用户名: 密码: 验证码:
水稻(Oryza sativa L.)若干重要性状的QTL主效应、上位性效应及GE互作效应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究利用珍汕97B/密阳46和协青早B/密阳46所构建的两个RIL群体(简称ZM-RIL和XM-RIL)及其相应分子遗传图谱,通过设置多环境或多处理的遗传试验,应用可以同时检测QTL主效应、上位性效应和G×E互作效应的遗传分析方法,对涉及水稻农艺、品质、抗逆等11个重要性状进行QTL定位和GE分析,并对结果进行了分析和讨论,旨在从分子水平上更深入地了解其遗传本质。主要研究内容和结果如下:
     1、分蘖松散度:用XM-RIL及其遗传图谱,进行海南和杭州两地试验,以分蘖夹角为松散度(弧度)指标,对该性状的两个环境下表现数据进行联合分析。共检测到2个主效应QTL和3对显著的加性×加性双基因互作。在主效应QTL中,qTA8-2的LOD值为21.7,贡献率为23.2%;qTA9-2的LOD值为22.0,贡献率为19.5%;增加松散度基因前者来自母本、后者则来自父本;这2个QTL不存在显著的GE互作。而所检测到的3对显著双基因互作,对该性状表型变异的总贡献率仅为7.69%,显得较为次要。
     2、落粒性:用ZM-RIL群体及其遗传图谱,在海南和杭州两地试验,以稻穗下落法测到的落粒率(%)为指标,进行两地数据QTL联合分析。结果表明,ZM-RIL群体的不同株系在两地间落粒率变化很大。在海南,该性状呈近似正态分布;在杭州,则呈明显偏态分布。试验共检测到8个主效应QTL,位于第1、2、3(2个)、6(2个)、7和11等6条染色体上,每个QTL影响落粒率的加性效应均不太大,其幅度为1.7%-3.9%,共解释群体落粒性性状变异的9.05%。其中,有3个主效应QTL(qSH3-1、qSH3-2和qSH6-1)存在显著的GE互作,它们均使海南增加落粒率和杭降低落粒率,且GE总贡献率几乎接近加性效应总贡献率,表明GE互作对落粒率具有重要影响。此外,试验还检测到5对上位性互作QTL,这些互作共解释群体落粒性性状变异的3.39%,单个互作的贡献率为0.47%-0.85%,未检测到上位性与环境的显著互作。
    
     3、柱头外露率:用XM一RIL及其遗传图谱,在海南和杭州两地试验,以柱头外
    露率(%)的考察指标,进行有关QTL联合分析。该性状明显表现出海南较高(21 .83%)
    而杭州较低(S .35%)的趋势。试验检测到1个主效应QTL(qSE6一1),其LOD值高达
    28.16,对性状表型的贡献率为14.14%,增效等位基因来自于母本,加性效应为5.10%,
    不存在显著的GE互作。试验还检测到3对显著的加性x加性双基因互作,上位性互
    作性效应和贡献率相对较小,且与环境不存在显著的互作。
     4、稻米透明度:用Z旅RIL及其遗传图谱,在海南和杭州两地试验,以精米透
    光率(%)作为考察稻米透明度指标,进行有关QTL联合分析。共检测到5个控制该
    性状的主效应QTL,分别位于第2、6(2个)、8、10染色体上,总的遗传贡献率19.15%。
    其中,qTRZ一2的增加透明度有效基因来源于母本;其余4个(qTR6一z、qTR6一2、qTRS一2、
    qTR10)则来自于父本。qTR6吐还与环境存在显著的GE互作效应。此外,还检测到
    2对控制稻米透明度的加性上位性互作基因,但它们均未与环境存在显著互作。
     5、稻米延伸性:用XM--RIL及其遗传图谱,在海南和杭州两地试验,以延伸率
    (%)作为米粒延伸性考察指标,进行有关QTL联合分析。结果表明,该性状两地间的
    平均表现和群体分布特征较为相似,但两地间各系表型值相关系数却较小。试验检
    测到1个控制该性状的QTL基因qCRE6,其增效基因来自于父本,可提高3.99%的米
    粒延伸率,它不存在与环境间显著互作。还检测到2对上位性互作基因,即qcREZ
    与qCRES一1、qCRES一2与qCRE7间互作,前者与环境间存在有显著有GE互作,其
    作用使在杭州有增加米粒延性效果。
     6、稻米淀粉粘滞性:用Z卜RIL及其遗传图谱,经海南和杭州两地试验,以精
    米粉的RVA谱中5个参数特征值PKV、HPV、CPV、BDV和SBV作为研究稻米淀粉粘滞
    性的指标,进行有关QTL联合分析。结果表现:1)在所检测到涉及5个性状的9个
    主效应QTL中,除PKV存在有第5染色体qPKVS外,其余8个QTL均位于第6染色
    体上;2)每个性状均检测到1个位于第6染色体RM197~RZ516区间的主效应QTL,
    
    并认为该基因即是Wx基因,表明所有性状均与Wx基因有关;3)检测到的与PKV、
    HPV、BDV、CPv等4个性状有关的wx基因均表现有GE互作,且方向一致,表现为在
    海南有增效作用。试验还检测到涉及5个性状的10对上位性互作效应,但均未检测
    到显著的上位性x环境互作效应。
     7、耐辐射损伤:用ZM一RIL及其遗传图谱,经2个丫射线剂量(35OGy和55OGy)
    辐射处理,以处理后RIL群体的相对发芽率(%)和相对成苗率(%)作为考察该材
    料耐辐射损伤指标,进行QTL定位和上位性分析。结果表明,RIL群体受不同剂量照
    射后,表现出株系间耐辐射损伤的差异。以相对发芽率为指标,共检测到3个耐辐
    射主效应QTL,其中,qRR(g)8一1在350Gy处理时检测到,有效基因来自于父本,其
    遗传贡献率为6.53%;qRR(g)1一2和qRR(g)8一2则是在550Gy辐照时检测到,有效基
    因分别存在于母本和父本中,共可解释14.38%变异。以相对成苗率为指标,也检测
    到3个主效应QTL,它们是qRR(s)2一2(350Gy剂量)、qRR(s)5一6和qRR(s)10(550Gy
    剂量),共解释19.65%变异。
Two recombinant inbred line (RIL) populations derived from Zhenshan 97B/Miyang 46 and Xieqingzao B/Miyang 46 (hereafter referred to ZM-RIL and XM-RIL, respectively) and their genetic linkage maps were employed to map the quantitative trait loci (QTL) with main effects, epistasis, and G X E (GE) interaction effects of some important agronomic, grain quality, and anti-abiotic stress traits in different environments or with different treatments. The objective of this study was to understand the genetic basis of these traits more clearly at the molecular level. The main results were as follows.
    1.Tillering angle: The XM-RIL population and its genetic linkage map were used to map QTLs controlling the tillering angle in two environments,Hangzhou and Hainan. A total of two QTLs with main effects and three pairs of additive X additive double QTL interaction effects were identified. For the main effect QTL, qTA8-2 was detected with LOD of 21.7 and could explain 23.2% of the total phenotypic variations; qTA9-2 was detected with LOD of 22.0 and could explain 19.5% of the total phenotypic variations. The additive effects of the former QTL came from female parent, but latter one came from the male parent. No GE interaction effect was detected for the main effect QTLs. The three pairs of double QTLs interactions only explained 7.69% of the total phenotypic variation, suggesting their minor importance.
    2. Shattering: The ZM-RIL population and its genetic linkage map were used to map the QTLs controlling the shattering trait in two environments, Hainan and Hangzhou. The results indicated that the shattering of different lines ZM-RIL population varied dramatically in different environments. In Hainan, this triat nearly showed the normal distribution, while in Hangzhou, it showed distorted distribution. A total of eight QTLs with main effects were detected on the chromosome of 1, 2, 3(two QTLs), 6 (two QTLs), 7 and11. Each QTL only contributed little (from 1.7% to 3.9%) to the total phenotypic variations, even in total they only explained 9.05% of the variations. Of them, three QTLs (qSH3-l, qSH3-2 and qSH6-l)had significant GE interaction effects, and their effects increased shattering in Hainan and decreased it in Hangzhou. The total contribution of
    
    
    these GE interaction QTLs were as large as those QTLs with main effects, suggesting that GE effects were important for shattering. In addition, five pairs of epistasis QTLs were detected with each contributing to 0.47%-0.85% of the total variation, even in whole, they only explained 3.39% of the total variation. No epistasis by environment interaction effect was detected in this experiement.
    3. Stigma extruding: The XM-RIL population and its genetic linkage map were used to map QTLs controlling the stigma extruding trait in two environments, Hainan and Hangzhou. The stigma extruding rate was higher in Hainan (21.83%) than that in Hangzhou (8.35%) . Only one QTL with main effect was detected with LOD as high as 28.16, which explained 14.14% of the total phenotypic variations. The positive additive effect of this QTL was 5.10% which came from the female parent. No GE interaction effect was detected. Three additive X additive double QTL epistasis effects were detected with little contributions, and no epistasis by environment effects was detected.
    4. Rice grain transparency. The ZM-RIL population and its genetic linkage map were used to map QTLs controlling rice grain transparency which was indexed as ratio of light permeating the milled rice grains in two environments. A total of five QTLs with main effects were detected on chromosomes 2, 6 (two QTLs), 8 and 10, which in total contributed to 19.15% of the total phenotypic variations. Among them, the additive effects of qTR2-2 came from the female parents while the others four (qTR6-1 qTR6-2 qTR8-2>qTR10) came from the male parent. The QTL qTR6-l was also detected significant GE interaction effects. In addition, two pairs of additive X additive epistasis QTLs were detected, but they did not show GE interaction effect.
引文
● 包劲松,何平,李任贵等.异地比较定位控制稻米蒸煮食用品质的数量性状基因.中国农业科学,2000,33(5):8-13
    ● 包劲松,何平,夏英武等.稻米淀粉RVA谱特征主要受Wx基因控制.科学通报,1999,44(22),1973-1979
    ● 曹立勇,朱军,赵松涛.水稻籼粳交DH群体耐热性的QTL定位.农业生物技术学报,2002.10(3):210-214
    ● 曹立勇.水稻几个重要性状的QTL定位及抗白叶枯病基因分子标记辅助选择.浙江大学博士学位论文,2001
    ● 崔克浑,彭少兵,邢永忠等.水稻产量穗部性状的遗传分析.遗传学报,2002,29(2):144-152
    ● 傅彬英,杨代常,朱英国等.水稻抗稻瘟病基因Pi-2(t)物理图谱的构建.遗传学报,2000,27(9):787-791
    ● 高用明,朱军.植物QTL定位方法的研究进展.遗传,2000,22(3):175-179
    ● 高用明.复杂上位性用其与环境互作的QTL定位方法和杂种优势预测研究.2001,浙江大学博士学位论文
    ● 龚继明,何平,钱前等.水稻耐盐性QTL的定位.科学通报,1998,43(17):1847-1850
    ● 龚继明,郑先武,村保兴等.控制水稻重要农艺性状的QTL在盐胁迫与非胁迫条件下的对比研究.中国科学,2000,6:561-569
    ● 顾兴友,梅曼彤,严小龙等.水稻耐盐性数量性状位点的初步检测。中国水稻科学,2000,14(2):65-70
    ● 郭龙彪.汕优63重组自交系群体重要农艺性状分析和QTL定位.浙江大学硕士学位论文,2001
    ● 何平,李仕贵,李晶绍等.影响稻米品质几个性状的基因座位分析.科学通报,1998,43(16):1747-1750
    ● 黄英资,毛盛贤.基因型与环境互作研究的新进展.作物学报,1992,18(2):116-125
    ● 黄祖六,谭学林,Tragoonrung S.VANAVICHIT A.稻米直链淀粉含量基因座位的分子标记定位.作物学报,2000a,26(6):777-784
    ● 黄祖六,谭学林.稻米胶稠度基因位点的标记和分析.中国农业科学,2000b,33(6):1-5
    ● 惠大丰,姜长鉴,莫惠栋.数量性状基因图谱构建方法的比较.作物学报,1997,23(2):129-136
    ● 李晨,孙传清.栽培稻与普通野生稻两个重要分类性状花药长度和柱头外露率的QTL分析.遗传学报,2001,28(8):746-751
    ● 李平,陆朝福,周开达等.利用RFLP标记定位水稻重要农艺性状的主效基因与微效基因.中国科学(C辑),1996,26(3):257-263
    
    
    ● 李平.利用分子标记和水稻籼粳交双单倍体群体进行遗传作图研究.植物学报,1996,38(11):881-886
    ● 李任贵,何平.水稻剑叶性状的遗传分析和基因定位.作物学报,2000,26(3):261-265
    ● 李泽福,夏加发,苏泽胜等.水稻产量及其相关性状的数量性状基因座分析。南京农业大学学报,2002,25(2):1-6
    ● 廖春燕,吴平,易可可等.不同遗传背景及环境中水稻(Oryza satival.)穗长的QTLs和上位性分析.遗传学报,2000,27(7):599-607
    ● 林鸿宣,闵绍楷,熊振明等.应用RFLP图谱定位分析籼型粒型数量性状基因座位.中国农业科学,1995,28(4):1-7
    ● 林鸿宣,庄杰云,郑康乐等.应用分子标记检测水稻耐盐性的QTL.中国水稻科学,1998,12(2):72-78
    ● 刘贵富,卢永根,王国昌等.水稻产量、株高及其相关性状的QTL定位.华南农业大学学报,1998,19(3):5-9
    ● 毛传澡,程式华.水稻农艺性状QTL定位精确性及其影响因素的分析.农业生物技术学报,1999,7(4):386-395
    ● 梅捍卫,罗利军,王一平等.水稻对白叶枯病Xanthomonas oryzae pv.Oryzae水平抗性的数量性状位点(QTL)定位.遗传学报,26(4):345-349
    ● 梅捍卫,罗利军.水稻加工品质QTL分子定位研究.遗传学报,2002,29(9):791-797
    ● 明凤.发育时期对水稻耐用低磷胁迫有关性状QTL检测的影响.中国水稻科学,2001
    ● 钱前,何平,腾胜等.水稻分蘗角度的QTL分析.遗传学报,2001(1):29-32
    ● 钱前,曾大力,何平等。水稻籼粳交DH群体苗期的耐冷性QTL分析。科学通报,1999,44(22),2402-2406
    ● 苏昌潮,万建明.利用回交RIL检测水稻抗褐飞QTL.遗传学报,2002,29(4):332-338
    ● 谭震波,章琦,朱立煌等.水稻抗白叶枯病基因Xa-14在分子标记连锁图上的定位.遗传,1998,20(6):30-33
    ● 腾胜,钱前,曾大力等,水稻苗期耐旱性基因位点及其互作的分析.遗传学报,2002,29(3):235-240
    ● 王忠华,舒庆尧,水稻分子标记《水稻生物技术育种》李梅芳主编,2001
    ● 危文亮,赵应忠.分子标记在作物育种中的应用.生物技术通报,2000,2:12-16
    ● 吴长明,孙传青,陈亮.应用RFLP图谱定位稻米米粒型QTL.吉林农业科学,2002,27(5):3-7
    ● 吴长明,孙传清,陈亮等.控制稻米脂肪含量的QTLs分析.农业生物技术学报,2000,8(4):
    
    382-384
    ● 吴建利,庄杰云,柴荣耀.水稻抗穗瘟基因的分子定位.植物病理学报,2000,30(2):111-115
    ● 吴建利,庄杰云,李德葆等.水稻对稻瘟病抗性的分子生物学研究进展.中国水稻科学,1999,13(2):123-128
    ● 吴平,倪俊健,罗安程等.应用分子标记研究水稻耐低钾胁迫数量性状位点.植物营养与肥料学报,1997,3(3):209-216
    ● 邢永忠,徐才国,华金平等。水稻穗部性状的QTL与环境互作分析。遗传学报,2001,28(5):439-446
    ● 徐建龙,薛庆中,罗利军等.水稻单株有效穗数和每穗粒数的QTL剖析,遗传学报,2001,28(8).752-759
    ● 徐建龙,薛庆中,罗利军等.水稻粒重及其相关性状的遗传解剖.浙江农业学报,2002,14(1):14-19
    ● 许旭明.利用分子标记定位籼稻落粒性QTL.三明农业科技,2000,88(3):11-18
    ● 薛庆中,张能义,熊兆飞等.应用分子标记辅助选择培育抗白叶枯病水稻恢复系.浙江农业大学学报,1998,24(6):581-582
    ● 严长杰,李欣,程祝宽等。利用分子标记定位水稻芽期耐冷性基因.中国水稻科学,1999,13(3):134-138
    ● 袁玲,祝莉莉,何光存.稻米品质性状基因的SSR标记定位.武汉大学学报,2002,48(4):507-510
    ● 曾大力,钱前,阮刘青.稻米垩白三维切面的遗传分析.中国水稻科学,2002,16(1):11-14
    ● 张立平,吴平.水稻亚铁胁迫诱导ADH的基因定位及其遗传分析.遗传学报,1999
    ● 张祖新,刘纪.分子标记在作物育中的应用.湖北农学院学报,1998,13(3):228-234
    ● 章琦,赵炳宇,赵开军等.普通野生稻的抗水稻白叶枯病新基因Xa23(t)的鉴定和分子标记定位.作物学报,2000,26(5):536-542
    ● 郑康乐,黄宁.标记辅助选择在水稻改良中的应用前景.遗传,1997,19(2):40-44
    ● 郑康乐,钱惠荣,庄杰云等。应用DNA标记定位水稻的抗稻瘟病基因.植物病理学报,1995,25(4):307-313
    ● 郑康乐.RFLP在作物遗传和育种中的应用.《江苏科学技术出版社》(郑康乐主编),1991,23-30
    ● 朱军,遗传模型分析方法.北京:《中国农业出版社》,1997,
    ● 朱军.复杂数量性状基因定位的混合线性模型方法.《中国农业科技出版社》,北京,1998,pp11-20
    
    
    ● 朱立煌,徐吉臣,陈英等.用分子标记定位一个未知的抗稻瘟病基因。中国科学(B辑),1994,24(10):1048-1052
    ● 庄杰云,樊叶杨,吴建利等.水稻CMS-WA育性恢复基因的定位.遗传学报,2001a,28(2):129-134
    ● 庄杰云,樊叶杨,吴建利等.应用二种定位法比较不同世代水稻产量性状QTL的检测结果.遗传学报,2001,28(5):458-464
    ● 庄杰云,樊叶杨,吴建利等.杂交水稻中超显性效应的分析.遗传,2000,22(4):205-208
    ● 庄杰云.水稻杂种优势遗传机理与分子标记辅助高产育种研究.浙江大学博士学位论文,2001
    ● Abens M L P. Selection of bacterial leaf blight resistance plants in the F_2 generation via their linkage to molecular markers. Rice Genet Newsletter, 1993,10:120-123
    ● Ahn S N, Bollich C N, Tanksley S D. RFLP analysis of genomic regions associated with cooked-kernel elongation in rice. Theor. Appl. Genet., 1993, 87:27-32
    ● Austin D F, Lee M. Comparative mapping in F_(2:3) andF_(6:7) generation of quantitative trait loci for grain yield components in maize. Theor Appl Genet., 1996, 92:817-826
    ● Bao J S, Zheng X W, Xia Y W, et al. QTL mapping for the paste viscosity characteristics in rice (Oryza sativa L.). TAG, 2000,100:280-284
    ● Bernacchi D, Beck-Bunn T, Eshed Y, et al. Advance backcross QTL analysis in tomato. Ⅰ. Identification of QTLs for traits of agronomic importance from Lycopersicon hirsutum, Theor Appl Genet, 1998a, 97:381-397
    ● Bernacchi D, Beck-Bunn T, Emmatty D, et al. 1998b Advance backcross QTL analysis of tomato. Ⅱ, Evaluation of near-isogenic lines carrying single-donor introgressions for desirable wile QTL-alleles derived from Lycopersicon hirsutum. Theor Appl Genet 97:170-180
    ● Burr B, Burr F A. Recombinant inbreds for molecular mapping in maize: theoretical and practical consideration. Trends Genet., 1991,7:55-60
    ● Cai H W, Morishima H. Genomic regions affecting seeding shattering and seed dormancy in rice. TAG, 2000,100:840-846
    ● Causse M, Rocher J P, Henry AM, et at. Genetic dissection of the relationship between carbon metabolism and early growth in maize with emphasis on key-enzyme loci. Molecular Breeding, 1995,1(3):259-272
    ● Champoux M C, Wang G, Sarkarung S, et al. Locating genes associated with root morphology and drought tolerance in rice via linkage to molecular markers. Theor. Appl. Genet., 1995,90:969-981
    ● Chen X, Temnykh S, Xu Y, et al. Development of a microsatellite framework map
    
    providing genome-wide coverage in rice (Oryza sativa L.). Theor Appl Genet, 1997, 95:553-567
    ● Cheng S, Lin H X, Xu C G. et al. Improvement of bacterial blight resistance of "Minghui 63", an elite restorer lines of hybrid rice, by molecular-assisted selection. Crop Sci, 2000,40:239-244
    ● Cho Y G, Darvasi A. Optimu spacing of genetic markers for determining linkage between marker loci and quantitative trait loci. Thero Appl Genet, 1994,89:54-55
    ● Chunwongse J. Development of PCR-based markers to identify rice blast resistance gene Pi-2(t) in a segregating population. Theor Appl Genet, 1995,91:9-14
    ● Cowen N M. The use of replication progenies in marker-based mapping of QTLs, Theor Appl Genet ,1988, 75:857-862
    ● DeVicente M C, Tanksley S D. QTL analysis of transgressive segregation in an interspecific tomoto cross. Genetics, 1993,134:585-596
    ● Dunford R P, Kurata N, Laurie D A, et al. Conservation of fine-scale DNA marker order in the genomes of rice and Triticeae. Necleic Acid Res, 1995,23:2724-2728
    ● Edward M D, Stuber C W, Wendel J F. Molecular-marker-facilitated investigation of quantitative-trait loci in maize. Ⅰ. Numbers, genomic distribution and types of gene action. Genetics, 1987,116:113-125
    ● Fukuta Y, Harushima Y, Yano M. Using quantitative trait locus analysis for studying genetic regulation of shattering. Rice Genetics Ⅲ. Pp657-662. In: Rice Genetics Ⅲ. (G.S. Khush, ed) International Rice Research Institute Manila, Philippines, 1996.
    ● Fukuta Y, Tadashi Y. Mapping of a shattering resistance gene in a mutant line SR-5 induced from and indica rice variety, Nan-jing 11. Breeding Sci. 1998,48:345-348
    ● Fulton T M, Berk-Bunn T, Emmatty D, et al. QTL analysis of an advanced backcross of lycoperslcan peruianum to the cultivated tomato and comparisons with QTLs found in other elite species. Theor Appl Genet, 1997,95:881-894
    ● Goddard M E. Amixed for analysis of data on multiple genetic markers. Theor. Appl. Genet. ,1992, 83:878-886
    ● Hauser M T, Adhami F, Dorner M, et al. Generation of co-dominant PCR-based marker by duplex analysis on high resolution gels. The Plant J., 1998. 16(1):117-125
    ● He P, Li S G, Qian Q. et al. Genetic analysis of rice grain quality. TAG, 1999,98:502-508
    ● Huangn N, et al. Pyramiding of bacterial blight resistance genes in rice: marker-
    
    aided selection using RFLP and PCR. Theor Appl Genet, 1997,95:313-320
    ● Hyne V, Kearsey M J, Pike D J, et aI. QTL analysis: unreliability and bias in estimation procedures. Molecular Breeding, 1995,1:273-282
    ● Ishii T, Brar D S. Molecular tagging of genes for brown planthopper resistance and earliness introgressed from O. australiensis into cultivated rice, O. Sativa. Genome, 1994,37:217-221
    ● Jannink J L, and Jansen R. Mapping epistatic quantitative trait loci with one dimensional genome searches. Genetics, 2001, 157:445-454
    ● Jansen R C, Van Ooijen, Siam P, et al. Genotype-by-environment interaction in genetic mapping of multiple quantitative trait loci. Theor. Appl. Genet.,1995,9133-9137
    ● Jansen R C. Interval mapping of multiple quantitative trait loci. Genetics, 1993,135:205-211
    ● Jiang J, Zeng Z B.Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics, 1995,140:1111-l127
    ● Ladizinsky G. Founder effect in crop-plant evolution, Econbot, 1985,39:191-199
    ● Lander E S, Botstein S. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989,121:185-199
    ● Lander E S, Green P, Abrahamson J, et al. MAPMARKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1987, 1:174-181
    ● Lang N T, Subudhi P K, Virmani S S, et alDevelopment of PCR-based marker for the thermosensitive genetic male sterility gene tms3(t) in rice (Oryza sativa L.). Hereditas ,1999, 131(2):121-127
    ● Li Z K., Pinson S R M, Park W D, et al. Epistasis for three grain yield components in rice (Oryza sativa L.). Genetics, 1997,145:453-465
    ● Li Z K, Pinson S R M, Paterson A H, et al. Genetics of hybrid sterility and hybrid breakdown in an inter-subspecific rice (Oryza sativa L.) population. Genetics, 1997a, 145:1139-1148
    ● Li Z K, Paterson A R, Shannon R M, et al. RFLP facilitated analysis of tiller and leaf angles in rice (Oryza sativa L.). Euphytica ,1999, 109:79-84
    ● Lin H, RFLP mapping of QTLs for yield and related characters in rice .TAG, 1996,92:920-927
    ● Lu C F, Shen L S, Tan Z B, et al. Comparative mapping of QTLs for agriculture traits of rice across environments by using a doubled-haploid population. TAG, 1997. 94:
    
    145-150
    ● McCouch S R, Chen X, Panaud O, et al, Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Mol Biol, 1997,35:89-99
    ● Mebrok Benmoussa, Zhu Jun. QTL analysis of genetic main effects and genotype.浙江大学学报(农业与生命科学版), 2002, 28 (2): 127-135
    ● Meuwissen T H E , Goddard M E. Estimation of effects of quantitative trait loci in large complex pedigress. Genetics, 1997,146:409-416
    ● Mohan M, Nair S, Bhagwat A. Genome mapping ,molecular marker and marker-assisted selection in crop plants. Molecular Breeding, 1997, 3:87-103
    ● Monforte A J, Tanksley S D. Fine mapping of a quantitative trait locus(QTL) from Lycopersicon hirsute chromosome 1 affecting fruit characteristics and agronomic traits: breaking linkage among QTLs affecting different traits and dissection of heterosis for yiold. Theor Appl Genet .2000,100:471-479
    ● Ni J J, Colowit p M, Oster J J ,et al. Molecular markers inked to stem rot resistance in rice. TAG, 2001,102:511-516
    ● Ni J J, Wu P, Senadhira. Mapping QTLs for phosphorus deficiency tolerance in rice (Oryza sativa L.). TAG, 1998,97:1361-1369
    ● Ohno Y H,Tanase T, Nabika, et al. Selective genotyping with epistasis can be utilized for a major quantitative trait locus mapping in hypertension in rats. Genetics, 2000,155:785-792
    ● Rodolphe F, Lefort M. Amulti-marker model for detecting chromosomal segments displaying QTL activity. Genetics, 1993,134:1277-1288
    ● Ronald P, Albano B. Genetic and physical analysis of the rice bacterial blight disease locus, Xa21. Mol Gen Genet, 1992,236:113-120
    ● Saito K, Miura, K, Nagano K, et al. Identification of two closely linked quantitative trait loci for cold tolerance on chromosome 4 of rice and their association with anther length. TAG, 2001,103:862-868
    ● Skroch P, Nienhuis J. Impact of scoring error and reproducibility of RAPD data on RAPD based estimates of genetic distance. Theor Appl Genet., 1995, 91:1088-1091
    ● Song Y L, Wang G L, Chen L L, et al. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 279:1084-1086
    ● Sripongpangkul K, Posa G B T, Senadhira D W, et al. Genes/QTLs affecting flood tolerance in rice. TAG, 2000,101:1074-1081
    ● Stuber C W, Lincoln S E , Wolff D W , et al. Identification of genetic factors
    
    contribution to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics ,1992,132:823-839
    ● Tan Y F, Li J X, Zbang Q F. The three important traits for cooking and earting quality of rice grains are controlled by a single locus in an elite rice hybrid, Shanyou 63. TAG ,1999,99:642-648
    ● Tan Y F, Xing Y Z, Zhang Q F Genetic bases of appearance quality of rice grain in Shanyou 63, an elite rice hybrid. TAG, 2000,101:823-829
    ● Tan Z B, Shen L H, Yuan Z L, et al. Identification of QTLs for rationing ability and grain yield traits of rice and analysis of their genetic effects. Acta Agronomica Sinica ,1997,23:289-295
    ● Tankaley S D, Nelson J C. Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet, 1996, 92:191-203
    ● Tanksley S D, Nelson J C. Advanced backcross QTL analysis: a methof gor the simultaneous discovery and transfer of valuable QTLs from unadpted germplasm into elite breeding lines. Theor. Appl. Genet. 1996,92:191-203
    ● Tanksley S D. Mapping polygenes. Annu Rev Genet, 1993,27:205-233
    ● Thomas C, Vos P, Zabeau M, et al. Identification if amplified fragment polymorphism(AFLP) marker tightly linked to the tomato CF-9 genes for resistance to Cladosperoium fulcum. Plant J ,1995,8:785-794
    ● Tripathy J N, Zhang J, Robin S, et al. QTLs for cell-membrane stability mapped in rice under drought stress. TAG ,2000,100:1197-1202
    ● Umehara, Y. A. Inagaki H Tanoue, et al. Construction and characterization of a rice YAC library for physical mapping. Mol. Breed., 1995, 1:79-89
    ● Vos P, Hogers R, Bleeker M, et al., AFLP: a new technique for DNAfingerprinting. Nucleic Acids Res, 1995, 23:4407-4414
    ● Wang D G, Fan J B, Siao C J, et al. Large-scale identification, and genotyping of single nucleotide polymorphism in the human genome. Science, 1998,280:1077-1082
    ● Wang D G, Fan J B, Siao CJ, et al. Large-scale identification, mapping, and genotyping of single nucleotide polymorphism in the human genome. Science, 1998,280:1077-1082
    ● Wang D L, Zhu J, Li Z K, et al. Mapping QTls with epistatic effects and QTL× environment interactions by mixed linear model approaches. Theor. Appl. Genet., 1999,99:1255-1264
    
    
    ● Wang G L, Holsten T E, Song W Y ,et al., Construction of a rice bacterial artificial chromosome library and identification of clones linked to the Xa21 disease resistance locus. The Plant J., 1995a, 7(3):525-533
    ● Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res., 1990 ,18(24): 7213-7218
    ● Wu K S, Tanksley S D. Abundance, polymophism and genetic mapping of microsatellites in rice. Mol Gen Genet, 1993, 241:225-235
    ● Wu P, Hu B, Liao C Y. Characterization of tissue tolerance to iron by molecular markers in different lines of rice. Plant and Soil. 1998. 203:217-226
    ● Wu P, Liao C Y, Hu B, et al. QTLs and epistasis for aluminum tolerance in rice (Oryza sativa L.) at different seedling stages. TAG, 2000, 100:1295-1303
    ● Wu P, Liao C Y, Hu B, et al. QTLs and epistasis for alumium tolerance in rice (Oryza sativa L.) at different seedling stages. Theor Appl Genet., 2000,100:1295-1303
    ● Xiao J H, Li J, Yuan L. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics, 1995,140:745-754
    ● Xiao J, Grandillo S, AhnS N, et al. Genes from the wild boost rice yield, Nature, 1997, 384:223-234
    ● Xu S , Atchley W R. A random model approach to interval mapping of quantitative trait loci. Genetics, 1995,141:l189-1197
    ● Xu Y, Quantitative trait loci: Separating, pyramiding, and cloning. Plant Breed Rev, 1997,15:85-139
    ● Yamamoto T, Sasaki T, Yano M. Genetic analysis of spreading stub using indica/japonica backcrossed progenies in rice. Breeding Sci. 1997, 47:141-144
    ● Yan J Q, Zhu J, He C X ,et al, Molecular marker-assisted dissection of genotype environment interaction for plant type traits in rice (Oryza sativa L.).Crop Sci., 1999,39:538-544
    ● Yang D, Parco A, Nandi S, et al. Construction of a bacterial artificial chromosome (BAC) library and identification of overlapping BAC clones with chromosome 4 specific RFLP markers in rice. Theor Appl Genet. ,1997, 95:1147-1154
    ● Yano M, Katayose Y, Ashikari M, et al. Hdl, a major photoperiod sensitivity Quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell, 2000,12;2473-2484
    ● Yano M, Saaski, T. 1997 Genetic and molecular dissection of quantitative trais in rice. Plant Mol. Biol. 35:145-153
    
    
    ● Yano Masahiro, Sasaki Takuji. Genetic and molecular dissection of quantitative traits in rice. Plant Molecular Biology, 1997,35:145-153
    ● Ye C R, Akira K, Koji S, et al. QTL analysis of cold tolerance at the booting stge in Yunnan rice variety Chongtui. Chinese J Rice Sci, 2001.15(1): 13-16
    ● Yoshimura S, Umehara Y, Kurata N, et al. Identification of a YAC clone carrying the Xa-1 allele, a bacterial blight resistance gene in rice. Theor. Appl Genet., 1996,93:117-122
    ● Yu S B, Li J X, Gao Y F. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc. Natl. Acad, Sci. USA, 1997, 94:9226-9231
    ● Zeng Z B, Kao C H, Basten C J. Estimating the genetic architecture of quantitative traits. Genet. Research, 1999, 74:279-289
    ● Zeng Z B. Precision mapping of quantitative trait loci, Genetics, 1994,136:1457-1468
    ● Zheng K L, Shen B, Qian H R. DNA polymorphisms generated by arbitrary primed PCR in rice. Rice Genet Newls ,1991, 8:134-135
    ● Zhong D B, Yu S B, Xu J L, et al. QTLs for grain shattering in the Lemont/Teqing RI population. Rice Genet. Newsl., 1999, 16:71-74
    ● Zhu, J, B.S. Weir. Mixed model approaches for genetic analysis of quantitative traits. In:Chen L S ,Ruan SG, and Zhu J (eds), Advanced Topic in Biomathematics: Proceedings of International Conference on Mathematical Biology. Singapore: World Scientific Publishing Co, 1998, pp321-330
    ● Zhuang J Y, Lin H X, Lu J, et al. Analysis of QTL×environment interaction for yield components and plant height in rice. TAG, 1997, 95:799-808
    ● Zhuang J Y, Fan Y Y, Rao Z M, et al. Analysis on additive effects and additive-by-additive epistatic effects of QTLs for yield traits in a recombinant inbred line population of rice. Theor Appl Genet, 2002,105:1137-1145

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700