用户名: 密码: 验证码:
CD226分子与肿瘤和实验性自身免疫性脑脊髓炎关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
免疫球蛋白超家族(immunoglobulin superfamily,IgSF)成员CD226分子是一种广泛表达于多种免疫细胞膜表面的Ⅰ型跨膜糖蛋白,在2000年第七届国际人类白细胞分化抗原协作组大会上获得新的CD命名。此前,该分子被称为“T细胞谱系特异性活化抗原1(T lineage- specific activation antigen 1,TLiSA1)”、“血小板与T细胞活化抗原1(platelet and T cell activation antigen 1,PTA1)”和“DNAX辅助分子1(DNAX accessory molecule-1,DNAM-1)”。
     人CD226基因于1996年克隆成功,位于染色体18q22.3,其cDNA全长2664bp,开放读框编码336个氨基酸,其基因存在单核苷酸多态性(single nucleotide polymorphism,SNP)。小鼠CD226基因由我室于2002年成功克隆,位于染色体18 E4,除了cDNA全长为2487bp的原型分子以外,还存在三种异型。完整的CD226分子由胞膜外区、跨膜区和胞浆区组成,分子量为65~67 kDa,胞膜外区有2个IgSF V样结构域和潜在的糖基化位点,胞浆区有磷酸化及与信号分子相互作用的位点。不同种属的CD226分子在核苷酸水平和氨基酸水平均高度同源,蛋白结构也十分相似,是一个在进化上是一个相对保守的分子,提示该分子在机体免疫应答过程和其他生物学功能中可能扮演了极为重要的角色。此外,CD226分子与CD96以及其他Nectin和Nectin样分子(Nectin-like molecule,Necl)有较高的同源性。
     CD226广泛表达于T细胞、NK细胞、NK T细胞、活化的血管内皮细胞、巨核/血小板谱系、单核细胞、胸腺细胞、某些B细胞亚群、部分造血干细胞和肥大细胞等免疫细胞表面,在免疫系统以外则分布于海马和小脑皮质的神经突触部位。2003年,人CD226的两种配体鉴定成功,分别是CD112/Nectin-2和CD155/Necl-5/PVR(脊髓灰质炎病毒受体)。CD226与其配体的相互作用参与CTL和NK细胞的活化、分化和细胞毒作用,调节CD4+ T细胞的增殖和分化,介导内皮细胞与其他细胞的黏附,促进血小板的活化与聚集,参与造血调控,介导肥大细胞的脱颗粒作用,参与NK T细胞和胸腺细胞的抗凋亡作用、树突状细胞的成熟、免疫突触和神经突触的形成,并与肿瘤、自身免疫性疾病、移植排斥及病毒感染等疾病密切相关。
     人CD226除以膜型(mCD226)的形式表达在细胞膜表面外,还以可溶型(sCD226)的形式存在于血清和细胞培养上清中。前期小规模临床标本检测发现,在肿瘤和多种自身免疫性疾病患者的血清中,sCD226的水平均显著高于正常人,但是目前关于CD226与临床疾病的研究仅限于膜型和/或可溶型CD226的表达及其基因SNP与疾病的关系,而CD226在肿瘤及自身免疫性疾病中的作用和可能的分子机制尚不清楚。
     本研究首先制备和鉴定了一批抗人IgG Fc段、谷胱甘肽-S-转移酶(glutathione-S-transferase,GST)、麦芽糖结合蛋白(maltose-binding protein,MBP)和硫氧化还原蛋白(thioredoxin,Trx)等常用标签蛋白(tag)的单克隆抗体(monoclonal antibody,mAb),在此基础上建立或改良了定量检测GST、Fc、MBP和Trx或其融合蛋白的双抗体夹心ELISA试剂盒,敏感性分别达到了1.2、15.6、1和0.4 ng/ml。应用Fc ELISA试剂盒检测上清中hCD226-Fc水平的方法,克隆化了高水平分泌该融合蛋白的CHO-hCD226-Fc细胞株,大量制备细胞培养上清,并用抗Fc mAb标记的Sepharose 4B亲和层析柱纯化了hCD226-Fc融合蛋白,用SDS-PAGE、Western blot和流式细胞术(flow cytometry,FCM)鉴定其纯度和生物学活性,以此作为人sCD226 ELISA试剂盒的标准品以及体外杀伤实验中模拟天然sCD226作用的试剂。另外,还对我室前期研制的定量检测人sCD226的双抗体夹心ELISA试剂盒进行了改良。
     应用条件优化后的ELISA试剂盒检测了259例肿瘤患者(包括消化、呼吸、血液、妇科、骨骼、神经系统等多种来源的肿瘤)及129例正常人血清中sCD226的水平,发现肿瘤患者血清中sCD226的水平(0.2-60 ng/ml,中位数11.5 ng/ml)明显高于正常人(0.1-23 ng/ml,中位数6.3 ng/ml,P<0.001);而在用FCM检测外周血单个核细胞(peripheral blood monouclear cell,PBMC)上mCD226的表达时,发现肿瘤患者PBMC上mCD226的表达(14例,1.1%-56.1%,中位数17.45%)明显低于正常人(12例,43.1%-77.8%,中位数65.3%,P<0.001)。在体外NK细胞杀伤肿瘤细胞的模型中用重组表达的可溶型hCD226-Fc融合蛋白模拟天然sCD226的作用,发现hCD226-Fc能显著抑制NK细胞对其靶细胞K562细胞的杀伤,浓度为1μg/ml时抑制率即可达到34%,而且这种抑制作用呈剂量依赖性。在佛波酯(phorbol 12-myristate 13-acetate,PMA)活化的正常人PBMC和Jurkat细胞上,3种蛋白酶抑制剂(金属蛋白酶抑制剂1-10-phenanathroline、丝氨酸蛋白酶抑制剂AEBSF和半胱氨酸蛋白酶抑制剂NEM)可以在上调mCD226的表达的同时下调培养上清中sCD226的水平,由于多种蛋白酶在许多肿瘤中含量可能有所增加,提示蛋白酶解作用可能是肿瘤患者血清中sCD226的形成机制。用免疫沉淀和Western blot的方法鉴定了血清和细胞培养上清中sCD226的分子量,发现在肿瘤患者和正常人血清以及PMA刺激的PBMC和Jurkat细胞培养上清中,均存在~50 kDa的特异性条带,这与CD226分子的胞膜外区分子量相符。另外,血清样本中还存在一个~45 kDa的条带,这一条带在PMA刺激的细胞培养上清中不存在,提示不同蛋白酶对CD226的酶解作用可能发生在该分子胞膜外区的不同位置。
     在搞清了肿瘤患者sCD226的表达、作用和来源的基础上,我们提出了如下假说:肿瘤患者中升高的蛋白酶可能通过酶解作用导致了PBMC上mCD226表达下调而血清中sCD226的水平上调,高水平的sCD226与其膜型配体CD112/CD155分子相结合,减弱了杀伤细胞上mCD226分子与肿瘤细胞表面膜型CD112/CD155的结合,从而抑制了杀伤细胞活化信号的产生,并最终导致肿瘤细胞发生免疫逃逸。
     本研究还用ELISA和胞内细胞因子染色的方法观察了抗人CD226的mAb LeoA1对混合淋巴细胞培养(mixed lymphocyte culture,MLC)和PBMC中细胞因子分泌格局及细胞亚群百分比的调控,发现被上调的有IL-10、GM-CSF和G-CSF等,被下调的有IL-2、IFN-γ、TNF-α、IL-12 p40、IL-15、IL-23和TGF-α等,相关的细胞亚群包括Th1、Th2、CTL、NK以及单核/巨噬和DC。采用信号分子阻断剂的手段,分析了CD226调控MLC细胞因子分泌格局的信号通路中可能涉及的信号分子主要有p38、JNK和PI3K。
     最后,成功建立了小鼠实验性自身免疫性脑脊髓炎(experimental autoimmune encephalomyelitis,EAE)模型,证实了抗CD226抗体对EAE的发生有明显的防治作用,其分子机制涉及中枢神经系统局部炎细胞浸润的减轻,脾脏CD25阳性的活化细胞数量的减少,以及脾脏IL-10+细胞和调节性T细胞百分率的增加。
     简言之,本研究的实验结果为阐明CD226分子在肿瘤和自身免疫性疾病中的作用提供了实验依据,并为深入研究CD226参与机体多种生理功能和病理过程的分子机制奠定了基础。
CD226 molecule, a member of the immunoglobulin superfamily (IgSF), is a typeⅠtransmembrane glycoprotein which expressed widely by various immunocytes. Although it had several names before including“T lineage- specific activation antigen 1 (TLiSA1)”,“platelet and T cell activation antigen 1 (PTA1)”, and“DNAX accessory molecule-1 (DNAM-1)”, it was designated as CD226 in the 7th Workshop and Conference on Human Leukocyte Differentiation Antigen in 2000.
     Human CD226 gene, located on chromatosome 18q22.3, was successfully cloned in 1996. The full length of human CD226 cDNA is 2664bp, with an open reading frame encoding 336 amino acids. Single nucleotide polymorphisms (SNP) have been reported in human CD226. Murine CD226 gene, located on chromatosome 18 E4, was cloned in our lab in 2002. Three isoforms of murine CD226 were found in addition to its prototype, the full length of which is 2487bp. The intact CD226 is a 65~67 kDa molecule, consisting of extracellular region, transmembrane region and cytoplasmic region. It contains 2 IgSF V like domains and several potential glycosylation sites in its extracellular region and some phosphorylation sites in its cytoplasmic region. CD226 molecule is highly conserved between different species, with similar nucleotide sequences and protein structures, indicating its important roles in immune responses and other biological functions. In addition, CD226 shares high homology with CD96 and other molecules belonging to Nectin or Nectin-like molecule (Necl) family.
     CD226 is expressed on the surface of a variety of cells, including T cells, NK cells, NK T cells, activated vascular endothelial cells, megakaryocyte/platel- et lineage, monocytes, thymocytes, a subset of B cells, some haemopoietic stem cells and mast cells. It is also localized in murine hippocampus and cerebellum during adulthood and postnatal development. The ligands for human CD226 were identified to be CD112/Nectin-2 and CD155/Necl-5/poliovirus receptor in 2003. The recognition and interaction between CD226 and CD112/ CD155 is involved in a lot of important biological functions or pathological processes, such as: activation, differentiation, and cytotoxicity of CTL and NK cells; proliferation and polarization of CD4+ T cells; endothelial transmigration of leukocytes; activation and aggregation of platelets; regulation of haematogenesis; degranulation of mast cells; antagonism of apoptosis of NK T cells as well as thymocytes; maturation of dendritic cells; formation of immune synapse and neuro-synapse; and some pathological processes including tumor, autoimmune diseases, transplantation rejection, and virus infection diseases.
     Human CD226 (hCD226) molecule exists in two forms, one is membrane binding form (membrane CD226, mCD226) on cell membrane, and the other is soluble form (soluble CD226, sCD226) in serum or cell culture supernatant. Previous study on a small scale of samples demonstrated that sCD226 was significantly higher in sera from patients of tumor and autoimmune diseases than from healthy donors. However, the only available studies between CD226 and clinical diseases are focused on the expression of mCD226 and/or sCD226 or individual SNP in certain disease whereas its role and possible mechanism involved in tumor and autoimmune disease remains unclear.
     In this study, monoclonal antibodies (mAbs) against four frequently used tags including human IgG Fc fragment, glutathione-S-transferase (GST), maltose-binding protein (MBP) and thioredoxin (Trx) were prepared and characterized. Base on that, Sandwich ELISA systems for quantitative detection of Fc, GST, MBP, Trx or corresponding tag fusion proteins were established or improved, with the detection limits being 1.2, 15.6, 1, and 0.4 ng/ml, respectively. Using the improved Fc ELISA, hCD226-Fc level in cell culture supernatant was detected and CHO-hCD226-Fc cell line highly secreting hCD226-Fc fusion protein was re-cloned. Purified hCD226-Fc fusion protein was prepared by collection of culture supernatant from this cell line, and purified with anti-Fc mAb labeld Sepharose 4B affinity column. The purity and biological activity of the obtained hCD226-Fc fusion protein was identified by SDS-PAGE, Western blot, and flow cytometry (FCM), respectively. After characterization, the fusion protein was used to be standard in sCD226 ELISA kit or to mimic natural sCD226 in cytotoxicity assay in vitro. In addition, Sandwich ELISA for quantitative detection of sCD226 was also improved.
     The improved sCD226 ELISA kit was used to detect sera sCD226 levels in 259 cancer patients (including tumors from various origin such as digestive system, respiratory system, hematological system, gynecological system, skeletal system, and nervous system) and 129 normal subjects. It was found that the concentration of sCD226 was significantly higher in serum from cancer patients (0.2-60 ng/ml, median 11.5 ng/ml) than in serum from normal subjects (0.1-23 ng/ml, median 6.3 ng/ml, P<0.001). Meanwhile, FCM analysis demonstrated that mCD226 expression on peripheral blood mononuclear cells (PBMC) from cancer patients (14 cases, 1.1%-56.1%, median 17.45%) was significantly lower than that from healthy controls (12 cases, 43.1%-77.8%, median 65.3%, P<0.001). In vitro, hCD226-Fc fusion protein could significantly inhibit the cytotoxicity of NK cells against its target cells K562 in a dose-dependent manner and the inhibitory rate was 34% when using 1μg/ml of hCD226-Fc in this assay. Three protease inhibitors (1-10-phenanathroline: a metalloprotease inhibitor; AEBSF: a serine protease inhibitor; NEM: a cysteine protease inhibitor) could significantly decrease sCD226 level while increase mCD226 expression of the cultured PBMC or Jurkat cells treated with PMA (phorbol 12-myristate 13-acetate), indicating that the increased serum sCD226 in cancer patients might be shed from the cell surface by certain protease(s), which are often up-regulated when tumor occurs. Furthermore, molecular weight of natural sCD226 from sera samples of tumor patients or healthy controls as well as cell culture supernatants of PMA stimulated PBMC or Jurkat cells was identified by immunoprecipitation and Western blot. A band with molecular weight of ~50 kDa, coincident with the extracellular domain of CD226 molecule, was found in all the four kinds of samples. Interestingly, another weaker band, with molecular massed of ~45 kDa, was observed in sera samples, but not in supernatant samples, indicating that the variety of proteases in vivo could cause the cleavage of sCD226 from different sites of intact CD226.
     After investigation of the expression, function and origin of sCD226 in tumor, we speculate the following hypothesis: the up-regulated proteases in tumor could increase sCD226 level in serum and decrease mCD226 expression on PBMC by proteolysis; the increased sCD226 shed from cell surface and released into the circulation could bind membrane CD112/CD155 on tumor cells but could not transduce activating signal, which could reduce the binding between mCD226 and its membrane ligands and inhibit the cytotoxicity against tumor cells. We think this might be one of the immune escape strategies used by tumor cells.
     Besides, ELISA and intracellular cytokine staining was used to study the effect of anti-hCD226 mAb LeoA1 on cytokine secretion profile and cell populations/subpopulations during mixed lymphocyte culture (MLC). LeoA1 could up-regulate IL-10, GM-CSF, and G-CSF level in MLC supernatant while down-regulate IL-2, IFN-γ, TNF-α, IL-12 p40, IL-15, IL-23, and TGF-αsecretion, and the involved cell populations included Th1, Th2, CTL, NK, and monocytes/macrophages/DCs. Using inhibitors of signaling molecules, we found the regulation of LeoA1 in MLC cytokine secretion and cell population might involve p38, JNK and PI3K.
     Finally, experimental autoimmune encephalomyelitis (EAE) model was successfully established and we confirmed that anti-CD226 antiody treatment could delay the onset and reduce the severity of disease. The mechanism for this effect of CD226 blockade on EAE could be the reduction of inflammatory cell infiltration in central nervous system, decreased CD25+ activated cells and increased IL-10+ cells and Treg cells in spleen.
     In conclusion, these results provide experimental data for fully understanding the role of CD226 in tumor and autoimmune diseases, and lay foundation for further exploration of its molecule mechanism involved in multiple biological functions as well as pathological processes.
引文
1. Burns GF, Triglia T, Werkmeister JA, Begley CG, Boyd AW. TLiSA1, a human T lineage-specific activation antigen involved in the differentiation of cytotoxic T lymphocytes and anomalous killer cells from their precursors. J Exp Med 1985; 161: 1063-1078.
    2. Scott JL, Dunn SM, Jin B, Hillam AJ, Walton S, Berndt MC, Murray AW, Krissansen GW, Burns GF. Characterization of a novel membrane glycoprotein involved in platelet activation. J Biol Chem 1989; 264: 13475-13482.
    3. Shibuya A, Campbell D, Hannum C, Yssel H, Franz-Bacon K, McClanahan T, Kitamura T, Nicholl J, Sutherland GR, Lanier LL, Phillips JH. DNAM-1, a novel adhesion molecule involved in the cytolytic function of T lymphocytes. Immunity 1996; 4: 573-581.
    4. Sherrington PD, Scott JL, Jin B, Simmons D, Dorahy DJ, Lloyd J, Brien JH, Aebersold RH, Adamson J, Zuzel M, Burns GF. TLiSA1 (PTA1) activation antigen implicated in T cell differentiation and platelet activation is a member of the immunoglobulin superfamily exhibiting distinctive regulation of expression. J Biol Chem 1997; 272: 21735-21744.
    5. Mason D, Andre P, Bensussan A, Buckley C, Civin C, Clark E, de Haas M, Goyert S, Hadam M, Hart D, Horejsi V, Meuer S, Morrissey J, Schwartz-Albiez R, Shaw S, Simmons D, Uguccioni M, van der Schoot E, Vivier E, Zola H. CD antigens 2001. J Leukoc Biol 2001; 70: 685-690.
    6. Mason D, Andre P, Bensussan A, Buckley C, Civin C, Clark E, de Haas M, Goyert S, Hadam M, Hart D, Horejsi V, Meuer S, Morrissey J, Schwartz-Albiez R, Shaw S, Simmons D, Uguccioni M, van der Schoot E, Vivier E, Zola H. CD antigens 2002. Blood 2002; 99: 3877-3880.
    7. Jian JL, Zhu CS, Xu ZW, Ouyang WM, Ma DC, Zhang Y, Chen LJ, Yang AG, Jin BQ. Identification and characterization of the CD226 gene promoter. J Biol Chem 2006; 281: 28731-28736.
    8. Shibuya A, Lanier LL, Phillips JH. Protein kinase C is involved in the regulation of both signaling and adhesion mediated by DNAX accessory molecule-1 receptor. J Immunol 1998; 161: 1671-1676.
    9. Shibuya K, Lanier LL, Phillips JH, Ochs HD, Shimizu K, Nakayama E, Nakauchi H, Shibuya A. Physical and functional association of LFA-1 with DNAM-1 adhesion molecule. Immunity 1999; 11: 615-623.
    10. Shibuya K, Shirakawa J, Kameyama T, Honda S, Tahara-Hanaoka S, Miyamoto A,Onodera M, Sumida T, Nakauchi H, Miyoshi H, Shibuya A. CD226 (DNAM-1) is involved in lymphocyte function-associated antigen 1 costimulatory signal for naive T cell differentiation and proliferation. J Exp Med 2003; 198: 1829-1839.
    11. Shirakawa J, Shibuya K, Shibuya A. Requirement of the serine at residue 329 for lipid raft recruitment of DNAM-1 (CD226). Int Immunol 2005; 17: 217-223.
    12. Ralston KJ, Hird SL, Zhang X, Scott JL, Jin B, Thorne RF, Berndt MC, Boyd AW, Burns GF. The LFA-1-associated molecule PTA-1 (CD226) on T cells forms a dynamic molecular complex with protein 4.1G and human discs large. J Biol Chem 2004; 279: 33816-33828.
    13. Tian F, Li D, Xia H, Liu X, Jia W, Sun C, Sun K, Jin B. Isolation of cDNAs encoding gibbon and monkey platelet and T cell activation antigen 1 (PTA1). DNA Seq 1999; 10: 155-161.
    14.张新海,李德敏,欧阳为明,贾卫,谢鑫,陈丽华,宁双飞,张赟,金伯泉.小鼠CD226(PTA1)的基因克隆及其异型.中国免疫学杂志2002; 18(6): 371-375.
    15. Kojima H, Kanada H, Shimizu S, Kasama E, Shibuya K, Nakauchi H, Nagasawa T, Shibuya A. CD226 mediates platelet and megakaryocytic cell adhesion to vascular endothelial cells. J Biol Chem 2003; 278: 36748-36753.
    16. Chen L, Xie X, Zhang X, Jia W, Jian J, Song C, Jin B. The expression, regulation and adhesion function of a novel CD molecule, CD226, on human endothelial cells. Life Sci 2003; 73: 2373-2382.
    17. Tao D, Shangwu L, Qun W, Yan L, Wei J, Junyan L, Feili G, Boquan J, Jinquan T. CD226 expression deficiency causes high sensitivity to apoptosis in NK T cells from patients with systemic lupus erythematosus. J Immunol 2005; 174: 1281-1290.
    18. Ma D, Sun Y, Lin D, Wang H, Dai B, Zhang X, Ouyang W, Jian J, Jia W, Xu X, Jin B. CD226 is expressed on the megakaryocytic lineage from hematopoietic stem cells/progenitor cells and involved in its polyploidization. Eur J Haematol 2005; 74: 228-240.
    19. Bachelet I, Munitz A, Mankutad D, Levi-Schaffer F. Mast cell costimulation by CD226/CD112 (DNAM-1/Nectin-2): a novel interface in the allergic process. J Biol Chem 2006; 281: 27190-27196.
    20. Zhang T, Xu ZW, Chen LH, Zhang XH, Wang DL, Zhao ZW, Deng JP, Li WX, Zhang Y, Xu XS, Yang K, Yang AG, Gao GD, Jin BQ. Localization of CD226 in the mouse hippocampus and cerebellum during adulthood and postnatal development. Neuroscience 2009; 158: 766-775.
    21. Jin B, Scott JL, Vadas MA, Burns GF. TGF beta down-regulates TLiSA1 expression and inhibits the differentiation of precursor lymphocytes into CTL and LAK cells. Immunology 1989; 66: 570-576.
    22. Bottino C, Castriconi R, Moretta L, Moretta A. Cellular ligands of activating NK receptors. Trends Immunol 2005; 26: 221-226.
    23.张赟,贾卫,韩卫宁,曹云新,金伯泉. CD226在NK细胞亚群上表达规律与功能关系的研究.中国免疫学杂志2004; 20(11): 735-738.
    24.张赟,程光,韩卫宁,曹云新,金伯泉.超抗原对NK细胞CD226分子表达与功能的调节.细胞与分子免疫学杂志2006; 22(1): 4-6.
    25.张赟,程光,尤向辉,张红梅,任军,金伯泉.自体外周血造血干细胞移植后造血重建中CD226分子在NK细胞上表达的变化.标记免疫分析与临床2005; 12(3): 152-154, 134.
    26. Dastot F, Sobrier ML, Duquesnoy P, Duriez B, Goossens M, Amselem S. Alternatively spliced forms in the cytoplasmic domain of the human growth hormone (GH) receptor regulate its ability to generate a soluble GH-binding protein. Proc Natl Acad Sci U S A 1996; 93: 10723-10728.
    27. Heaney ML, Golde DW. Soluble cytokine receptors. Blood 1996; 87: 847-857.
    28. Hooper NM, Karran EH, Turner AJ. Membrane protein secretases. Biochem J 1997; 321 ( Pt 2): 265-279.
    29. Martinez-Lorenzo MJ, Anel A, Alava MA, Pineiro A, Naval J, Lasierra P, Larrad L. The human melanoma cell line MelJuSo secretes bioactive FasL and APO2L/TRAIL on the surface of microvesicles. Possible contribution to tumor counterattack. Exp Cell Res 2004; 295: 315-329.
    30. Levine SJ. Molecular mechanisms of soluble cytokine receptor generation. J Biol Chem 2008; 283: 14177-14181.
    31. Gonzalez PA, Carreno LJ, Figueroa CA, Kalergis AM. Modulation of immunological synapse by membrane-bound and soluble ligands. Cytokine Growth Factor Rev 2007; 18: 19-31.
    32. Murakami S. Soluble interleukin-2 receptor in cancer. Front Biosci 2004; 9: 3085-3090.
    33. Rose-John S, Scheller J, Elson G, Jones SA. Interleukin-6 biology is coordinated by membrane-bound and soluble receptors: role in inflammation and cancer. J Leukoc Biol 2006; 80: 227-236.
    34. Moss ML, Sklair-Tavron L, Nudelman R. Drug insight: tumor necrosis factor-converting enzyme as a pharmaceutical target for rheumatoid arthritis. Nat Clin Pract Rheumatol 2008; 4: 300-309.
    35.贾卫,金伯泉,李琦,闵密克,刘雪松.可溶性PTA1分子的发现及其检测方法的建立.细胞与分子免疫学杂志2000; 16(4): 282-284.
    36. Jia W, Liu XS, Zhu Y, Li Q, Han WN, Zhang Y, Zhang JS, Yang K, Zhang XH, Jin BQ. Preparation and characterization of mabs against different epitopes of CD226 (PTA1). Hybridoma 2000; 19: 489-494.
    37.宁双飞,贾卫,张新海,杨琨,李琦,刘雪松,金伯泉.检测可溶型CD226双mAb夹心ELISA的建立及初步应用.细胞与分子免疫学杂志2003; 19(2): 192-194.
    38. Sun K, Jin BQ, Feng Q, Zhu Y, Yang K, Liu XS, Dong BQ. Identification of CD226 ligand on colo205 cell surface. World J Gastroenterol 2002; 8: 108-113.
    39. Bottino C, Castriconi R, Pende D, Rivera P, Nanni M, Carnemolla B, Cantoni C, Grassi J, Marcenaro S, Reymond N, Vitale M, Moretta L, Lopez M, Moretta A. Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J Exp Med 2003; 198: 557-567.
    40. Tahara-Hanaoka S, Shibuya K, Onoda Y, Zhang H, Yamazaki S, Miyamoto A, Honda S, Lanier LL, Shibuya A. Functional characterization of DNAM-1 (CD226) interaction with its ligands PVR (CD155) and nectin-2 (PRR-2/CD112). Int Immunol 2004; 16: 533-538.
    41. Takai Y, Irie K, Shimizu K, Sakisaka T, Ikeda W. Nectins and nectin-like molecules: roles in cell adhesion, migration, and polarization. Cancer Sci 2003; 94: 655-667.
    42. Baury B, Masson D, McDermott BM, Jr., Jarry A, Blottiere HM, Blanchardie P, Laboisse CL, Lustenberger P, Racaniello VR, Denis MG. Identification of secreted CD155 isoforms. Biochem Biophys Res Commun 2003; 309: 175-182.
    43. Sakisaka T, Takai Y. Biology and pathology of nectins and nectin-like molecules. Curr Opin Cell Biol 2004; 16: 513-521.
    44. Takai Y, Miyoshi J, Ikeda W, Ogita H. Nectins and nectin-like molecules: roles in contact inhibition of cell movement and proliferation. Nat Rev Mol Cell Biol 2008; 9: 603-615.
    45. Sloan KE, Stewart JK, Treloar AF, Matthews RT, Jay DG. CD155/PVR enhances glioma cell dispersal by regulating adhesion signaling and focal adhesion dynamics. Cancer Res 2005; 65: 10930-10937.
    46. Pende D, Castriconi R, Romagnani P, Spaggiari GM, Marcenaro S, Dondero A, Lazzeri E, Lasagni L, Martini S, Rivera P, Capobianco A, Moretta L, Moretta A, Bottino C. Expression of the DNAM-1 ligands, Nectin-2 (CD112) and poliovirus receptor (CD155), on dendritic cells: relevance for natural killer-dendritic cell interaction. Blood 2006; 107: 2030-2036.
    47. Tahara-Hanaoka S, Miyamoto A, Hara A, Honda S, Shibuya K, Shibuya A. Identification and characterization of murine DNAM-1 (CD226) and its poliovirus receptor family ligands. Biochem Biophys Res Commun 2005; 329: 996-1000.
    48. Morrison ME, Racaniello VR. Molecular cloning and expression of a murine homolog of the human poliovirus receptor gene. J Virol 1992; 66: 2807-2813.
    49. Eberle F, Dubreuil P, Mattei MG, Devilard E, Lopez M. The human PRR2 gene, related to the human poliovirus receptor gene (PVR), is the true homolog of the murine MPH gene. Gene 1995; 159: 267-272.
    50. Chadeneau C, LeMoullac B, LeCabellec M, Mattei M, Meflah K, Denis MG. Isolation and chromosomal location of mE4, a novel murine gene of the immunoglobulin superfamily. Mamm Genome 1996; 7: 636-637.
    51. Denis MG. Characterization, cloning and expression of the Tage4 gene, a member of the immunoglobulin superfamily. Int J Oncol 1998; 12: 997-1005.
    52. Giblin PA, Lemieux RM. LFA-1 as a key regulator of immune function: approaches toward the development of LFA-1-based therapeutics. Curr Pharm Des 2006; 12: 2771-2795.
    53. Shirakawa J, Wang Y, Tahara-Hanaoka S, Honda S, Shibuya K, Shibuya A. LFA-1-dependent lipid raft recruitment of DNAM-1 (CD226) in CD4+ T cell. Int Immunol 2006; 18: 951-957.
    54. Wang PL, O'Farrell S, Clayberger C, Krensky AM. Identification and molecular cloning of tactile. A novel human T cell activation antigen that is a member of the Ig gene superfamily. J Immunol 1992; 148: 2600-2608.
    55. Gramatzki M, Ludwig WD, Burger R, Moos P, Rohwer P, Grunert C, Sendler A, Kalden JR, Andreesen R, Henschke F, Moldenhauer G. Antibodies TC-12 ("unique") and TH-111 (CD96) characterize T-cell acute lymphoblastic leukemia and a subgroup of acute myeloid leukemia. Exp Hematol 1998; 26: 1209-1214.
    56. Hosen N, Park CY, Tatsumi N, Oji Y, Sugiyama H, Gramatzki M, Krensky AM, Weissman IL. CD96 is a leukemic stem cell-specific marker in human acute myeloid leukemia. Proc Natl Acad Sci U S A 2007; 104: 11008-11013.
    57. Fuchs A, Cella M, Giurisato E, Shaw AS, Colonna M. Cutting edge: CD96 (tactile) promotes NK cell-target cell adhesion by interacting with the poliovirus receptor (CD155). J Immunol 2004; 172: 3994-3998.
    58. Boles KS, Vermi W, Facchetti F, Fuchs A, Wilson TJ, Diacovo TG, Cella M, Colonna M. A novel molecular interaction for the adhesion of follicular CD4 T cells to follicular DC. Eur J Immunol 2009; 39: 695-703.
    59. Pende D, Bottino C, Castriconi R, Cantoni C, Marcenaro S, Rivera P, Spaggiari GM, Dondero A, Carnemolla B, Reymond N, Mingari MC, Lopez M, Moretta L, Moretta A. PVR (CD155) and Nectin-2 (CD112) as ligands of the human DNAM-1 (CD226) activating receptor: involvement in tumor cell lysis. Mol Immunol 2005; 42: 463-469.
    60. Bryceson YT, March ME, Ljunggren HG, Long EO. Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion. Blood 2006; 107: 159-166.
    61. Iguchi-Manaka A, Kai H, Yamashita Y, Shibata K, Tahara-Hanaoka S, Honda S, Yasui T, Kikutani H, Shibuya K, Shibuya A. Accelerated tumor growth in mice deficient in DNAM-1 receptor. J Exp Med 2008; 205: 2959-2964.
    62. Gilfillan S, Chan CJ, Cella M, Haynes NM, Rapaport AS, Boles KS, Andrews DM, Smyth MJ, Colonna M. DNAM-1 promotes activation of cytotoxic lymphocytes by nonprofessional antigen-presenting cells and tumors. J Exp Med 2008; 205: 2965-2973.
    63. Dardalhon V, Schubart AS, Reddy J, Meyers JH, Monney L, Sabatos CA, Ahuja R, Nguyen K, Freeman GJ, Greenfield EA, Sobel RA, Kuchroo VK. CD226 is specifically expressed on the surface of Th1 cells and regulates their expansion and effector functions. J Immunol 2005; 175: 1558-1565.
    64. Shibuya K, Shibata K, Tahara-Hanaoka S, Shibuya A. Comment on "CD226 is specifically expressed on the surface of Th1 cells and regulates their expansion and effector functions". J Immunol 2006; 176: 3855; author reply 3856.
    65. Reymond N, Imbert AM, Devilard E, Fabre S, Chabannon C, Xerri L, Farnarier C, Cantoni C, Bottino C, Moretta A, Dubreuil P, Lopez M. DNAM-1 and PVR regulate monocyte migration through endothelial junctions. J Exp Med 2004; 199: 1331-1341.
    66.陈丽华,张新海,佘义朝,刘雪松,金伯泉. CD226分子参与内皮细胞黏附功能的形态学证据.细胞与分子免疫学杂志2003; 19(4): 397-399.
    67. Fang L, Zhang X, Miao J, Zhao F, Yang K, Zhuang R, Bujard H, Wei Y, Yang A, Chen L, Jin B. Expression of CD226 antagonizes apoptotic cell death in murine thymocytes. J Immunol 2009; 182: 5453-5460.
    68. Elishmereni M, Bachelet I, Levi-Schaffer F. DNAM-1: an amplifier of immune responses as a therapeutic target in various disorders. Curr Opin Investig Drugs 2008; 9: 491-496.
    69. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100: 57-70.
    70. Fuchs A, Colonna M. The role of NK cell recognition of nectin and nectin-like proteins in tumor immunosurveillance. Semin Cancer Biol 2006; 16: 359-366.
    71. Castriconi R, Dondero A, Corrias MV, Lanino E, Pende D, Moretta L, Bottino C, Moretta A. Natural killer cell-mediated killing of freshly isolated neuroblastoma cells: critical role of DNAX accessory molecule-1-poliovirus receptor interaction. Cancer Res 2004; 64: 9180-9184.
    72. Pende D, Spaggiari GM, Marcenaro S, Martini S, Rivera P, Capobianco A, Falco M, Lanino E, Pierri I, Zambello R, Bacigalupo A, Mingari MC, Moretta A, Moretta L. Analysis of the receptor-ligand interactions in the natural killer-mediated lysis of freshly isolated myeloid or lymphoblastic leukemias: evidence for the involvement of the Poliovirus receptor (CD155) and Nectin-2 (CD112). Blood 2005; 105: 2066-2073.
    73. Tahara-Hanaoka S, Shibuya K, Kai H, Miyamoto A, Morikawa Y, Ohkochi N, Honda S, Shibuya A. Tumor rejection by the poliovirus receptor family ligands of the DNAM-1 (CD226) receptor. Blood 2006; 107: 1491-1496.
    74. Carlsten M, Bjorkstrom NK, Norell H, Bryceson Y, van Hall T, Baumann BC, Hanson M, Schedvins K, Kiessling R, Ljunggren HG, Malmberg KJ. DNAX accessory molecule-1 mediated recognition of freshly isolated ovarian carcinoma by resting natural killer cells. Cancer Res 2007; 67: 1317-1325.
    75. El-Sherbiny YM, Meade JL, Holmes TD, McGonagle D, Mackie SL, Morgan AW, Cook G, Feyler S, Richards SJ, Davies FE, Morgan GJ, Cook GP. The requirement for DNAM-1, NKG2D, and NKp46 in the natural killer cell-mediated killing of myeloma cells. Cancer Res 2007; 67: 8444-8449.
    76. Verhoeven DH, de Hooge AS, Mooiman EC, Santos SJ, ten Dam MM, Gelderblom H, Melief CJ, Hogendoorn PC, Egeler RM, van Tol MJ, Schilham MW, Lankester AC. NKcells recognize and lyse Ewing sarcoma cells through NKG2D and DNAM-1 receptor dependent pathways. Mol Immunol 2008; 45: 3917-3925.
    77. Storojeva I, Boulay JL, Ballabeni P, Buess M, Terracciano L, Laffer U, Mild G, Herrmann R, Rochlitz C. Prognostic and predictive relevance of DNAM-1, SOCS6 and CADH-7 genes on chromosome 18q in colorectal cancer. Oncology 2005; 68: 246-255.
    78. Soriani A, Zingoni A, Cerboni C, Iannitto ML, Ricciardi MR, Di Gialleonardo V, Cippitelli M, Fionda C, Petrucci MT, Guarini A, Foa R, Santoni A. ATM-ATR dependent up-regulation of DNAM-1 and NKG2D ligands on multiple myeloma cells by therapeutic agents results in enhanced NK cell susceptibility and is associated with a senescent phenotype. Blood 2008.
    79. Steinman L. Blocking adhesion molecules as therapy for multiple sclerosis: natalizumab. Nat Rev Drug Discov 2005; 4: 510-518.
    80. Bennett JL. Natalizumab and progressive multifocal leukoencephalopathy: migrating towards safe adhesion molecule therapy in multiple sclerosis. Neurol Res 2006; 28: 291-298.
    81. Hafler JP, Maier LM, Cooper JD, Plagnol V, Hinks A, Simmonds MJ, Stevens HE, Walker NM, Healy B, Howson JM, Maisuria M, Duley S, Coleman G, Gough SC, Worthington J, Kuchroo VK, Wicker LS, Todd JA. CD226 Gly307Ser association with multiple autoimmune diseases. Genes Immun 2009; 10: 5-10.
    82. International Multiple Sclerosis Genetics Consortium (IMSGC). The expanding genetic overlap between multiple sclerosis and type I diabetes. Genes Immun 2009; 10: 11-14.
    83. Wang Y, Kai H, Chang F, Shibata K, Tahara-Hanaoka S, Honda S, Shibuya A, Shibuya K. A critical role of LFA-1 in the development of Th17 cells and induction of experimental autoimmune encephalomyelytis. Biochem Biophys Res Commun 2007; 353: 857-862.
    84. Bettelli E, Oukka M, Kuchroo VK. T(H)-17 cells in the circle of immunity and autoimmunity. Nat Immunol 2007; 8: 345-350.
    85. Tabata H, Hara M, Kitani A, Hirose T, Norioka K, Harigai M, Suzuki K, Kawakami M, Kawagoe M, Nakamura H. Expression of TLiSA1 on T cells from patients with rheumatoid arthritis and systemic lupus erythematosus. Clin Immunol Immunopathol 1989; 52: 366-375.
    86. Miller FW, Love LA, Barbieri SA, Balow JE, Plotz PH. Lymphocyte activation markers in idiopathic myositis: changes with disease activity and differences among clinical and autoantibody subgroups. Clin Exp Immunol 1990; 81: 373-379.
    87.周武庆,宁双飞,贾卫,金伯泉,崔盘根,杨雪源.银屑病患者血清中可溶性血小板T细胞活化抗原1的检测.中华皮肤科杂志2003; 36(3):159-160.
    88.董光龙,王为忠,吴国生,宋维亮,李开宗,贾卫,金伯泉.血清sPTA1与人活体小肠移植急性排斥反应的相关性评价.免疫学杂志2000; 16(6): 439-441.
    89.李州利,石炳毅,蔡明,钱叶勇,莫春柏,贾卫,金伯泉.血小板T细胞活化抗原1与移植肾急性排斥反应的相关性.肾脏病与透析肾移植杂志2003; 12(3): 229-233.
    90.李州利,石炳毅,蔡明,杜国胜,洪宝发,贾卫,金伯泉.血清sPTA1在判别肝移植术后急性排斥反应的作用.军医进修学院学报2006; 27(2): 91-92.
    91. Huang C, Jin B, Wang M, Li E, Sun C. Hemorrhagic fever with renal syndrome: relationship between pathogenesis and cellular immunity. J Infect Dis 1994; 169: 868-870.
    92.宁双飞,贾卫,刘京梅,张新海,杨琨,李琦,刘雪松,金伯泉.肾综合症出血热患者血清可溶性CD226/PTA1的检测及意义.细胞与分子免疫学杂志2002; 18(3): 283-284.
    93. Ye X, Zhang Z, Jiang Y, Han X, Wang Y, Zhang M, Liu J, Geng W, Dai D, Shi W, Shang H. Expression of human CD226 on T cells and natural killer cells and of soluble CD226 in plasma of HIV-1-infected Chinese patients. Viral Immunol 2006; 19: 576-581.
    94. Tomasec P, Wang EC, Davison AJ, Vojtesek B, Armstrong M, Griffin C, McSharry BP, Morris RJ, Llewellyn-Lacey S, Rickards C, Nomoto A, Sinzger C, Wilkinson GW. Downregulation of natural killer cell-activating ligand CD155 by human cytomegalovirus UL141. Nat Immunol 2005; 6: 181-188.
    95. Pappworth IY, Wang EC, Rowe M. The switch from latent to productive infection in epstein-barr virus-infected B cells is associated with sensitization to NK cell killing. J Virol 2007; 81: 474-482.
    96.户义,刘雪松,朱勇,刘莹,许晓光,薛江楠,金伯泉.抗Ig融合蛋白Fc段单克隆抗体的制备、鉴定与应用研究.细胞与分子免疫学杂志2003; 19(2): 170-175.
    97.刘飞,刘崟,金伯泉,董帮权,刘惠萍,朱勇.抗细菌硫氧化还原蛋白Thioredoxin单克隆抗体的制备、鉴定与初步应用.细胞与分子免疫学杂志1999; 15(3): 221,224.
    98. Albitar M, Do KA, Johnson MM, Giles FJ, Jilani I, O'Brien S, Cortes J, Thomas D, Rassenti LZ, Kipps TJ, Kantarjian HM, Keating M. Free circulating soluble CD52 as a tumor marker in chronic lymphocytic leukemia and its implication in therapy with anti-CD52 antibodies. Cancer 2004; 101: 999-1008.
    99. Hakulinen J, Junnikkala S, Sorsa T, Meri S. Complement inhibitor membrane cofactor protein (MCP; CD46) is constitutively shed from cancer cell membranes in vesicles and converted by a metalloproteinase to a functionally active soluble form. Eur J Immunol 2004; 34: 2620-2629.
    100. Groh V, Wu J, Yee C, Spies T. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 2002; 419: 734-738.
    101. Hallermalm K, De Geer A, Kiessling R, Levitsky V, Levitskaya J. Autocrine secretion of Fas ligand shields tumor cells from Fas-mediated killing by cytotoxic lymphocytes. Cancer Res 2004; 64: 6775-6782.
    102. Marten A, von Lilienfeld-Toal M, Buchler MW, Schmidt J. Soluble MIC is elevated in the serum of patients with pancreatic carcinoma diminishing gammadelta T cellcytotoxicity. Int J Cancer 2006; 119: 2359-2365.
    103. Ahrens T, Sleeman JP, Schempp CM, Howells N, Hofmann M, Ponta H, Herrlich P, Simon JC. Soluble CD44 inhibits melanoma tumor growth by blocking cell surface CD44 binding to hyaluronic acid. Oncogene 2001; 20: 3399-3408.
    104. DeClerck YA, Imren S, Montgomery AM, Mueller BM, Reisfeld RA, Laug WE. Proteases and protease inhibitors in tumor progression. Adv Exp Med Biol 1997; 425: 89-97.
    105. Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2002; 2: 161-174.
    106. Costa O, Divoux D, Ischenko A, Tron F, Fontaine M. Optimization of an animal model of experimental autoimmune encephalomyelitis achieved with a multiple MOG(35-55)peptide in C57BL6/J strain of mice. J Autoimmun 2003; 20: 51-61.
    107. Afzali B, Lombardi G, Lechler RI, Lord GM. The role of T helper 17 (Th17) and regulatory T cells (Treg) in human organ transplantation and autoimmune disease. Clin Exp Immunol 2007; 148: 32-46.
    108. Oukka M. Interplay between pathogenic Th17 and regulatory T cells. Ann Rheum Dis 2007; 66 Suppl 3: iii87-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700