用户名: 密码: 验证码:
利用DNA分子标记剖析水稻种子活力的遗传基础
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着水稻直播栽培面积的扩大,对水稻品种种子活力的要求日益提高,水稻种子活力的遗传改良也便成为水稻育种的重要目标之一。DNA分子标记技术的发展和水稻高密度遗传图谱的构建,为剖析包括种子活力在内的数量性状的遗传基础提供了有效手段。本研究利用来源于杂交组合Lemont/特青的一个重组自交系群体,对水稻种子活力的相关性状进行QTL分析。
     1、利用纸卷法在3个不同温度条件下进行实验室发芽试验,测定萌发率、根长、芽长和芽苗干重等性状。结果表明,2个亲本之间的差异与温度有关,亲本特青在25℃和20℃的正常温度条件下表现良好的发芽性能,但对15℃低温敏感,表现出显著的基因型与环境温度间的互作。在RIL群体中,4个种子活力性状均呈现出连续变异,并在高值和低值2个方向上表现出超亲分离。QTL定位共检测到34个QTL,其中82%成簇分布在染色体3、5和8的5个染色体区段上,分别将这5个染色体区段命名为QTL qSV-3-1,qSV-3-2,qSV-5,qSV-8-1和qSV-8-2。各QTL对种子活力性状的贡献率均较小,表明种子活力性状受多基因控制:3个QTL(qSV-3-1、qSV-3-2和qSV-8-1)在3个不同温度条件下的作用相对稳定;而另外2个QTL(qSV-5和qSV-8-2)主要在20℃和25℃温度条件下起作用,在15℃低温条件下作用甚微或不起作用,基因型与环境温度间的互作表现为QTL的特异性。当QTL对种子活力的多个性状产生影响时,加性效应的方向总是一致的,QTL qSV-3-1和qSV-8-1的增效基因型来自于亲本Lemont,而QTL qSV-3-2、qSV-5和qSV-8-2的增效基因型来自于亲本特青。
     2、建立了纸板播种法,并成功地用于了水稻田间成苗特性的测定。纸板播种法能有效控制田间成茁特性测定试验中的环境误差,广泛适用于各种作物种子田间成苗特性的测定试验。
     3、利用纸板播种法在田间湿润和淹水2种条件下,测定出芽率、出苗率、苗高和苗干重等田间成苗特性相关性状,结果表明,特青在这些性状上均显著优于亲本Lemont;在RIL群体种,各性状之间均呈极显著正相关,但相比之下,湿润或淹水处理内性状之间的相关程度(湿润处理内r=0.66~0.80,p<0.001;淹水处理内r=0.56~0.95,p<0.001)明显强于处理之间的性状相关(r=0.14~0.50,p<0.05~0.001)。在湿润处理中,对出苗率、苗高和苗干重3个性状共检测到9个主效应QTL,单个QTL对性状的贡献率为5.7~14.0%,所有QTL的增效等位基
Seedling vigor is one of the major determinants for stable stand establishment in rice (Oryza sativa L.), especially in direct seeding cropping system. In the current study, mapping of QTL for seedling vigor related traits was conducted to dissect the genetic basis of seedling vigor in rice using recombinant inbred lines derived from a cross between Lemont (japonica) and Teqing (indica).1、 The recombinant inbred lines were assessed for four seedling vigor traits by paper-roll tests at three temperatures of 25℃, 20℃ and 15℃, respectively. Using a linkage map with 198 marker loci, the main-effect QTL for the traits were mapped by composite interval mapping. A total of 34 QTL for the four seedling vigor traits were identified. Of these QTL, the majority (82%) was clustered within five genomic regions, designated as QTL qSV-3-1, qSV-3-2, qSV-5 qSV-8-1, and qSV-8-2, respectively. All of these five QTL had small individual effects on the traits, explaining 3.1 to 15.8% of the phenotypic variation with a mean of 7.3%. QTL qSV-3-1, qSV-3-2 and qSV-8-1 showed almost consistent effects on the traits across all the three temperatures while QTL qSV-5 and qSV-8-2 produced effects mainly at the normal temperatures of 20℃ and 25℃. Thus significant genotype x environmental temperature interactions appeared to be QTL-specific.2、 The paper plate test was newly develop and was succefully used in evaluating the field seedling establishment characteristics in rice. This newly developed method has proved to be effective in controlling environmental error and useful in testing field seedling establishment characteristics in many plant crops like rice.3、 All the RILs and their parents were evaluated for the field seedling establishment characteristics in both upland and flooding field conditions by paper plate tests.The parent Teqing was superior to the parent Lemont in all the traits investigated. Continuous variation and transgressive segregation in both directions were observed in the RIL population. In the upland treatment, 9 main effect QTL for 3 seedling establishment related traits were detected, each explaining 5.7~14.0%of the trait variation and the positive alleles all contributed by the parent Teqing. In the flooding
    treatment, 8 main effect QTL for 4 seedling establishment related traits were mapped, also each with small effect on the trait. On the basis of co-location analysis of all the QTL detected, it was found that two QTL, qSE-1-1 and qSE-3-2, showed additive effects on both coleoptile and seedling emergence only under the flooding field condition, while the other two QTL, qSE-5-1 and qSE-JO, produced additive effects on the multiple seedling establishment related traits under both the upland and flooding field conditions.Comparison of QTL for lab germinability and field establishment characteristics revealed that: a) there were four chromosomal regions, two on chromosome 3 and other two on chromosome 5, which showed additive effects on both lab germinability and field establishment characteristics, b) there were two chromosomal regions on chromosome 8 displaying effects only on lab germinability while the other two, each on chromosomes 1 and 10, produced effects only on field establishment characteristics.4^ Cold tolerance at early seedling stage of rice is one of the major determinants for the stable stand establishment in temperate and high-elevation areas. In the current study, the recombinant inbred lines were evaluated for the cold tolerance at early seedling stage by the paper-roll tests in a two-replication trial with 10 d and 13 d treatments at 10°C, respectively. Composite interval mapping was conducted to locate both main-effect and digenic epistatic QTL for the trait. Three main-effect QTL were identified. The comparison of the QTL identified in these two cold treatments resulted in an intriguing finding that seedling cold tolerance in the 10 d cold treatment was regulated by many loci each with minor effect while that in the 13 d cold treatment was controlled by a major QTL as well as minor ones. Of the three main-effect QTL, QTL qSCT-U, closely linked to microsatellite marker RM202 on chromosome 11, was found to increase its additive effect from 4.07% to 10.11% (seedling survival percentage) as the duration of cold stress was prolonged from 10 d to 13 d. In the 13 d cold treatment, QTL qSCT-11 was detected at a very high LOD score of 19, explaining up to 30% of the phenotypic variation. The identification of QTL for the trait is important for the development of rice cultivars with a broader climatic adaptation.
引文
方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.2001,科学出版社.
    牟致远.小麦基因型和环境条件与种子活力.种子,1985,(4):20-22.
    牟致远.小麦不同基因型种子活力的遗传分析.种子,1987,(2):31-33.
    吴为人,李维明,卢浩然.基于最小二乘法的数量性状基因座的复合区间定位法.福建农业大学学报,1996,25(4):394-399.
    吴为人.基于最小二乘法的多性状QTL复合区间定位法.福建农业大学学报,1998,27(3):257-260.
    严长杰,李欣,程祝宽,于恒秀,顾铭洪,朱立煌.利用分子标记定位水稻芽期耐冷性基因.中国水稻科学,1999,13(3):134-138.
    何慈信,朱军,严菊强,Mebrouk Benmoussa,吴平.水稻穗干物质发育动态的QTL定位.中国农业科学,2000,33(1):24-32.
    余四斌,陈晚贞,徐才国.水稻种子活力的基因型差异.种子,1999,(2):24-26.
    国家技术监督局.农作物种子检验规程GB/T 3543-1995.中国标准出版社,1995.
    庄杰云,樊叶杨,吴建利,夏英武,郑康乐.超显性效应对水稻杂种优势的重要作用.中国科学(C辑),2001,31(2):106-113.
    胡中立.QTL遗传分析的若干理论研究及其应用.2000,武汉大学博士学位论文.
    倪安丽,张文明,王昌初.主要农作物种子纸卷法发芽试验初报.种子科技,1992,(1):23-24.
    赵勇,刘俊伟,李绍波,章志宏,朱英国.水稻苗期生长特性的遗传剖析.中国农业科学,2004(已接受).
    陶嘉龄,郑光华.种子活力.1991,科学出版社.
    钱前,曾大力,何平,郑先武,陈英,朱立煌.水稻籼粳交DH群体苗期的耐冷性QTLs分析.科学通报,1999,44(22):2402-2407.
    徐云碧,朱立煌.分子数量遗传学.1994,中国农业出版社.
    曹立勇,朱军,任立飞,赵松涛,颜启传.水稻幼苗活力相关性状的QTLs定位和上位性分析.作物学报,2002,28(6):809-815.
    傅家瑞.种子生理.1985,北京:科学出版社.
    傅家瑞.种子活力的生理生化现状研究.In:徐是雄著,种子生理的研究进展.1987,广州:中山大学出版社.
    惠大丰,姜长鉴,莫惠栋.数量性状基因图谱构建方法的比较.作物学报,1997,23(2):129-136.
    Abe F, Saito K, Miura K, Toriyama K. A single nucleotide polymorphism in the alternative oxidase gene among rice varieties differing in low temperature tolerance. FEBS Lett, 2002, 527: 181-185.
    Abdul-Baki AA. Biochemical aspects of seed vigor. Hort Science, 1980, 15: 765-771.
    Ahn S, Tanksley SD. Comparative linkage maps of the rice and maize genomes. Proc Natl Acad Sci USA, 1993, 90: 7980-7984.
    Ahn SN, Bollich CN, McClung AM, Tanksley SD. RFLP analysis of genomic regions associated with cooled-kernel elongation in rice. Theor Appl Genet, 1993, 87: 27-32.
    Akagi H, Yokozeki Y, Inagaki A, Fujimura T. Microsatellite DNA markers for rice chromosomes. Theor Appl Genet, 1996, 93: 1071-1077.
    Alpi A, Beevers H. Effect of O2 concentratioin on rice seedlings. Plant Physiol, 1983, 71: 30-34.
    Andayal VC, Mackill DJ. Mapping of QTLs associated with cold tolerance during the vegetative stage in rice. J Exp Bot, 2003a, 54: 2579-2585.
    Andayal VC, Mackill DJ. QTLs conferring cold tolerance at the booting stage of rice using recombinant inbred lines from a japonica/indica cross. Theor Appl Genet, 2003b, 106: 1084-1090.
    AOSA. Rules for testing seeds. 1987, Stone Printing Company.
    Arabidopsis Genome Initiative (AGI). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 2000, 408:796-815.
    Arumugnathan K, Earle ED. Nuclear DNA content of some important plant species. Plant Mol Biol Rep, 1991, 3: 208-218.
    Atchley WR, Zhu J. Developmental quantitative genetics, conditional epigenetic variability and growth in mice. Genetics, 1997, 147: 765-776.
    Azanza F, Barzur A, Juvik JA. Variation in sweet corn kernel characteristics associated with stand establishment and eating quality. Euphytica, 1996, 87: 7-18.
    Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet, 1980, 32: 314-331.
    Bertin P, Kinet JM, Bouharmont J. Evaluation of chilling sensitivity in different rice varieties. Relationship between screening procedures applied during germination and vegetative growth. Euphytica 1996, 89: 201-210.
    Causse MA, Fulton TM, Cho YG, Ahn SN, Chunwongse J, Wu KS, Xiao JH, Yu ZH, Ronald PC, Harrington SE, Second G, McCouch SR, Tanksley SD. Saturated molecular map of rice genome based on an interspecific backcross population. Genetics, 1994, 138: 1251-1274.
    Chapman AL, Peterson ML. The seedling establishment of rice under water in relating to temperature and dissolved oxygen. Crop Science, 1962,2: 391-395.
    Chen H, Wang S, Xing Y, Xu C, Hayes PM, Zhang Q. Comparative analyses of genomic locations and race specificities of loci for quantitative resistance to Pyricularia grisea in rice and barley. Proc Natl Acad Sci USA, 2003, 100: 2544- 2549.
    Choi DW, Koag MC, Close TJ. Map locations of barley Dhn genes determined by gene- specific PCR. Theor ApplGenet, 2000, 101: 350-354.
    Cissse ND, Ejeta G. Genetic variation and relationships among seedling vigor traits in sorghum. Crop Sci, 2003, 43: 824-828.
    Clark LJ, Cope RE, Whalley WR, Barraclough PB, Wade LJ. Root penetration of strong soil in rainfed lowland rice: comparison of laboratory screens with field performance. Field Crops Research, 2002, 76: 189-198.
    Coors JG, Pandey S (eds). The genetics and exploitation of heterosis in crops. 1999. Madison, Wisconsin: American Society of Agronomy, Crop Science Society of America and Soil Science Society of America.
    Cui KH, Peng SB, Xing YZ, Xu CG, Yu SB, Zhang Q. Molecular dissection of seedling-vigor and associated physiological traits in rice. Theor Appl Genet, 2002a, 105: 745-753.
    Cui KH, Peng SB, Xing YZ, Yu SB, Xu CG. Molecular dissection of relationship between seedling characteristics and seed size in rice. Acta Botanica Sinica, 2002b, 44(6): 702-707.
    Darvasi A. Interval-specific congenic strains (ISCS): an experimental design for mapping a QTL into a 1-centimorgan interval. Mamm Genome, 1997, 8: 163- 167.
    Delouche JC, Caldwell WP. Proc Assoc Off Seed Anal. 1960, 50: 124-129.
    Dingkuhn M, De Datta SK, Pamplona R, Javellana C, Schnier HF. Effect of late-season N-fertilization on photosynthesis and the yield of transplanted and direct-seeded tropical flooded rice. 2. A canopy stratification study. Field Crop Research, 1992, 28: 235-249.
    Dudley JW. Molecular markers in plant improvement: manipulation of genes affecting quantitative traits. Crop Sci, 1993, 33:660-668.
    East EM. Studies on size inkeritance in Nictiana. Genetics, 1915.
    Ellis RH. Seed and seedling vigor in relation to crop growth and yield. Plant Growth Regulatioin, 1992, 11: 249-255.
    Emerson RA, East EM. The inheritance of quantitative characters on maize. Buul Agr Exp Sta Nebraska, Res Bull, 1913,2.
    Erguiza A, Duff B, Khan C. Choice of rice crop establishment technique: transplanting vs. wet seeding. In: International Rice Research Institute (IRRI), ed. IRRI Research Paper Series. 1990, Los Bannos, Philippines: International Rice Research Institute.
    Falconer R. Introduction to quantitative genetics. 1960, New York: Ronald Press.
    Fatokun CA, Menancio-Hautea DI, Danesh D, Young ND. Evidence for orthologous seed weight genes in cowpea and mung bean based on RFLP mapping. Genetics, 1992,132:841-846.
    Firdman E, Pleban T, Zamir D. A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc Natl Acad Sci USA, 2000, 97: 4718-4723.
    Fisher, RA. The correlation among relatives on the supposition of Mendelian inheritance. Transnctions of the Royal Society of Edinburgh, 1918, 52: 399-433.
    Foolad MR, Lin GY. Genetic analysis of low temperature tolerance during germination in tomato, Lycopersicon esculentum Mill. Plant Breed, 1998, 117: 171-176.
    Foolad MR, Lin GY. Genetic analysis of cold tolerance during vegetative growth in tomato, Lycopersicon esculentum Mill. Euphytica, 2001, 122: 105-111.
    Forster BP, Phillips MS, Miller TE, Baird E, Powell W. Chromosome location of genes controlling tolerance to salt (NaCl) and vigor in Hordeum vulgare and H. chilense. Heredity, 1990,65:99-107.
    Francia E, Rizza F, Cattivelli L, Stanca AM, Galiba G, Toth B, Hayes PM, Skinner JS, Pecchioni N. Two loci on chromosome 5H determine low-temperature tolerance in a 'Nure' (winter) x 'Tremois' (spring) barley map. Theor Appl Genet, 2004, 108: 670-80.
    Francisco JA, John AK. Modern Genetics. 1984, (2nd Edition). California: The Benjamin/Cumming Publishing Company, Inc.
    Frary A, Nesbitt C, Alpert KB and Tanksley SD. fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science, 2000,289(7): 85-88.
    Fridman E, Liu YS, Carmel-Goren L, Gur A, Shoresh M, Pleban T, Eshed Y, Zamir D. Two tightly linked QTLs modify tomato sugar content via different physiological pathways. Mol Gen Genomics, 2002,266: 821-826.
    Fujino K, Sekiguchi H, Sato T, Kiuchi H, Nonoue Y, Takeuchi Y, Ando T, Lin SY, Yano M. Mapping of quantitative trait loci controlling low-temperature germinability in rice {Oryza sativa L.). Theoretical and Applied Genetics, 2004, 108: 794-799.
    Galiba G, Quarrie SA, Sutka J, Morgounov A, Snape JW. RFLP mapping of the vernalization (Vrn) and frost tolerance genes on chromosome 5A of wheat. Theor Appl Genet, 1995, 90: 1174-1179.
    Gill KS, Gill BS, Endo TR, Boyko E. Identification and high-density mapping of gene- rich regions in chromosome group 5 in wheat. Genetics, 1996, 143: 1001-1012.
    Goff SA, Ricke D, Lan TH, Presting G, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong JP, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs T. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science, 2002,296: 92-100.
    Gowdal M, Venu RC, Roopalakshmi K, Sreerekha MV, Kulkarni RS. Advances in rice breeding, genetics and genomics. Molecular Breeding, 2003,11: 337-352.
    Grandillo S, Ku HM, Tanksley SD. Identifying the loci responsible for natural variation in fruit size and shape in tomato. Theor Appl Genet, 1999, 99: 978-987.
    Guo SW, Lange K. Genetic mapping of complex traits: promises, problems and prospects. Theoretical Population Biology, 2000, 57: 1-11.
    Haldane JBS. The interaction of nature and nurture. Ann Eugen, 1946, 13: 197-205.
    Haley CS, Knott SA. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity, 1992, 69: 315-324.
    Harushima Y, Yano M, Shomura A, Sato M, Shimano T, Kuboki Y, Yamamoto T, Lin SY, Antonio BA, Parco A, Kajiya H, Huang N, Yamamoto K, Nagamura Y, Kurata N, Khush GS, Sasaki T. A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics, 1998, 148: 479-494.
    Hoson T, Masuda Y, Pilet PE. Abscisic acid content in air-grown and water-grown rice coleoptiles. J Plant Physiol, 1993, 142: 593-596.
    Hospital F, Charcosset A. Marker-assisted introgression of quantitative trait loci. Genetics, 1997,147: 1469-1485.
    IRRI. Report of a rice cold tolerance workshop. In IRRI ed. Proc Rice Cold Tolerance Workshop. 1979, Suweon, Korea: Office of Rural Development. pp139.
    Isely D. Proc Assoc Off Seed Anal. 1957,47: 176-182.
    Ismail AM, Hall AE, Close TJ. Allelic variation of a dehydrin gene cosegregates withchilling tolerance during seedling emergence. Proc. Natl. Acad. Sci. USA, 1999,96: 13566-13570.
    ISTA. Handbook of vigor test methods, 1987.
    Jansen RC. Interval mapping of multiple quantitative trait loci. Genetics, 1993, 135: 205-211.
    Jiang C, Zeng ZB. Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics. 1995,140: 1111-1127.
    Jones DB, Peteson ML. Rice seedling vigor at sub-optimal temperatures. Crop Sci, 1976, 16:102-105.
    Kao Ch, Zeng ZB, Teasdale RD. Multiple interval mapping for quantitative trait loci. Genetics, 1999, 152: 1203-1216.
    Karrel EE, Chandler JM, Foolad MR, Rodriguez RL. Correlation between a-Amylase gene expression and seedling-vigor in rice. Euphytica, 1993, 66: 163-169.
    Kato K, Miura H, Sawada S. Comparative mapping of the wheat Vrn-A1 region with the rice Hd-6 region. Genome, 1999, 42: 204-209.
    Kaw RN, Khush GS. Combining ability for low temperature tolerance in rice. In: Rice genetics. 1986, Manila, Philippines: International Rice Research Institute, pp593- 612.
    Kearsey MJ. The principles of QTL analysis (a minimal mathematics approach). J Exp Bot, 1998,49: 1619-1623.
    Kearsey MJ. QTL analysis: problems and (possible) solutions. In Kang MS ed. Quantitative genetics, genomics and plant breeding. 2002, Wallingford of UK: CABI Publishing, pp45-58.
    Kilian A, Kudrna DA, Kleinhofs A, Yano M, Kurata N, Steffenson B, Sasaki T. Rice- barley synteny and its application to saturation mapping of the barley Rpgl region. Nucleic Acids Res, 1995, 23: 2729-2733.
    Knaap E, Lippman ZB, Tanksley SD. Extremely elongated tomato fruit controlled by four quantitative trait loci with epistatic interactions. Theor Appl Genet, 2002, 104: 241-247.
    Kolasinska K, Szyrmer J, Dul S. Relationship between Laboratory Seed Quality Tests and Field Emergence of Common Bean Seed. Crop Sci, 2000,40: 470-475.
    Krishnasamy V, Seshu DV. Seed germination rate and associated characters in rice. Crop Science, 1989,29: 904-908.
    Kurata N, Moore G., Nagamura Y, Foote T, Yano M, Minobe Y, Gale MD. Conservation of genome structure between rice and wheat. Bio/Technology, 1994a, 12: 276-278.
    Kurata N, Nagamura Y, Yamamoto K, Harushima Y, Sue N, Wu J, Antonio BA, Shomura A, Shimizu T, Lin SY, Inoue T, Fukuda A, Shimano T, Kuboki Y, Toyama T, Miyamoto Y, Kirihara T, Hayasaka K, Miyao A, Monna L, Zhong HS, Tamura Y, Wang ZX, Momma Y, Umehara Y, Yano M, Sasaki T, Minobe Y. A 300 kilobase interval genetic map of rice including 883 expressed sequences. Nature Genetics, 19946, 8: 365-372.
    Lander ES, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989,121: 185-199.
    Li CC, Rutger JN. Inheritance of cool-temperature seedling vigor in rice and its relationship with other agronomic characters. Crop Science, 1980, 20: 295-298.
    Li ZK, Pinson SRM, Stansel JW, Park WD. Identification of quantitative trait loci (QTLs) for heading date and plant height in cultivated rice (Oryza sativa L.). Theoretical and Applied Genetics, 1995, 91: 374-381.
    Li ZK, Pinson SRM, Paterson AH, Park WD, Stansel JW. Epistasis for three grain yield components in rice {Oryza sativa L.). Genetics, 1997,145: 453-465.
    Li ZK. QTL mapping in rice: a few critical considerration. In Khush GS, Brar DS, Hardy B eds. Rice genetics IV. Proceedings of the Fourth International Rice Genetics Symposium, 22-27 October 2000, Los Banos, Philippines. 2001, New Delhi: Science Publishers, Inc., Los Baos: International Rice Research Institute. ppl54-172.
    Li ZK, Luo LJ, Mei HW, Wang DL, Shu QY, Tabien R, Zhong DB, Ying CS, Stansel JW, Khush GS, Paterson AH. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I . Biomass and grain yield. Genetics, 2001, 158: 1737-1753.
    Li ZK, Yu SB, Lafitte HR, Huang N, Courtois B, Hittalmani S, Vijayakumar CHM, Liu GF, Wang GC, Shashidhar HE, Zhuang JY, Zheng KL, Singh VP, Sidhu JS, Srivantaneeyakul S, Khush GS. QTL x environment interactions in rice. I. Heading date and plant height. Theoretical and Applied Genetics, 2003, 108: 141-153.
    Lilley JM, Ludlow MM, McCouch SR, O'Toole JC. Locating QTL for osmotic adjustment and dehydration tolerance in rice. Journal of Experimental Botany, 1996, 47:1427-1436.
    Lin HX, Yamamoto T, Sasaki T, Yano M. Characterization and detection of epistatic interactions of 3 QTLs, Hd1, Hd2, and Hd3, controlling heading date in rice using nearly isogenic lines. Theor Appl Genet, 2000,101: 1021-1028.
    Lincoln S, Daly M, Lander E. Constructing genetic maps with MAPMAKER/EXP3.0. 1992, Cambridge, Massachusetts: Whitehead Institute Technical Report. Lopez-Castaneda C, Richards RA, Farquhar GD, Williamson RE. Seed and seedling characteristics contributing to variation in early vigor among temperate cereals. Crop Sci, 1996, 36: 1257-1566.
    Luo LJ, Li ZK, Mei HW, Shu QY, Tabienji R, Zhong DB, Ying CS, Stansel JW, Khush GS, Paterson AH. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. II. Grain yield components. Genetics, 2001,158: 1755-1771.
    Mackay TFC. The gnetic architecture of quantitative traits. Annu Rev Genet, 2001, 35: 303-339.
    Mackill DJ, Lei X. Genetic variation for traits related to temperate adaptation of rice cultivars. Crop Sci, 1997, 37: 1340-1346.
    Martinez O, Curnow RN. Estimating the locations and the sizes of the effects of quantitative trait loci using flanking markers. Theor Appl Genet, 1992, 85: 480- 488.
    Mather K. Variation and selection of polygenic characters. J Genet, 1941, 41: 159-193.
    Mayer AM, Poljakoff-Mayer A. The germination of seeds (2nd ed.). 1975, Pergamon Intern Library of Science, Technology Engineering and Social Studies.
    McCouch SR, Kochert G., Yu ZH, Wang ZY, Khush GS, Coffman WR, Tanksley SD. Molecular mapping of rice chromosomes. Theor Appl Genet, 1988,76: 815-829.
    McCouch SR, Chen X, Panaud O, Temnykh S, Xu Y, Cho TG, Huang N, Ishii T, Blair M. Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Mol Biol, 1997a, 35: 89-99.
    McCouch SR, Cho YG, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet. Newsl, 1997b, 14: 11-13.
    McCouch SR, Teytelman L, Xu Y, Lobos KB, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L. Development and Mapping of 2240 New SSR Markers for Rice (Oryza saliva L.). DNA Research, 2002, 9: 199-207.
    McKenzie KS, Rutger JN, Peterson ML. Relation of seedling vigor to semidwarfism, early maturity, and pubescence in closely related rice lines. Crop Sci, 1980, 20: 169-172.
    McKenzie KS, Johnson CW, Tseng ST, Oster JJ, Brandon DM. Breeding improved rice cultivars for temperate regions - a case study. Aust J Exp Agr, 1994, 34: 897-905.
    Moll RH, Cockerham CC, Stuber CW, Williams WP. Selections, responses, genetic- environmental interactions, and heterosis with recurrent parent selection for yield in maize. Crop Science, 1978,18: 641-645.
    Monforte A, Asins MJ, Carbonell EA. Salt tolerance in Lycopersicon species. V. May genetic variability at quantitative trait loci affect their analysis? Theor Appl Genet, 1997a, 95: 284-293.
    Monforte A, Asins MJ, Carbonell EA. Salt tolerance in Lycopersicon species. VI. Genotype by salinity interaction in quantitative trait loci detection. Constitutive and response QTLs. Theor. Appl. Genet. 1997b, 95: 706-713.
    Monforte A, Asins MJ, Carbonell EA. Salt tolerance in Lycopersicon species. VII. Pleiotropic action of genes controlling earliness. Theor Appl Genet, 1999, 98: 593- 601.
    Monforte AJ, Tanksley SD. Fine mapping of a quantitative trait locus (QTL) from Lycopersion hirsutum chromosome 1 affecting fruit characteristics and agronomic traits: breaking linkage among QTLs affecting different traits and dissection of heterosis for yield. Theor Appl Genet, 2000, 100: 471-479.
    Nakagahra M, Okuno K, Vaughan D, Rice genetic resources: history, conservation, investigative characterization and use in Japan. Plant Mol Biol, 1997, 35: 69-77.
    Nilsson-Ehle H. Investigations on crosses of oats and wheat. Lunds Univ. Arsskrift, n.s., ser.2, 1909, 5(2).
    Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD. Resolution of quantitative traits into Mendelian factors by using a complete RFLP linkage map. Nature, 1988,335:721-726.
    Paterson AH, DeVerna JW, Lanini B, and Tanksley SD. Fine papping of Quantitative trait loci using selected overlapping recombinant chromosomes, in a interspecies cross of Tomato. Genetics, 1990, 124: 735-742.
    Paterson AH, Damon S, Hewitt JD, Zamir D, Rabinowitch HD, Lincoln HD, Lander ES, Tanksley SD. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics, 1991, 127: 181-197.
    Paterson AH, Lin YR, Li Z, Schertz KF, Doebley JF. Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science, 1995, 269:1714-1718.
    Perry DA. Proc Int Seed Test Ass. 1967,32: 3-12.
    Perry DA. Seed vigor and field establishment. Hortic Abstr, 1972,42: 334-342.
    Peterson ML, Jones DB, Rutger JN. Cool temperature screening of rice lines for seedling vigor. Riso, 1978,27: 269-274.
    Pollock BM, Roos EE. Seed and seedling vigor. In Kozlowski TT ed. Seed biology. Vol. 1. 1972, New York: Academic Press, pp313-387.
    Prasad SR, Prashanth GB, Hittalmani S, Shashidhar HE. Molecular mapping of quantitative trait loci associated with seedling tolerance to salt stress in rice(Oryza sativa L.). Current Science, 2002, 78: 162-164.
    Rae AM, Howell EC, Kearsey MJ. More QTL for flowering time revealed by substitution lines in Brassica oleracea. Heredity, 1999, 83: 586-596.
    Ramsay LD, Jennings DE, Bohuon EJR, Arthur AE, Lydiate DJ, Keaesey MJ, Marshall DF. The construction of a substitution library of recombinant backcross lines in Brassica oleracea for the precision mapping of quantitative trait loci. Genome, 1996,39:558-567.
    Ranjhan S, Litts JC, Foodlad MR, Rodriguez RL. Chromsomal localization and genomic organization of α-amylase genes in rice (Oryza sativa L.). Theor Appl Genet, 1991, 82: 481-488.
    Redona, ED, Mackill, DJ. Genetic variation for seedling-vigor traits in rice. Crop Science, 1996a, 36: 285-290.
    Redona ED, Mackill DJ. Mapping quantitative trait loci for seedling-vigor in rice using RFLPs. Theoretical and Applied Genetics, 19966, 92: 395-402.
    Redona ED, Mackill DJ. Molecular mapping of quantitative trait loci in japonica rice. Genome, 1996c, 39: 395-403.
    Robertson FW, Reeve ECR. Studies in quantitative inheritance. The effects of selection of wing and thorax length in Drosophila melannogaster. J Genet, 1952, 50: 414- 418.
    Saghai Maroof MA, Yang GP, Biyashev RM, Maughan PJ, Zhang Q. Analysis of the barley and rice genome by comparative RFLP linkage mapping. Theor Appl Genet, 1996,92:541-551.
    Saito K, Miura K, Nagano K, Hayano-Saito Y, Araki H, Kato A. Identification of two closely linked quantitative trait loci for cold tolerance on chromosome 4 of rice and their association with anther length. Theor Appl Genet, 2001, 103: 862-868.
    Saito K, Hayano-Saito Y, Maruyama-Funatsuki W, Sato Y, Kato A. Physical mapping and putative candidate gene identification of a quantitative trait locus Ctbl for cold tolerance at the booting stage of rice. Theor Appl Genet, 2004, 109: 515-522.
    Sarma RN, Gill BS, Sasaki T, Galiba G, Sutka J, Laurie DA, Snape JW. Comparative mapping of the wheat chromosome 5 A Vrn-A1 region with rice and its relationship to QTL for flowering time. Theor Appl Genet, 1998, 97: 103-109.
    SAS institute, Inc.. SAS Users Guide: Statistic. 1996, Cary, NC: SAS Institute. Sasahara T, Ikarashi H, Kambayashi M. Genetic variations in embryo and endosperm weights, seedling growth parameters and a-amylase activity of the germinated grains in rice (Oryza sativa L.). Jpn J Breed, 1986, 36: 248-261.
    Sax K. The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics, 1923, 8: 552-560.
    Sthapit BR, Witsombe JR. Inheritance of tolerance to chilling stress in rice during germination and plumule greening. Crop Sci, 1998, 38: 660-665.
    Stuber CW, Lincoln SE, Wolff DW. Helentjaris T, Lander ES. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics, 1992, 132: 823-839.
    Sutka J. Genetic studies of frost resistance in wheat. Theor Appl Genet, 1981, 59: 145- 152.
    Takahashi N. Adaptive importance of mesocotyl and coleoptile growth in rice under different moisture regimes. Aust J Plant Physiol, 1978, 5: 511-517.
    Takahashi Y, Shomura A, Sasaki T, Yano M. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes a subunit of protein kinase CK2. Proc Natl Acad Sci USA, 2001, 98(14): 7922-7927.
    Tanksley SD. Mapping polygenes. Annu Rev Genet, 1993, 27: 205-233.
    Tan YF, Li JX, Yu SB, Xing YZ, Xu CG, Zhang Q. The three important traits for cooking and eating quality of rice grains are controlled by a single locus in an elite rice hybrid, Shanyou 63. Theor Appl Genet, 1999, 99: 642-648.
    Teng S, Zeng D L, Qian Q, Yasufumi K, Huang D L, Zhu L H. QTL analysis of rice low temperature germinability [J]. Chinese Sci Bull, 2001, 46 (21): 1800 - 1804. (In English)
    Teulat B, Merah O, Souyris I, This D. QTLs for agronomic traits from a Mediterranean barley progeny grown in several environments. Theoretical and Applied Genetics, 2001,103: 774-787.
    Thoday JM. Location of polygenes. Nature, 1961, 191: 368-370.
    Thomas BR, Rodriguez RL. Metabolite signals regulate gene expression and source/sink relation in cereal seedlings. Plant Physiol, 1994,106: 1235-1239.
    Vagujfalvi A, Crosatti C, Galiba G, Dubcovsky J, Cattivelli L. Two loci on wheat chromosome 5A regulate the differential cold-dependent expression of the cor 14b gene in frost-tolerant and frost-sensitive genotypes. Mol Gen Genet, 2000, 263: 194-200.
    Wang DL, Zhu J, Li ZK, Paterson AH. Mapping QTLs with epistatic effects and QTL × environment interations by mixed linear model approaches. Theoretical and Applied Genetics, 1999,99: 1255-1264.
    William C, Johnsonl, Paul G. The Role of epistasis in controlling seed yield and other agronomic traits in an Andean × Mesoamerican cross of common bean (Phaseolus vulgaris L.). Euphytica, 2002, 125: 69-79.
    Williams JF, Peterson ML. Relation between alpha-amylase activity and growth of rice seedlings. Crop Sci, 1973,13: 612-614.
    Winzeler EA, Shoemarker DD, Astromoff A, Liang H, Anderson K. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science, 1999,285:901-906.
    Woodstock LW. 1969. Proc Int Seed Test Ass, 34(2): 273-280.
    Wright S. The genetic structure of populations. Ann Eugen, 1951, 15: 323-354.
    Wu KS, Tanksley SD. Abundance, polymorphism and genetic mapping of microsatellites in rice. Molecular and General Genetics, 1993, 241: 225-235.
    Wu WR, Li WM, Tang DZ, Lu HR, Worland AJ. Time-related mapping of QTLs underlying tiller number in rice. Genetics, 1999, 151: 297-303.
    Wu W, Zhou Y, Li W, Mao D, Chen Q. Mapping of quantitative trait loci based on growth models. Theor Appl Genet, 2002,105: 1043-1049.
    Xiao J, Li J, Yuan L, Tanksley SD. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics, 1995, 140:745-754.
    Xu Y, Chen Z, Xu J, Chen Y, Zhu L. Mapping quantitative trait loci via restriction fragment length polymorphism markers in rice. Rice Genetics Newsletter, 1993, 10: 135-138.
    Xu Y. Quantitative trait loci: seperating, pyramiding, and cloing. Plant Breeding Reviews, 1997,15:85-139.
    Xu Y. Global view of QTL: rice as a model. In Kang MS ed. Quantitative genetics, genomics and plant breeding. 2002, Wallingford of UK: CABI Publishing. pp109-134.
    Yamamoto T, Kuboki Y, Lin SY, Sasaki T, Yano M. Fine mapping of quantitative trait loci Hd-1 Hd-2 and Hd-3, controlling heading date of rice, as single Mendelian factors. Theor Appl Genet, 1998, 97: 37-44.
    Yamamoto T, Lin H, Sasaki T, Yano M. Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice using advanced backcross progeny. Genetics, 2000, 154: 885-891.
    Yamauchi M, Aguilar AM, Vaughan DA, Seshu DV. Rice germplasm suitable for direct sowing under flooded soil surface. Euphytica, 1993, 67: 177-184.
    Yamauchi M, Winn T. Rice seed vigor and seedling establishment in anaerobic soil. Crop Sci, 1996,36:680-686.
    Yamauchi M, Biswas JK. Rice cultivar difference in seedling establishment in flooded soil. Plant and Soil, 1997, 189: 145-153.
    Yan JQ, Zhu J, He CX, Benmoussa M, Wu P. Molecular dissection of developmental behavior of plant height in rice (Oryza sativa L.). Genetics, 1998a, 150: 1257- 1265.
    Yan JQ, Zhu J, He CX, Benmoussa M, Wu P. Quantitative trait loci analysis for the developmental behavior of tiller number in rice {Oryza sativa L.). Theor Appl Genet, 1998b, 97: 267-274.
    Yano M, Harushima Y, Nagamura Y, Kurata N, Minobe Y, Sasaki T. Identification of quantitative trait loci controlling heading date in rice using a high-density linkage map. Theor Appl Genet, 1997, 95: 1025-1032.
    Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANCE. Plant Cell, 2000,12: 2473-2484.
    Yoshida S. Fundamentals of rice crop science. 1981 IRRI, Los Banos, The Philippines.
    Yousef GG, Juvik JA. Enhancement of seedling emergence in sweet corn by marker- assisted backcrossing of beneficial QTL. Crop Sci., 2002,42: 96-104.
    Yu J, Hu S, Wang J, Wong G.-K, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Huang X, Li W, Li J, Liu Z, Li L, Liu J, Qi Q, Liu J, Li L, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, LiX, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Zhang J, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Ren X, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Wang J, Zhao W, Li P, Chen W, Wang X, Zhang Y, Hu J, Wang J, Liu S, Yang J, Zhang J, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Li G, Liu S, Tao M, Wang J, Zhu L, Yuan L, Yang H. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science, 2002, 296: 79-92.
    Yu SB, Li JX, Xu CG, Tan YF, Gao YJ, Li XH, Zhang QF, Saghai Maroof MA. Importance of epistasis as the genetic ba-sis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA, 1997,94: 9226-9231.
    Yule GU. On the theory of inheritance of quantitative compound characters on the basis of Mendel's laws - A preliminary note. Int. Conf. Genet. 1906, 3rd. Wilks W ed., Royal Horticultural Society, London. ppl40-142.
    Zeng ZB. Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci. Proc Natl Acad Sci USA, 1993,90: 10972-10976.
    Zeng ZB. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457-1468.
    Zhang ZH, Yu SB, Yu T, Huang Z, Zhu YG. Mapping quantitative trait loci (QTLs) for seedling-vigor using recombinant inbred lines of rice {Oryza sativa L.). Field Crops Research, 2004a. (In press and available online).
    Zhang ZH, Qu XS, Wan S, Chen LH, Zhu YG. Comparison of QTL controlling seedling vigor under different temperature conditions using recombinant inbred lines in rice {Oryza sativa L.). Annals of Botany, 2004b.(In press).
    Zhang ZH, Li S, Li W, Chen W, Zhu YG. A major QTL conferring cold tolerance at the early seedling stage using recombinant inbred lines of rice {Oryza sativa L.). Plant Science, 2005, 168:527-534.
    Zhu J, Weir BS. Mixed model approaches for genetic analysis of quantitative traits. In Chen LS, Ruan SG, Zhu J, eds. Advanced topics in biomathematics. Proceedings of international conference on mathematical biology. 1998, Singapore: World Scientific Publishing Co., 321-330.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700