones in the Northwest Pacific[J]. Climate,2002,15:2934~2944.
    [55]Chu, P.-S. and J. Wang,:Tropical cyclone occurrences in the vicinity of Hawaii:Are the differences between El Ni-no and non-El Ni-no years significant?[J]. Climate,1997:10, 2683~2689.
    [56]Clark, J. D. and P. Chu,:Interannual variation of tropical cyclone activity over the Central North Pacific.[J]. Meteorol. Soc. Japan,2002:80,403-418.
    [57]WANG Bin and CHAN Johnny. How strong ENSO events affect tropical storm activity over the western North Pacific[J]. Climate,2002,15(13):1643~1658.
    [58]LANDER M A. An exploratory analysis of the relationship between tropical storm formation in the western North Pacific and ENSO[J]. Mon. Wea. Rev.,1994,122(4):636~651.
    [59]SUZANA C and Adam H S. Western North Pacific Tropical Cyclone Intensity and ENSO[J],Journal of Climate,2005,18(8):2996~3006.
    [60]Pudov, V. D. and S. A. Petrichenko. Relationship between the evolution of tropical cyclones in the Northwestern Pacific and El Nino. Oceanology,1998,38:447~452.
    [61]Camargo, S.J. and A. H. Sobel. Western North Pacific Tropical Cyclone Intensity and ENSO. J. Climate,2005,18:2996~3006.
    [62]Bell, G D. and Coauthors. Climate assessment for 1999. Bull. Amer. Meteor. Soc.,2000,81: S1-S50.
    [63]李崇银.厄尔尼诺与南海台风活动[J].热带气象,1986,2(2):39~48.
    [64]毛祖松,金德山.太阳黑子、厄尔尼诺及西北太平洋热带气旋的活动[J].海洋预报,1996,13(4):56~60.
    [65]何敏,宋文玲,陈兴芳.厄尔尼诺和反厄尔尼诺事件与西北太平洋台风活动[J].热带气象学报,1999,15(1):17~25.
    [66]唐佑民,刘书华,两类El.Nino事件太平洋海温异常时空结构的分析[J].热带气象学报,1994,10(2):130~139.
    [67]陈志芳.两类El.Nino事件对佛山气候影响的差异[J].广东气象,2003,(2):1-4.
    [68]冯利华.中国热带气旋与厄尔尼诺事件[J].海洋科学,2001,25(9):21~23.
    [69]Chan J C L. Tropical cyclone activity over the western North Pacific associated with El Nino and La Nina events [J].Journal of Climate,2000,13:2960-2972.
    [70]Frank W M. Tropical cyclone formation [C].A Global View of Tropical Cyclones. Office of Naval Research,1987:53~90.
    [71]Chen T C, Weng S P, Yamazaki N, et al. Interannual variation in the tropical cyclone formation over the western North Pacific [J]. Monthly Weather Review,1998,126: 1080~1090.
    [72]Wang B, Wu R. Peculiar temporal structure of the South China Sea summer monso [J]. Advances of Atmospheric Sciences,1997,14:177~194.
    [73]Ho C H J J. Baik Kim J H, Gong D Y. Interdecadal changes in summertime typhoon tracks [J].Journal of Climate,2004,17:1767~1776.
    [74]Li C. Actions of typhoon over the western Pacific (including the South China Sea) and E1 Nino [J].Advances Atmospheric Sciences,1988,5:107~115.
    [75]BENGTSSON L H B and KANAMITSU M. Simulation of hurricane-type vortexes in a general circulation model[J]. Tellus,1982,34A(4):440~457.
    [76]WU GuoXiong and LAU N C. AGCM simulation of the relationship between tropical-storm formation and ENSO[J]. Mon. Wea. Rev.,1992,120(6):958~977.
    [77]BENGTSSON L H B, BOTZET M and ESH M. Hurricane-type vortices in a general circulation model [J]. Tellus,1995,47A(2):175-196.
    [78]TSUTSUI J I and KASAHARA A. Simulated tropical cyclones using the National Center for Atmospheric Research community climate model[J]. Geophys.Res.,1996,101(D10): 15013~15032.
    [79]VITART F, ANDERSON J L and STERN W F. Simulation of Interannual Variability of Tropical Storm Frequency in an Ensemble of GCM Integrations[J]. Journal of Climate,1997,10(4):745~760.
    [80]VITART F, ANDERSON J L and STERN W F. Impact of Large-scale Circulation on Tropical Storm Frequency,Intensity,and Location,Simulated by an Ensemble of GCM Integrations[J]. Journal of Climate,1999,12(11):3237~3254.
    [81]WATSON R T and the Core Writing Team, Eds.Climate Change 2001:Synthesis Report[M]. Cambridge:Cambridge University Press,2001.
    [82]BROCCOLI A J and MANABE S. Can Existing Climate Models be Used to Study Anthropogenic Changes in Tropical Cyclone Climate?[J]. Geophys. Res.Lett.,1990,17(5): 1917~1920.
    [83]HAARSMA R J, MITCHELL J F B and SENIOR C A. Tropical disturbances in a GCM[J]. Climate Dynamics,1993,8(1):247~257.
    [84]KRISHNAMURTI T N, CORREA T R and LATIF M. The impact of current and possibly future sea surface temperature anomalies on the frequency of Atlantic hurricanes[J].Tellus, 1998,50A(2):186-210.
    [85]KNUTSON T R, TULEYA R E and KURIHARA Y. Simulated increase of hurricane intensities in a CO2-warmed climate[J]. Science,1998,279(2):1018~1020.
    [86]KNUTSON T R, TULEYA R E. Increased hurricane intensities with CO2-induced warming as simulated using the GFDL hurricane prediction system[J]. Climate Dynamics,1999,15(2): 503~519.
    [87]KNUTSON T R, TULEYA R E and SHEN Weixing.Impact of CO2-Induced Warming on Hurricane Intensities as Simulated in a Hurricane Model with Ocean Coupling[J]. Journal of climate,2001,14(11):2458~2468.
    [88]BENTSSON, BOTZET L M and ESCH M. Will Green Gas-induced Warming over the Next 50 Years Lead to Higher Frequency and Greater Intensity of Hurricanes[J]. Tellus,1996,48A(1):57-73.
    [89]TSUTSUI J, KASAHARA A and HIRAKUCHI H. The impacts of global warming on tropical cyclones—A numerical experiment with the T42 version of NCAR CCM2. Preprints[J], Amer. Meteor.Soc.,1999,16(12):1077~1080.
    [90]YOSHIMURA J, SUGI M and NODA A. Influence of greenhouse warming on tropical cyclone frequency simulated by a highresolution AGCM. Preprints [J], Amer. Meteor. Soc., 1999,16(12):1081~1084.
    [91]CHAN Johnny and LIU KinSik. Global Wanning and Western North Pacific Typhoon Activity from an Observational Perspective[J]. Journal of Climate,2004,17(12):4590~4602.
    [92]EVANS J L. Sensitivity of Tropical Cyclone Intensity to Sea Surface Temperature [J]. Climate,1993,6(6):1133~1140.
    [93]王喜年,风暴潮数值模式计算中气压场和风场的处理.海洋预报,1986,3(4),56~68.
    [94]房文鸾、徐启明、章家琳等,东海台风域内的风速分布,海洋预报,1987,4(3),1-4.
    [95]Shea, D. J., and W. M. Gray, The hurricane's inner core region:I. Symmetric and asymmetric structure. J. Atmos. Sci.,1973,30,1544~1564.
    [96]陈孔沫、秦曾灏,台风海面最大风速的计算,海洋学报,1989,11(1),31~41.
    [97]胡邦辉、谭言科、张学敏,海面热带气旋域内风速分布,大气科学,1999,23(3),316~322.
    [98]Wilson, B. J., Hurricane wave statistics for the Gulf of Mexico. Proc.6th Conf. On Coast Eng., 1957,78.
    [99]中国气象局编,热带气旋年鉴.北京:气象出版社,1997.
    [100]Kalnay, E., M. Kanamitsu, R. Kistler, et al., The NCEP/NCAR 40-Year reanalysis project, Bulletin of the American Meteorological Society,1996,77(3),437~472.
    [101]胡邦辉、谭言科、王举,热带气旋海面最大风速、半径的计算,应用气象学报,2004,15(4),427~435.
    [1]黄勇,李崇银,王颖.西北太平洋热带气旋频数变化特征及其与海表温度关系的进一步研究Journal of Tropical Meteleloogy,2009,25(3),273~280.
    [2]陈世荣.西北太平洋的热带风暴源地[J].气象,1990,16:23~26.
    [3]陈敏,郑永光,陶祖钰.近50年(1949-1996)西北太平洋热带气旋气候特征的再分析[J].热带气象学报,1999,15:10-16.
    [4]陈锡璋.西北太平洋热带气旋强度的若干气候特征[J].海洋通报Aug.1997,Vol.16,No:16~25.
    [5]穆海振,屠其璞.1949—1995年西北太平洋热带气旋活动的气候学特征[J].南京气象学院学报,2000,23(1):81~86
    [6]叶英,董波.西北太平洋强热带气旋活动的年代际变化[J].气象,1998,24(7):29~34.
    [7]Chan.J.C.L.and J.E.Shi. Long-term trends and interannual variability in tropical cyclone activity over the western North Pacific[J], Geophys. Res.Lett,1996,23:2765~2767.
    [8]Johnny C.L.Chan and Kin Sik Liu. Global Warming and Western North Pacific Typhoon Activity from an Observational Perspective[J]. Journal of Climate,2004,Vol.17:4590~4602
    [9]CHRISTOPHER W L. Climate Variability of Tropical Cyclones:Past, Present and Future[J]. edited by R. A. Pielke, Sr. and R. A Pielke, Jr, Routledge, New York:220~241..
    [10]Gray, W. M., and J. D. Sheaffer. El Nino and QBO influences on tropical cyclone activity. Teleconnections Linking Worldwide Climate Anomalies, M. H. Glantz, R. W. Katz, and N. Nicholls, Eds., Cambridge University Press,1991:257~284.
    [11]Landsea, C. W., G. D. Bell, W. M. Gary, and S. B. Goldenberg, The extremely active 1995 Atlantic hurricane season:Environmental conditions and verification of seasonal forecasts[J]. Mon. Wea. Rev.,Vol.126,1998:1174~1193.
    [12]Pao-shin Chu. Large-Scale Circulation Features Associated with Decadal Variations of Tropical Cyclone Activity over the Central North Pacafic. Journal of Climate, Vol.15,2002:2678~2689.
    [13]Michiaki Yumoto and Tomonori Matsuura. Interdecal Variability of Tropical Cyclone Activity in the Western North Pacific. Journal of the Meteorological Society of Japan, 200179(1),:23~35.
    [14]张庆云,彭京备.夏季东亚环流年际和年代际变化对登陆中国台风的影响[J].大气科学,2003,27(1):97-106.
    [15]张光智,张先恭,魏风英.近百年WNP热带气旋年频数的变化特征[J].热带气象学报,1995,11(4).
    [16]中国气象局.热带气旋年鉴(1989—2004年)[Z].北京:气象出版社,1990~2005.
    [17]中国气象局.台风年鉴(1960—1988年)[Z].北京:气象出版社,1960~1989.
    [18]美国NOAA灾害中心,http://www.cdc.noaa.gov/people/klaus.wolter/MEI/.
    [19]谢庄,曹鸿兴等,近百余年北京气候变化的小波特征,气象学报,2000,58(3):362~369.
    [20]伍荣生,现代天气学原理,北京,高等教育出版社1999.
    [21]王毅,石汗青等.西北太平洋热带气旋时空分布特征分析,自然灾害学报,2009,18(6),166~174.
    [22]WANG Bin and CHAN Johnny. How strong ENSO events affect tropical storm activity over the western North Pacific[J]. Climate,2002,15(13):1643~1658.
    [23]李崇银.厄尔尼诺与西太平洋台风活动,科学通报,1985。14:1087~1089.
    [24]张艳霞,钱永甫,王谦谦.西北太平洋热带气旋的年际和年代际变化及其与南亚高压的关系,应用气象学报,2004,15(1):74~80.
    [1]Lander M A. An exploratory analysis of the relationship between tropical storm formation in the western North Pacific and ENSO [J]. Monthly Weather Review,1994,122:636~651.
    [2]Wang B, Chan J C L. How strong ENSO events affect tropical storm activity over the western North Pacific [J].Journal of Climate,2002,15:1643~1658.
    [3]SUZANA C, ADAM H S. Western North Pacific tropical cyclone intensity and ENSO[J].Journal of Climate,2005,18(8):2996~3006.
    [4]Pudov, V. D. and S. A. Petrichenko. Relationship between the evolution of tropical cyclones in the Northwestern Pacific and El Nino. Oceanology,1998,38:447~52.
    [5]Chia, H. H. and C. F. Ropelewski. The interannual variability in the genesis location of tropical cyclones in the northwest Pacific. J. Climate,2002,15:2934~2944.
    [6]Camargo, S.J. and A. H. Sobel. Western North Pacific Tropical Cyclone Intensity and ENSO. J. Climate,2005,18:2996~3006.
    [7]Wu G, Lau N C, GCM A. simulation of the relationship between tropical-storm formation and ENSO [J]. Monthly Weather Review,1992,120:958-977.
    [8]李崇银.厄尔尼诺与南海台风活动.热带气象学报,1986,2(2):39~48.
    [9]毛祖松,金德山.太阳黑子、厄尔尼诺及西北太平洋热带气旋的活动.海洋预报,1996,13(4):56~60.
    [10]何敏,宋文玲,陈兴芳.厄尔尼诺和反厄尔尼诺事件与西北太平洋台风活动.热带气象学报,1999,15(1):17~25.
    [11]JTWC, cited 2008:Joint Typhoon Warning Center best track data site. [Available online at http://www.metoc.npmoc.navy.mil/jtwc/best_tracks/.]
    [12]CPC, cited 2008:Monthly atmospheric and SST indices. [Available online at http://www.cpc.noaa.gov/data/indices/index.html.]
    [13]美国NOAA灾害中心,[Available online at http://www.cdc.noaa.gov/people/klaus.wolter/MEI/].
    [14]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.热带气旋等级,GB/T 19201—2006.
    [15]赵其庚.海洋环流及海气耦合系统的数值模拟[M].北京:气象出版社,1999.179-182.
    [16]王绍武,龚道溢.近百年来的ENSO事件及其强度[J].气象,1999,1(1):9-19.
    [17]Barnston, A. G., M. Chelliah, and S. B. Goldenberg. Documentation of a highly ENSO-related SST region in the equatorial Pacific. Atmos.-Ocean,1997,35:367~383.
    [18]Bell, G. D. and Coauthors. Climate assessment for 1999. Bull. Amer. Meteor. Soc.,2000,81: S1-S50.
    [19]Pan, Y. H. The effect of the thermal state of equatorial eastern Pacific on the frequency of typhoon over the western Pacific (in Chinese with English abstract). Acta Meteor. Sin.,1982, 40:24-34.
    [20]Gray W M. Global view of the origin of tropical disturbances and storms. Mon Wea Rev, 1968,96:669~700.
    [21]Gray W M. Tropical Cyclone Genesis. Dept of Atmosci, Colorado State Univ,1975
    [22]Gray W M.Hurricanes:their formation, structure and likely role in the general circulation. In:Reading D B, ed. Shaw Meteorology over the Tropical Ocean. UK Royal Meteorological Society,1979,155~218.
    [23]Gray, W. M., and J. D. Sheaffer. El Nino and QBO influences on tropical cyclone activity. Teleconnections Linking Worldwide Climate Anomalies, M. H. Glantz, R. W. Katz, and N. Nicholls, Eds., Cambridge University Press,1991:257~284.
    [1]Haarsma, R.J., J, F.B.Mitchell, C.A.Senior.Tropical disturbances in a GCM.Clim Dyn,1993,8:247~257
    [2]Bengtsson,L.,Botzet, M.,Esch, M.Will greenhouse gas-induced warming over the next 50 years lead to higher frequency and greater intensity of hurricanes?.Tellus,1996,48A:57-73
    [3]Sugi M, Noda A, Sato N. Influence of the global warming on tropical cyclone climatology: an experiment with the JMA global model. J. Meteor. Soc. Japan,2002,80:249~272
    [4]Hasegawa A, Emori S. Tropical cyclones and associated precipitation over the Western North Pacific:T106 atmospheric GCM simulation for present-day and doubled CO2 climates. Sci. Online Lett. Atmos.,2005,1:145~148
    [5]Knutson,Thomas R., Robert E. Tuleya, Yoshio Kurihara.Simulated increase of hurricane intensities in a CO2-warmed climate.Science,1998,279:1018~1020
    [6]Knutson, Thomas R., Robert E. Tuleya. Increased hurricane intensities with CO2-induced warming as simulated using the GFDL hurricane prediction system. Clim Dyn.,1999,15:503~519
    [7]Knutson, T.R., Tuleya, R.E.. Impact of CO2-induced warming on hurricane intentsities as simulated in a hurricane model with ocean coupling. J. Climate,2001,14:2458~2468.
    [8]Kuntson. Thomas R.,Robert E. Tuleya.Impact of CO2-induced wanning on simulaed hurricane intensity and precipitation:sensitivity to the choice of climate model and convective parameterization. J. Climate,2004,18:3477~3494
    [9]McDonald R E, Bleaken D G, Cresswell D R, et al. Tropical storms:representation and diagnosis in climate models and the impacts of climate change. Clim Dyn.,2005,25:19~36
    [10]Yoshimura J, Sugi M. Tropical cyclone climatology in a high-resolution AGCM:impacts of SST wanning and CO2 increase.Sci. Online Lett. Atmos.,2005,1:133~136
    [11]Yoshimura J, Sugi M, Noda A. Influence of greenhouse warming on tropical cyclone frequency. J. Meteor. Soc. Japan,2006,84:405~428
    [12]Stowasser M, Wang Y Q, Hamilton K. Tropical cyclone changes in the Western North Pacific in a global warming scenario.J. Climate,2007,20:2378~2396
    [13]中国气象局.台风年鉴(1982—1989年)[Z].北京:气象出版社,1982~1989
    [14]中国气象局.热带气旋年鉴(1990—2001年)[Z].北京:气象出版社,1990~2001
    [15]美国NOAA灾害中心, [Available online at http://www.cdc.noaa.gov/people/klaus.wolter/MEI/].
    [16]Program for Climate Model Diagnosis and Intercomparison, PCMDI, [Available online at https://esg.llnl.gov:8443/index.jsp].
    [17]Hawkins H.F., Rubsam D.T., Hurricane Hilda,1964,Structure and budgets of the hurricane on October 1,1964.Mon,Wea.,Rev.,1968 (97):617~636
    [18]Tsutsui Jun-ichi, Akira Kasahara. Simulated tropical cyclones using the national center for atmospheric research community climate model. J. Giophys. Res.,1996,101:15013~15032
    [19]F.Vitart, J.L.Anderson, W.F.Stern.Simulation of interannual variability of tropical storm frequency in an ensemble of GCM integrations. J. Climate,1997,4:745~759
    [20]Nguyen, K. C., Walsh, K.J.E..Interannual,decadal,and transient greenhouse simulation of tropical cyclone-like vortices in a regional climate model of the south pacific. J. Climate,2001,14:3043~3054
    [21]Oocuchi K, Yoshimura J, Yoshimura H, et al. Tropical cyclone climatology in a global-warming climate as simulated in a 20 km-mesh global atmospheric model. J. Meteor. Soc. Japan,2005,84:259~276
    [22]Bengtsson. L., K. I. Hodges and M. Esch. Tropical cyclones in warmed climate.WMO Bullttin,2007,56(3):196~203
    [23]Hawkins H.F., Rubsam D.T., Hurricane Hilda,1964,Structure and budgets of the hurricane on October 1,1964.Mon,Wea.,Rev.,1968(97):617~636
    [24]Frank, W.M..The structure and energetics of the tropical cyclone. Mon.Wea.Rev.,1977,105:1119~1135
    [25]Suzana J. Camargo, Anthony G. Barnston, Stephen E. Zebiak. A statistical assessment of tropical cyclone activity in atmospheric general circulation models. Tellus,2005,57A:589-604
    [26]Bengtsson,L.,Hodges, Kevin I.,Roeckner,Erich.Storm tracks and climate change. J. Climate,2006,19:3518~3543
    [27]Anderson. Jeffrey L.,et al..The new GFDL global atmosphere and land model AM2-LM2: evaluation with prescribed SST simulations.J. Climate,2004,117:4641~4673
    [28]Broccoli, A.J., S. Manabe. Can existing climate models be used to study anthropogenic changes in tropical cyclone climate. Geophys.Rev. Lett.,1990,17:1917~1920
    [29]Krishnamurti, T. N..Some recent on numerical weather prediction over the tropics.Aust.Meteorol.Mag.,1998,36:141~170
    [30]Chan, J. C. L., and K. S. Liu. Global warming and western north pacific typhoon activity from an observational perspective. J. Climate,2004,17:4590~4602.
    [31]Pao-shin Chu. Large-scale circulation features associated with decadal variations of tropical cyclone activity over the Central North Pacafic. J. Climate,2002,15:2678~2689.
    [32]林秀斌.两北太平洋热带气旋强度变化及其影响因子的研究.南京.南京信息工程大学.2007
    [33]IPCC, Climate Change 2007:The Physical Science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [M]. Cambridge, United Kingdom and New York, NY, USA.:Cambridge University Press,2007:598
    [34]Zhao Zongci, Akimasa Sumi, Chikako Harada et al.Detection and projections of floods/droughts over east Asia for the 20th and 21st centuries due to human emission [J]. World Resource Review (USA),2004,16(3):312~329
    [1]陈联寿、丁一汇,西太平洋台风概论.北京:科学出版社,1979.
    [2]陈联寿、徐祥德、罗哲贤等,热带气旋动力学引论.北京:气象出版社,2002.
    [3]Meng, Z., L. Chen, and X. Xu,2002:Recent progress on tropical cyclone research in China. Adv. Atmos. Sci.,19(1),103~110.
    [4]陈孔沫,1981:台风气压场和风场模型.海洋学报,3(1), 44~55. (in Chinese)
    [5]王喜年,风暴潮数值模式计算中气压场和风场的处理.海洋预报,1986,3(4),56-68.
    [6]Wang, G., S. Wang, and J. Li,1996:A typhoon bogus and its application to a movable nested mesh model. Journal of Tropical Meterology,12(1),9-17. (in Chinese)
    [7]Wang, Y.,1998:On the bogusing of tropical cyclones in numerical models:the influence of vertical structure. Meteor. Atmos. Phys.,65,153~170.
    [8]Luo, Z.,1991:The possible causes for the counter clockwise loop routine of tropical cyclone. Chinese Science (B),7,769~775. (in Chinese)
    [9]Chen, L., and Z. Luo,1998:Numerical study on function affecting tropical cyclone structure and motion. Acta Meteorologica Sinica,12(4),504~512.
    [10]Ueno, M.,1990:Causes and improvement of bias in tropical cyclone track forecast by JMA NWP models. ESCAP/WMO Typhoon Committee Annual Review,123~133.
    [11]Chen, L., and Z. Luo,1995:Effect of the interaction of different-scale vortices on the structure and motion of typhoon. Adv. Atmos. Sci.,12(2),207~214.
    [12]房文鸾、徐启明、章家琳等,东海台风域内的风速分布,海洋预报,1987,4(3),1-4.
    [13]Shea, D. J., and W. M. Gray,1973:The hurricane's inner core region:I. Symmetric and asymmetric structure.J. Atmos. Sci.,30,1544-1564.
    [14]陈孔沫、秦曾灏,台风海面最大风速的计算,海洋学报,1989,11(1),31~41.
    [15]胡邦辉、谭言科、张学敏,海面热带气旋域内风速分布,大气科学,1999,23(3),316-322.
    [16]Wilson, B. L,1957:Hurricane wave statistics for the Gulf of Mexico, Proc,6th Conf. On Coast Eng.,78.
    [17]中国气象局.台风年鉴(1987年)[Z].北京:气象出版社,1987.
    [18]Kalnay, E., and Coauthors,1996:The NCEP/NCAR 40-Year reanalysis project. Bull. Amen Meteor. Soc,77(3),437~472.
    [19]中国气象局.热带气旋年鉴(1991年)[Z].北京:气象出版社,1991.
    [20]中国气象局.热带气旋年鉴(1997年)[Z].北京:气象出版社,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700