用户名: 密码: 验证码:
褶纹冠蚌热休克蛋白基因克隆与表达及2种淡水蚌的血细胞分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用RACE技术从褶纹冠蚌中克隆到HSP70和HSP90基因的cDAN序列,以及从褶纹冠蚌基因组中克隆出HSP70和HSP90基因组序列。
     HSP70基因cDNA序列全长为2664bp(基因登录号:ADM64336),其中5’UTR有364 bp;3’UTR有383 bp,在N末端存在4个RNA不稳定模体ATTTA和26bp的poly (A); HSP70基因的开放阅读框为1917bp,编码638个氨基酸组成的蛋白质,该蛋白理论等电点为5.61,分子量为70.3kD。根据HSP70基因cDNA序列推导氨基酸序列发现,氨基酸序列含有HSP70家族的三个标签序列,含有4个糖基化位点,以及保守的EE (V/M) D多肽结构。HSP70氨基酸包括一个由380个氨基酸组成ATP酶结构域,一个由159个氨基酸组成的底物肽结合结构域,以及一个由82个氨基酸组成的C端结构域。HSP70基因组全长发现,HSP70基因的ORF内不存在内含子。
     HSP90基因cDNA序列全长为2674bp(基因登录号:ADN87332),其中5’UTR有83 bp;3'UTR有410 bp。该序列包括1个28bp的poly (A),1个AATAAA加尾信号以及1个RNA不稳定模体ATTTA; HSP90基因的ORF为2181bp,编码726个氨基酸组成的蛋白质,该蛋白理论等电点为5.05,分子量为83.47kD。根据HSP90基因cDNA序列推导氨基酸序列发现,氨基酸序列含有HSP90家族的5个标签序列,3个糖基化位点,以及C末端存在保守的MEEVD多肽结构。同时,推测该序列含有由155个氨基酸组成ATP酶结构域。HSP90基因组序列全长9739bp;其中在ORF中有8个外显子,7个内含子。
     利用半定量PCR和荧光定量PCR研究了热处理、嗜水气单胞菌、重金属刺激下,HSP70 mRNA和HSP90 mRAN的表达量。
     热休克刺激后,蚌5种组织的HSP70 mRNA表达量均显著高于对照组,其中血液和鳃内的表达量变化最显著,其次是外套膜和肝胰腺,而肌肉内的表达量变化不明显。嗜水气单胞菌刺激6h后,仅血液和外套膜组织中HSP70 mRAN的表达量显著增加,而其它组织增加不明显,12h后各组织的表达都达到峰值,其中血液、鳃和肌肉内的表达量增加最为显著,随后逐渐下降,48h表达水平恢复到正常状态。
     不同温度刺激下,蚌血细胞中HSP70 mRNA的表达变化显著,其中35℃时表达量是5℃时表达量的99042倍,而15℃,25℃时HSP70 mRNA的表达量仅为5℃时的16.1倍和13.4倍。在重金属(Cd2+)刺激下,HSP70 mRNA的表达量都随时间的增加而升高,表达峰值出现在15d,而20d时表达量急剧下降,接近正常表达水平。在重金属(Cr6+)刺激下,5d时,HSP70 mRNA的表达量增加不显著,随刺激时间的增加,表达量逐渐的升高,15d时表达量都达到最大值,随后表达量开始逐渐下降,20d时表达量下降到正常状态水平。
     热休克刺激后,蚌5种组织HSP90 mRNA表达量明显的增加,其中在血液、肌肉和肝胰腺内的表达量增加最大,而鳃和外套膜的表达量相对小。嗜水气单胞菌刺激后,HSP90mRNA的表达量明显地增加,但5种组织间的相对表达量没有明显的差异。不同时间段的刺激中,发现随刺激时间的增加,HSP90 mRNA的表达量也增加,到12h时表达量达到最大值,之后表达量趋于稳定,随后表达量开始下降,48h后表达量恢复到刺激前的水平.
     不同温度刺激下,HSP90 mRNA的表达量随温度的升高而增加,35℃时,蚌处于热休克状态,此时HSP90 mRNA的表达量是5℃时表达量的130倍。不同浓度Cd2+刺激蚌后,蚌内HSP90 mRNA的表达具有不同的变化趋势,但都表现为正调节作用。当Cd2+的浓度为50μg/L和100μg/L时,表达峰值分别出现在15d和20d,随后表达量开始下降,而Cd2+浓度为200μg/L时,峰值出现在5d,随后表达量趋于高位稳定。重金属Cr6+刺激后,随着刺激时间的增加,HSP90mRNA的表达量随之增加。浓度1μg/L和10μg/L时,表达峰值出现在15d,而Cr6+浓度为100μg/L时,HSP90表达峰值均出现在10d,随后表达量逐渐下降,20d时恢复正常水平。
     为了进一步探讨HSP70和HSP90的功能,通过双酶切连接,构建了pET30-HSP70和pET30-HSP90原核表达系统,成功表达了两种蛋白。SDS-PAGE分析发现HSP70和HSP90在IPTG的诱导下,随诱导时间的增加,蛋白表达量逐渐增加,8h时表达量最大。
     利用纯化的重组蛋白制备多克隆抗体。用Western-blotting分别检测褶纹冠蚌血、鳃、肌肉、肝胰腺和外套膜五种组织中HSP70和HSP90的蛋白表达量。结果显示,热休克(35℃)后,五个组织中HSP70的表达量相对于室温(20℃)时的表达量显著增加,其中血、鳃、外套膜和肝胰腺组织的表达量高,而肌肉的表达量相对较少。热休克(35℃)后,五个组织中HSP90的表达相对于室温(20℃)时的表达量增加明显,其中血液的表达量最大,其次是肝胰腺和肌肉,而鳃和外套膜的表达量增加相对较少。
     褶纹冠蚌和背角无齿蚌血细胞形态极其相似,都可分为大颗粒细胞、小颗粒细胞、透明细胞和淋巴样细胞四种。两种蚌不同亚型之间所占的比例有所差别,其中小颗粒细胞为数量最多的细胞类型,分别占血细胞总数比例分别为(56.6±1.41)%和(59.28±0.89)%;透明细胞也是数量较多的细胞类型之一,占血细胞总数比例分别为(37.8±2.11)%和(27.74±0.56)%;大颗粒细胞数量较少,所占比例分别为(4.2±0.23)%和(4.28±0.35)%。淋巴样细胞比例分别为(2.4±0.12)%和(8.70±0.23)%。
The HSP70 and HSP90 cDNA cloned from fresh water mussle, Cristaria plicata, using rapid amplification of cDNA ends, and the sequences of HSP70 and HSP90 genome were cloned from genomic DNA of C. plicata.
     The full-length cDNA sequence of HSP70 was 2664bp (GenBank accession number:ADM64336), consisting of a 5'-terminal untranslated region (UTR) of 364 bp, a 3'-terminal UTR of 383 bp with a 26bp poly (A) tail and four ATTTA (RNA instability motifs), and the open reading frame of 1917bp. The HSP70 cDNA encoded a polypeptide of 638 amino acids with a predicted molecular mass of 70.3 kDa, and a theoretical isoelectric point of 5.61. The deduced amino acid sequence of HSP70 cDNA includes three HSP70 family signatures. There were 4 glycosylation sites and a highly conserved, the cytoplasmic HSP70 carboxyl terminal region of EE (V/M) D (residues 635-638). The amino acid sequence of HSP70 was included of an ATPase composed of 382 amino acids, the substrate peptide binding domain composed of 159 amino acids, and the C-terminus domain composed of 82 amino acids. There was no intron in ORF of HSP70 cDNA.
     The full-length cDNA sequence of HSP90 was 2674bp (GenBank accession number:ADN87332), consisting of a 5'-UTR of 83 bp, a 3'-terminal UTR of 410 bp with a canonical polyadenylation signal sequence AATAAA, a 28bp poly (A) tail and a ATTTA. The open reading frame of HSP90 was 2181 bp, which encoded a polypeptide of 726 amino acids with a predicted molecular mass of 83.47 kDa and a theoretical isoelectric point of 5.05. The deduced amino acid sequence of HSP90 cDNA includes five HSP70 family signatures. There were 3 glycosylation sites and a highly conserved, the cytoplasmic HSP90 carboxyl terminal region of MEEVD. The HSP90 cDNA was deduced that an ATPase domain was composed of 155 amino acids. The full length sequence of HSP90 genome was 9739 bp, with 7 introns and 8 extrons in ORF of HSP90.
     The temporal expression of HSP70 mRNA and HSP90 mRAN were measured by semi-quantiative RT-PCR and fluorescent real-time quantitative RT-PCR after thermal treatment, bacterial challenge and heavy metal stress.
     After thermal treatment, the HSP70 mRNA relative express value in five tissues from C. plicata were significantly increased compared with the control group, and the HSP70 levels of blood and gills were the most significant, then were the mantle and hepatopancreas, the least were muscles. The pathogenic bacteria Aeromonas hydrophila challenged, the relative express value were increased obviously in only blood and mantles at 6h, but were not obvious in other tissues. The HSP70 levels reached the peak at 12h, then decreased gradually, and recovered the normal level after 48h.
     Fluorescent real-time quantitative RT-PCR showed the HSP70 levels in blood were increased significantly at different temperature, the maximum levels at 35℃were the 99042-fold higher than that at 5℃, however, the levels at 15℃and 25℃were 16.1- and 13.4-fold respectively higher than that at 5℃. At heavy metal (Cd2+) stressed, levels of HSP70 mRNA were increased with temperature ascended compared with control group, the expression peak was at 15d, however, the levels were rapidly dropped, were got close to the normal level at 20d. At heavy metal (Cr6+) stressed, HSP70 mRNA levels were not obviously increased at 5d, however, with the stressed time lengthened, the express value rose rapidly. The maximum levels were at 15d, followed the level was descended gradually, the expression of HSP70 recover the control level at 20d.
     The HSP90 levels in five tissues from C. plicata were significantly increased compared with the control group after thermal treatment. The relatively higher expression was in blood, muscles and hepatopancreas, while mantles and gills were lower level. At A. hydrophila challenged, the relative express value was not significant difference among five tissues. At different time points, the HSP90 level reached the peak at 12 h, followed maintained a relatively high level, then decreased gradually, and recovered the normal level after 48h.
     HSP90 expression level increased with the temperature lengthened at different temperature treatment, the maximum level were at 35℃,130-fold higher than that at 5℃. HSP90 levels showed different change tendency at different heavy metal Cd2+ concentration stressed, but all showed up-regulated. When the Cd2+ concentrations were 50μg/L and 100μg/L, the peak of HSP90 mRNA expression appeared at 15d and 20d, respectively, followed the level were descended gradually, however, when the Cd2+ concentrations were 200μg/L, the peak appeared at 5d, followed maintained a relatively high level compared with the control group. At heavy metal (Cr6+) stressed, levels of HSP90 mRNA were increased with stress temperature lengthened. When the Cr6+ concentrations were 1μg/L and 50μg/L, the peak of HSP90 mRNA expression appeared at 15d, while the Cr6+ concentration was 100μg/L, the peak appeared at 10d, followed the level were descended gradually, then recovered the normal level at 20d.
     In order to further inquire into the functions of HSP70 and HSP90, pET30-HSP70 and pET30-HSP90 prokaryotic expression system were constructed, and successfully expressed these proteins. SDS-PAGE analysis showed HSP70 and HSP90 expression levels were increased with induced time to add, by IPTG induction, the maximum level was at 8h.
     Polyclonal antibodies were prepared with rabbit and mouses using purified recombination proteins. Western-blotting was used to detect the expression level of HSP70 and HSP90 in bloods, gills, muscles, hepatopancreas and mantles from C. plicata. The results showed that expression levels of HSP70 were increased rapidly in five tissues at heat shock temperature (35℃) compared with at room temperature (20℃), relatively higher expression was detected in blood, gills, hepatopancreas and mantles were high, while muscles were relatively low. The expression level of HSP90 were also increased obviously in these tissues at heat shock temperature (35℃) compared with 20℃group, and the maximum was in bloods, then were muscles and hepatopancreas, the least were the mantle andgills.
     The morphology of C. plicata and Anodonta woodiana was exceedingly similar, which could be divided into four subpopulation, large granulocytes, small granulocytes, hyalinocytes and lymphoid hemocytes. The ratio of different subpopulations in two mussles was obviously difference, small granulocytes were the most subpopulation in two mussles, (56.6±1.41)% and (59.28±0.89)% in the hemocyte population, respectively. Hyalinocytes were also the main types, (37.8±2.11)% and (27.74±0.56)%, respectively. Large granulocytes were the little percentage in hemocyte population, (4.2±0.23)% and (4.28±0.35)%. The ratio of lymphoid hemocytes was(2.4±0.12)% and(8.70±0.23)%,respectively.
引文
[1]Craig E A. The heat shock response CRC CRIT [J]. Rev Biochem,1985,18:239-280.
    [2]Georgopoulos C, Welch W J.Role of the major heat shock protein [J]. Annu Rev Cell Biol,1993,601-634.
    [3]Yang X D, Feige U. Heat shock proteins in autoimmune disease from causative antigen to specific therapy?[J]. Experientia,1992,48:650-656.
    [4]Robert J. Evolution of heat shock protein and immunity[J]. Dev Comp Immunol,2003, 27(6-7):449-464.
    [5]Ritossa F. A new puffing pattern induced by temperature shock and DNP in Drosophila [J]. Expreientia,1962,18:571-573.
    [6]Tissieres A, Mitchell H K, Tracy U M. Synthesis in sailvary glands of Drosophila melanogaster [J]. Journal of Molecular Biology,1974,84:389-398.
    [7]Bond U, Schlesinger M J. Heat shock proteins and development [J]. Advance in Genetics,1987, 24:1-29.
    [8]Sorger P K, Lewis M J, Pelham H R. Heat shock factor is regulated differently in yeast and HeLa cells[J]. Nature.1987,329(6134):81-84.
    [9]Pelham H R B. A regulatory upstream promoter element in the Drosophila hsp 70 heat shock gene [J]. Cell,1986,46(5):959-961.
    [10]Carper S W,Duffy J J, Gerner E W. Heat shock proteins in thermotolerance and other cellular physiological processes [J]. Cancer Research,1987,47:5249-5255.
    [11]Lindquist S, Craig E A. The heat-shock proteins. Annu Rev Genet,1988.22:631-677.
    [12]Morimoto R I. Cell in stress:transcriptional activation of heat shock genes [J]. Science,1993, 259:1409-1410.
    [13]Kiang J G and Tsokos G C. Heat Shock Protein 70 kDa:Molecular Biology, Biochemistry, and Physiology[J]. Pharmacol. Ther,1998,80(2):183-201.
    [14]Peter F, Van P N, Soling H D. Different sorting of Lys-Asp-Glu-Leu proteins in rat liver[J]. J Biol Chem,1992,267:10631-10637.
    [15]Koch G, Smith M, Macer D, Webster P, Mortara R. Endoplasmic reticulum contains a common, abundant calcium-binding glycoprotein, endoplasmin[J]. J Cell Sci,1986,86: 217-232.
    [16]Gupta R S. Phylogenetic analysis of the 90 kD heat shock family of protein sequences and an examination of the relationship among animals, plants, and fungi species[J]. Mol Biol Evol,1995,12:1063-1073.
    [17]Boston R S, Viitanen P V, Vierbling E. Molecular chaperones and protein folding in plant[J]. Plant Mol Biol,1996,32(1-2):191-222.
    [18]Welch W J. Mammalian stress response:cell physiology, structure/function of stress proteins, and implications for medicine and disease[J]. Physiol Rev,1992,72(4):1063-1081.
    [19]Segal R, Ron E Z. Regulation and organization of the groE and dnaK operons in Eubacteria[J]. FEMS Microbiol Lett,1996,138(1):1-10.
    [20]Rose M D, Misra L M, Vogel J P. KAP2, a karyogamy gene, is the yeast homolog of the mammalian BiP/GRP78 gene[J]. Cell,1989,57(7):1211-1221.
    [21]Soltys B J, Gupta R S. Immunoelectron microscopic localization of the 60-kDa heat shock chaperonin protein (Hsp60) in mammalian cells[J]. Exp Cell Res,1996,222(1):16-27.
    [22]Waters E R, Lee G J, Vierling E. Evolution, structure and function of the small heat shock proteins in plants[J]. J Exp Bot,1996,47(3):325-338.
    [23]Hightower L E. Heat shock, stress proteins, chaperones, and proteotoxicity[J]. Cell,1991, 66(2):1991-1997.
    [24]Thompson E M, Legouy E L, Christians E, Renard J P. Expression of the HSP70.1 gene, a landmark of early zygotic activity in the mouse embryo, is restricted to the first burst of transcription[J]. Development,1995,121:113-122.
    [25]Morange M, Diu A, Bensaude O, Babinet C. Altered expression of heat shock proteins in embryonal carcinoma and mouse early embryonic cells[J]. Mol Cell Biol,1984,4:730-735.
    [26]Leung T K C, Rajendran M Y, Monfries C. The human heat shock protein family[J]. Biochem J,1990,267:125-131.
    [27]Mayer M P, Bukau B. Hsp70 chaperones:cellular functions and molecular mechanism[J]. Cell Mol Life Sci,2005,62:670-684.
    [28]Gupta R S, Singh B. Bacterrology, cloning of the HSP70 gene from Haloba cteriummarismortui:relatedness of archaebacterial HSP70 to its eubacterial homologs and a model for the evolution of the HSP70 gene[J]. J Bacteriol,1992,174:4594-4605.
    [29]Flaherty K M, Deluca-Flaherty C, Mckay D B. Three dimensional structure of the ATPase fragment of a 70K heat shock cognate protein[J]. Nature,1990,34(6285):623-628.
    [30]Flaherty K M, Wilbanks S M, Deluca-Flaherty C, et al. Structural basis of the 70-kilodalton heat shock cognate protein ATP hydrolytic activity Ⅱ Structure of the active site with ADP or ATP bound to wild type or mutant ATPase fragment[J]. J Biol Chem,1994,269(17): 12899-12907.
    [31]Morshauser R C, Wang H, Flynn G C and Zuiderweg E R P. The peptide-binding domain of the chaperone protein hsc70 has an unusual secondary structure topology [J]. Biochemistry, 1995,34:6261-6266.
    [32]Zhu X, Zhao X, Burkard GW F. Structure analysis of substrate bind by the molecule chaperone DanK[J]. Science,1996,272 (5286):15874-15878.
    [33]Hightower L E., Sadis S. E. and Takenaka I M.. Interactions of vertebrate hsc70 and hsp70 with unfolded proteins and peptides. The Biology of Heat Shock Proteins and Molecular Chaperones,1994,179-207.
    [34]Guy C L, Li Q B. The organization and evolution of the spinach stress 70 molecular chaperone gene family[J]. The Plant Cell 1998,10(6):539-555.
    [35]Zhang G F, Wang Z C, Chang Y Q, Song J, et al. Triploid induction in Pacific abalone Haliotis discus hannai Ino by 6-dimethylaminopurine and the performance of triploid juveniles[J]. J Shellfish Res,1998,17:783-788.
    [36]Krone P, Sass J B. hsp90-α and hsp90-β genes are present in the zebrafish and are differentially regulated in developing embryos[J]. Biochem Biophys Res Commun,1994,204: 746-752.
    [37]Gao Q, Song L, Ni D, Wu L, Zhang H, Chang Y. cDNA cloning and mRNA expression of heat shock protein 90 gene in the haemocytes of Zhikong scallop Chlamys farreri[J].Comp Biochem Physiol B,2007,147:704-715.
    [38]Song H Y, Dunbar J D, Zhang Y X, Guo D and Donner D B. Identification of a protein with homology to hsp90 that binds the type 1 tumor necrosis factor receptor[J]. J Biol Chem,1995, 270:3574-3581.
    [39]Pandey P, Saleh A, Nakazawa A.. Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90[J]. EMBO J,2000,19:4310-4322.
    [40]Prodromou C, Roe S M, O'Brien R, Ladbury J E, Piper P W and Pearl L H. Identification and structural characterization of the ATP/ADP-binding site in the hsp90 molecular chaperone[J]. Cell,1997a,90:65-75.
    [41]Prodromou C, Roe S M, Piper P W and Pearl L H. A molecular clamp in the crystal structure of the N-terminal domain of the yeast hsp90 chaperone[J]. Nature Struct Biol,1997b, 4:477-482.
    [42]Panaretou B, Siligardi G, Meyer P. Activation of the ATPase activity of HSP90 by the stress-regualted cochaperone ahal[J]. Mol Cell,2002,10:1307-1318.
    [43]欧阳涓.热休克蛋白90与类固醇激素受体功能的研究进展[J].国外医学临床生物化学与检验学分册,2005,26(4):217-219.
    [44]Polier S. Structural basis for the cooperation of Hsp70 and HSP110 the chaperones in protein folding [J]. Cell,2008,133 (6):1068-1079.
    [45]Langer T, Neupert W. Morimoto R I, Tissieres A, Georgopoulous C.The Biology of Heat Shock Proteins and Molecular Chaperones[C]. New York:Cold Spring Harbor Laboratory Press,1994:53-83.
    [46]Hutchison E G, Tichelaar W, Hofhaus G, Weiss H, Leonard K R. Identification and electron microscopic analysis of a chaperonin oligomer from Neurospora crassa mitochondria[J].The EMBO Journal,1989,8(5):1485-1490.
    [47]Deocaris C C, Kaul S C, Wadhwa R. On the brotherhood of the mitochondrial chaperonesmortalin and heat shock protein 60[J]. Cell Stress Chaperones,2006,11.
    [48]Gupta S, Knowlton A A. HSP60, Bax, apop tosis and the heart[J]. J Cell MolMed,2005,9: 51-58.
    [49]Haslbeck S W M, Stromer T, Ehrnsperger M, et al. Buchner sHsps and their roles in the chaperone net work [J]. Cellular and Molecular Life Sciences,2002,59,1649-1657.
    [50]Newton E M,Knauf U,Green M, et al. The regulatory domain of human heat shock factor 1 is sufficient to sense heat stress[J]. Mol Cell Biol,1996,16(3):839-846.
    [51]Harrison C J,Bohm A A,Nelson H C. Crystal structure of the DNA binding domain of the heat shock transcription factor[J]. Science,1994,263:224-227.
    [52]曲凌云.三种养殖扇贝热休克蛋白HSP70在逆境因子下的表达和相关基因的克隆[J].中国科学院海洋研究所,2004.
    [53]Pelham H R.A regulatory upstream promoter element in the Drosophila hsp70 heat-shock gene[J]. Cell,1982,30:517-528.
    [54]Amin J,Fernandez M.Ananthan J.Cooperative binding of heat shock transcription factor to the Hsp70 promoter in vivo and in vitro[J].J.Biol.Chem.,1994,269:4804-4811.
    [55]Schlesinger, M J. Heat shock proteins[J]. J Biol Chem,1990,265:12111-12114.
    [56]Kroeger P E,Sarge K D,Morimoto R I. Mouse heat shock transcription factors 1 and 2 prefer a trimeric binding site but interact differently with the HSP70 heat shock element[J]. Molecular and Cellular Biology,1993,13(6):3370-3383.
    [57]Price B D,Calderwood S K.Ca2+is essential for multistep activation of the heat shock factor in permeabilized cells[J].Molecular and Cellular Biology,1991,11(6):3365-3368.
    [58]Morimoto R I. Regulation of the heat shock transcriptional response:cross talk between a family of heat shock factors, molecular chaperones, and negative regulators[J]. Genes Development,1998,12(24):3788-3796.
    [59]Dietz T J, Somero G. The threshold induction temperature of the 90 kDa heat shock prtotein is subjected to acclimatization ineurythermal gobyfishes (genus Gilichith ysmirabilis) [J]. Proc Nat Acad Sci USA,1992,89:3389-3393
    [60]Csermely P, Schnaider T, Soti C, Prohaszka Z, Nardai G. The 90-kDa molecular chaperone family:structure, function, and clinical applications[J]. Pharmacol Ther 1998.79(2):129-68.
    [61]Multhoff G. Heat shock protein 70 (Hsp70):Membrane location, export and immun-ological relevance[J]. Methods,2007,43:229-237.
    [62]Morganelli C M, Bergert E M, Pelhamt H R B. Transcription of Drosophila small hsp-tkhybrid genes is induced by heat shock and by ecdysterone in transfected Drosophila cells[J].Proceedings of the National Academy of Sciences,1985,82 (17):5865-5869.
    [63]Hartl, F U. Molecular chaperones in cellular protein folding[J]. Nature,1996,381:571-580.
    [64]Beckmann, R P., Mizzen L A. and Welch W J. Interactions of hsp70 with newly synthesized proteins:implications for protein folding and assembly[J]. Science,1990,248:850-854.
    [65]Gething M J, Sambrook J. Protein folding in the cell[J]. Nature,1992,355:33-45.
    [66]Matouschek A.. Recognizing misfolded proteins in the endoplasmic reticulum[J]. Nat Struct Biol,2000,7(4):265-266.
    [67]Bonorino C, Nardi, N B, Zhang X., Wysocki L J. Characteristics of the strong antibody response to mycobacterial Hsp70:a primary, T cell-dependent IgG response with no evidence of natural priming or gamma delta T cell involvement[J]. J Immunol,1998,161(10): 5210-5216.
    [68]Srivastava P K., DeLeo A B. and Old L J.Tumor rejection antigens of chemically induced tumors of inbred mice[J]. Proc Natl Acad Sci USA,1986,83:3407-3411.
    [69]Horrell A, Shuttleworth J, Colman A. Transcript levels and translational control of hsp70 synthesis in Xenopus oocytes[J]. Genes Dev.1987.1,433-444.
    [70]Ali A, Krone PH, Pearson DS, Heikkila JJ. Evaluation of stress-inducible hsp90 gene expression as a potential molecular biomarker in Xenopus laevis[J]. Cell Stress Chaperones. 1996.1,62-69.
    [71]Nikinmaa M, Leveelahti L, Dahl E, Rissanen E, Rytkonen KT, Laurila A. Population origin, development and temperature of development affect the amounts of HSP70, HSP90 and the putative hypoxia-inducible factor in the tadpoles of the common frog Rana temporaria[J].J. Exp. Biol.2008.211,1999-20004.
    [72]Sanatacruz H, Vriz S, Angelier N. Molecular characterization of a heat shock cognate cDNA of zebrafish, hsc70, and developmental expression of the corresponding transcripts[J]. Dev Genetics,1997,21:223-233.
    [73]Michaud S, Marin R, Tanguay R M.. Regulation of heat shock gene induction and expression during Drosophila development[J]. Cell Mol Life Sci,1997,53(1):104-113.
    [74]Niedzwiecki A, Reveillaud I, Fleming J E. Changes in superoxide dismutasc and catalase in aging heat-shocked Drosophila[J]. Free Radic Res Commun,1992,17(6):355-361.
    [75]Das D K, Engelma R M, Kimura Y. Molecular adaptation of cellular defences following preconditioning of the heart by repeated ischaemia[J]. Cardiovasc Res,1993,27(4):578-565.
    [76]Bernelli-Zazzera A, Cairo G, Schiaffonati L, et al. Stress proteins and reperfusion stress in the liver [J]. Ann N Y Acad Sci,1992,663:120-124.
    [77]Peter M E, Heufelder A E, Hengartner M O. Adances in apoptosis research. Proc. Natl[J]. Acad Sci USA.,1997,94:12736-12737.
    [78]Gordon S A., Hoffman R A., Simmons R L., Ford H R. Induction of heat shock protein 70 protects thymocytes against radiation-induced apoptosis[J]. Arch Surg,1997,132(12): 1277-1282.
    [79]Buzzard K A., Giaccia A J, Killender M., Anderson R L. Heat shock protein 72 modulates pathways of stress-induced apoptosis[J]. J Biol Chem,1998,273(27):17147-17153.
    [80]Samali A., Cotter T G. Heat shock proteins increase resistance to apoptosis[J]. Exp Cell Res, 1996,223(1):163-170.
    [81]Cardone M H, Roy N, Stennicks H R. Regualtion of cell death protease caspase by phosphorylation[J]. Science,1998,282:1318-1321.
    [82]Garrido C, Ottavi P, and Fromentin A, et al. HSP27 as a mediator of confluence-dependent resistance to cell death induced by anticancer drugs[J]. Cancer Res,1997,57(13):2661-2667.
    [83]Ishiyama, T, Koike M., Akimoto Y, Fukuchi K., Watanabe K., Yoshida M., Wakabayashi Y, Tsuruoka N. Heat shock-enhanced T cell apoptosis with heat shock protein 70 on T cell surface in multicentric Castleman's disease[J]. Clin Exp Immunol,1996,106(2):351-356.
    [84]Poccia F, Piselli P, Vendetti S, Bach S, Amendola A, Placido R, Colizzi V. Heat-shock protein expression on the membrane of T cells undergoing apoptosis[J]. Immunology,1996,88(1): 6-12.
    [85]Polla B S., Healy A M., Wojno W C, Krane S M. Hormone 1 alpha,25-dihydroxyvitamin D3 modulates heat shock response in monocytes[J]. Am J Physiol,1987,52(6):640-9.
    [86]Marber M S, Mestril R., Chi S H., Sayen M R., Yellon D M., Dillmann W H. Overexpressionof the rat inducible 70-kD heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury[J]. J Clin Invest,1995,95(4): 1446-1456.
    [87]Lee J E, Kim Y J, Kim J Y, et al. The 70kDa heat shock protein suppresses matrixmetalloproteinases in astrocytes [J]. Neuroreport,2004,15(3):499-502.
    [88]邹伟,史榕荇,于学平.针刺对急性高血压脑出血大鼠HSP70mRNA表达的调整作用[J].中医药学,2003,31(1):46-47.
    [89]刘国文,李永国.微波预处理照射对兔肝HSP70的诱导及对肝缺血再灌注的保护[J].国现代医学杂志,2004,14(8):61-63.
    [90]Burdon R H. Heat shock proteins in relation to medicine[J]. Mol Aspects Med,1993, 14:83-165.
    [91]Sanchez Y, Lindquist S L. HSP104 required for induced thermotolerance[J]. Science,1990, 248:1112-1115.
    [92]Lavoie J N, Gingras-Breton G, Tanguay R M, Landry J. Induction of Chinese hamster HSP27 gene expression in mouse cells confers resistance to heat shock.HSP27 stabilization of the microfilament organization[J]. J Biol Chem,1993,268(5):3420-3429.
    [93]Clegg J S., Uhlinger K R., Jackson S A. Induced thermotolerance and the heat shock protein-70 family in the pacific oyster Crassostrea gigas[J]. Mol Mar Bio Biotechnol,1998, 7(1):21-30.
    [94]王枫,赵法亻及 郭俊生.卫生研究,1998,27(6):394-395.
    [95]Giudice G, Sconzo G and Roccheri M C. Studies on heat shock protein sinseaurchin development [J]. Dev Growth Differ,1999,41(4):375-380.
    [96]Fleming J E, Walton J K, Dubitski R, Bensch K G. Aging results in an unusual expression of Drosophila heat shock proteins[J]. Proceedings of the National Academy Science of United States of America,1988,85 (11):4099-4103.
    [97]Vebeke P, et al. Cheperone activity with a redox switch[J]. Cell,1999,96:341-352.
    [98]Ouellette M M, Mcdaniel L D, Wright W E, et al. The establishment of telomerase immortalized cell lines representing human chromosome instability syndromes[J]. Hum Mol Gene,2000,9:403-411.
    [99]Murphy C T, McCarroll S A, Barmann C I, Fraser A, Kamath R S, Ahringer J. Genes that act downstreasm of DAF-16 to influence the lifespan of Caenorhabiditis elegans[J]. Nature, 2003,424:277-283.
    [100]Tower J. Transgenic methods for increasing Drosophila life span[J]. Mech Ageing Dev, 2000,118:1-14.
    [101]Schroder H C, Batel R, Hassanein H M A and Lauenroth S. Correlation between the level of the potential biomarker, heat-shock protein, and the occurrence of DNA damage in the dab, Limarrda limanda:a field study in the North Sea and the English Channel[J]. Marine Environmental Research,2000,49:201-215.
    [102]Pyza E, Mak P, Kramarz P, et al. Heat-shock proteins (Hsp70) AS Biomarkers in ecotoxicological studies [J]. Ecotoxicol Environ Safety,1997,38:244-251.
    [103]Radlowska M, Pempkowiak J.Stress-70 as indicator of heavy metals accumulation in blue mussel Mytilus edulis[J]. Environ Int,2002,27(8):605-608.
    [104]王树东,郑长青,刘明杰.不同类型热休克蛋白在大肠癌中的表达及其意义探讨[J].中国实用内科杂志,2003,23(7):429-430.
    [105]李传明.寄生虫热休克蛋白及其在血吸虫方面的研究进展[J].国外医学寄生虫病分册,1996,23(5):193-197.
    [106]叶苓,余新炳,徐劲.恶性疟原虫热休克蛋白86(HSP86)基因置换型和插入型打靶载体的构建[J].中国人畜共患病杂志,2000,16(6):21-23.
    [107]黄进.寄生虫应激蛋白的研究进展[J].国际医学寄生虫病杂志,2006,33(6):317-320.
    [108]Iordanskiy S, Zhao Y, Dimarzip P, et al. Heat shock protein 70 exerts opposing effects on Vpr-dependent and Vpr-independent HIV-1 replication in macrophages [J]. Blood, 2004,104 (6):1867-1872.
    [109]Benjamin I J, McMillan D R. Stress (heat shock) proteins:molecular chaperones in cardiovascular biology and disease [J]. Circ Res,1998,83:117-132.
    [110]Kothary R K, Burgess E A, Candido E P M. The heatshock phenomenon in cultured cells of rainbow trout:HSP70 mRNA synthesis and turnover[J]. Biochimica et Biophysica Acta-Gene Structure and Expression,1984,783(2):137-143.
    [111]Arai A, Naruse K, Mitani H, et al. Cloning and characterization of cDNAs for 70-kDa heat-shock proteins (HSP70) from two fish species of the genus Oryzias[J]. Japanese Journal of Genetics,1995,70(3):423-433.
    [112]Lele Z, Engel S, Krone P H. HSP47 and HSP70 gene expression is differentially regulated in a stress and tissue-specific manner in zebrafish embryos[J]. Developmental Genetics, 1997,21(2):123-133.
    [113]Lim E H, Brenner S. Short-range linkage relationships, genomic organization and sequence comparisons of a cluster of five HSP70 genes in Fugu rubripes[J]. Cell and Molecular Life Sciences,1999,55(4):668-678.
    [114]Molina A, Biemar F, Muller F, et al. Cloning and expression analysis of an inducible HSP70 gene from tilapia fish[J]. Federation of European Biochemical Societies Letters,2000, 474(1):5-10.
    [115]Yamashita N, Saito Y, Ishihara K, et al. Enhancement embryonal F9 cells [J], Eur J Biochem, 2002,269:4143-4151.
    [116]Ali K, Dorgai L, Abraham M, et al. Tissue and stressorspecific differ rential expression of two HSC70 genes in carp[J]. Biochmical and Biophysical Research Comunications,2003, 307(3):503-509.
    [117]Deane E E, Woo N Y S. Cloning and characterization of the hsp70 multigene family from silver sea bream:Modulated gene expression between warm and cold temperature acclimation[J]. Biochem Biophys Res Commun,2005,330:776-783.
    [118]焦传珍,王在照,李富花等.编码中国对虾(Fennerope-naeus chinensis)一种组成型热休克蛋白70(HSC70)的cDNA克隆、测序及其表达分析[J].科学通报,2004,49(21):2178-2186.
    [119]吴任,谢数涛,孙勇,完颜小青,张其中.凡纳滨对虾热休克蛋白70的原核高效表达[J].中国水产科学,2006,13(2)305-309.
    [120]孙勇.三种常见虾类热休克蛋白70基因的克隆及组织表达分析[D].置南大学,2006.
    [121]刘牧,张晓燕,杨岭,刘军.三疣梭子蟹热休克蛋白70的基因克隆[J].枣庄学院学报,2009,26(2):76-81.
    [122]袁嘉恩,许忠能,雷腊梅等.克隆与序列分析中华绒螯蟹(Eriocheir sinensis) HSP70基因全长ORF的RACE [J]暨南大学学报(自然科学版),2008,29:516-521.
    [123]Chang, E.S., Chang, S.A., Keller, R., Reddy, P.S., Snyder, M.J., Spees, J.L.,1999. Quantification of stress in lobsters:crustacean hyperglycemic hormone, stress proteins, and gene expression. Am. Zool.39,487-495.
    [124]Chang, E.S.,2005. Stressed-out lobsters:crustacean hyperglycemic hormone and stress proteins. Integr. Comp. Biol.45,43-50.
    [125]Wu, L.T., Chu, K.H.,2008. Characterization of heat shock protein 90 in the shrimp Metapenaeus ensis:evidence for its role in the regulation of vitellogenin synthesis. Mol. Reprod. Dev.75,952-959.
    [126]Li P, Zha J, Zhang ZH, Huang H, Sun HY, Song DX, Zhou KY. Molecular cloning, mRNA expression, and characterization of HSP90 gene from Chinese mitten crab Eriocheir japonica sinensis[J]. Comp Biochem Physio, Part B 2009 (153):229-235.
    [127]Isabelle B, Arnaud T, Sabrina R, Michel A, Dario M. Molecular identification and expression of heat shock cognate 70 (hsc70) and heat shock protein 70 (hsp70) genes in the Pacific oyster Crassostrea gigas[J]. Cell Stress Chaperones,2003,8:76-85.
    [128]Piano A, Valbonesi P, Fabbri E. Expression of cytoprotective proteins, heat shock protein 70 and metallothioneins, in tissues of Ostrea edulis exposed to heat and heavy metals[J]. Cell Stress Chaperones,2004,9:134-142.
    [129]Luedeking A, Koehler A. Regulation of expression of multixenobiotic resistance (MXR) genes by environmental factors in the blue mussel Mytilus edulis[J]. Aquat Toxicol,2004,69:1-10.
    [130]Wu L, Song L, Xu W, Qiu L, Li H, Su J, et al. Identification and cloning of heat shock protein 70 gene from scallop Chlamys farreri[J]. High Technol Lett,2003,13:75-79.
    [131]Song L, Wu L, Ni D, Chang Y, Xu W, Xing K. The cDNA cloning and mRNA expression of heat shock protein 70 gene in the haemocytes of bay scallop (Argopecten irradians, Lamarck 1819) responding to bacterial challenge and naphthalin stress[J]. Fish Shellfish Immunol,2006,21:335-345.
    [132]Pantzartzi C N, Kourtidis A, Drosopoulou E, Yiangou M, Scouras Z G. Isolation and characterization of two cytoplasmic hsp90s from Mytilus galloprovincialis (Mollusca: Bivalvia) that contain a complex promoter with a p53 binding site[J]. Gene,2009,4(31): 47-54.
    [133]Choi Y K, Jo P G, Choi C Y. Cadmium affects the expression of heat shock protein 90 and metallothionein mRNA in the Pacific oyster, Crassostrea gigas[J]. Comp Biochem Physiol Toxicol Pharmacol,2008,147,286-292.
    [134]Gao Q, Zhao J M, Song L S, Qiu L M, Yu Y D, Zhang H, Ni D J. Molecular cloning, characterization and expression of heat shock protein 90 gene in the haemocytes of bay scallop Argopecten irradians[J]. Fish Shellfish Immunol,2008,24,379-385.
    [135]Farcy E, Serpentini A., Fievet B, Lebel J M. Identification of cDNAs encoding HSP70 and HSP90 in the abalone Haliotis tuberculata:transcriptional induction in response to thermal stress in hemocyte primary culture[J]. Comp Biochem Physiol,2007,146,540-550.
    [136]张蕾.栉孔扇贝、海湾扇贝热休克蛋白22基因的克隆和表达及其与栉孔扇贝抗热性状相关SNP位点的筛查[D].中国海洋大学,2009.
    [137]Bierkens J, Van de Perre W and Maes J Effect of different environmental variables on the synthesis of Hsp70 in Raphidocelis subcapitata[J]. Comparative Biochemistry and Phsiology Part A,1998,120:29-34.
    [138]Sanaders B M. Stress proteins in aquatic organisms:and environmental perspective[J]. Crit Rev Toxicol,1993,23(1):49-75.
    [139]Cochrane B J, Irby R B, Snell T W. Effects of copper and tributylin on stress protein abundance in the rotifer rachionus plicatilis [J]. Comp Biochem Physiol,1991,98: 385-390.
    [140]Vijayan M M, Pereira C, Kruzynski G, etal. Sublethal concentration sofcontaminant induce the expression of hepatic heat shock protein 70 in two salmonids [J].A quat Toxicol, 1998,40:101-108.
    [141]Snyder M J,Girvetz E,Mulder E P. Induction of marine mollusc stress proteins by chemical or physical stress[J]. Arch Environ Contam Toxicol,2001,41:22-29.
    [142]Boulo V, Cadoret J P, Le Marrec F, Dorange G, Miahle E. Transient expression of luciferase reporter gene after lipofection in oyster(Crassostrea gigas) primary cell cultures[J]. Mol Mar Biol Biotechnol,1996,5(3):167-174.
    [143]Cadoret J P, Boulo V, Gendreau S, Mialhe E. Promoters from Drosophila heat shock protein and cytomegalovirus drive transient expression of luciferase introduced by particle bombardment into embryos of the oyster Crassostrea gigas[J]. J Biotechnol,1997, 56(3):183-189.
    [144]Gupta R S, Singh B. Phylogenetic analysis of 70 kD heat shock protein sequences suggests a chimeric origin for the eukaryotic cell nucleus[J]. Curr Biol,1994,4:1104-1114.
    [145]Boutet I, Tanguy A, Rousseau S, Auffret M, Moraga D. Molecular identification and expression of heat shock cognate 70 (hsc70) and heat shock protein 70 (hsp70) genes in the Pacific oyster Crassostrea gigas[J]. Cell Stress Chaperones,2003a,8 (1),76-85.
    [146]Scheufler C, Brinker A, Bourenkov G, Pegoraro S, Moroder L, Bartunik H. Structure of TPR domain-peptide complexes:critical elements in the assembly of the SP70-HSP90 multichaperone machine[J]. Cell,2000,101:199-210.
    [147]Mayer M P, Brehmer D, Gassler C S, Bukau B. Hsp70 chaperonee machines[J]. Adv Protein Chem,2001,59:1-44.
    [148]Demand J, Luders J, Hohfeld J. The carboxy-terminal domain of HSC70 provides binding sites for a distinct set of chaperone cofactors[J]. Mol Cell Biol,1998,18,2023-2028.
    [149]Freeman B C, Myers M P, Schumacher R, Morimoto R I. Identification of a regulatory motif in Hsp70 that affects ATPase activity, substrate binding and interaction with HDJ-1[J].EMBO J,1995,14:2281-2292.
    [150]Rathinam A V, Chen T T, Grossfeld R M.Cloning and sequence analysis of a cDNA for an inducible 70 kDa heat shock protein (Hsp70) of the American oyster (Crassostrea virginica)[J]. DNA Seq,2000,11:261-264.
    [151]黄桂菊,曲妮妮,喻达辉等.合浦珠母贝热休克蛋白hsp70基因的克隆与表达分析[J].中国水产科学,2007,14(5):726-732.
    [152]Yost H J, Lindquist S. RNA splicing is interrupted by heat shock and is rescued by heat shock protein synthesis[J]. Cell,1986,45:185-193.
    [153]Liu J, Yang W J, Zhu X J, Karouna-Renier N K, Rao R K. Molecular cloning and expression of two HSP70 genes in the prawn, Macrobrachium rosenbergii[J]. Cell Stress & Chaperones,2004,9(3):313-323.
    [154]Kourtidis A., Scouras Z G. Analysis and characterization of the transcriptional unit of a new Mytilus galloprovincialis (Mollusca:Bivalvia) hsp70 gene[J]. DNA Seq,2005,16 (1), 36-43.
    [155]Boutet I, Tanguy A., Moraga D. Organization and nucleotide sequence of the European flat oyster Ostrea edulis heat shock cognate 70 (hsc70) and heat shock protein 70 (hsp70) genes[J]. Aquat Toxicol,2003b,65,221-225.
    [156]Stephani R M P., Gomes S L. A unique intron-containing hsp70 gene induced by heat shock and during sporulation in the aquatic fungus Blastocladiella emersonii[J]. Genel,995,152: 19-26.
    [157]Snutch T P, Heschl M F, Baillie D L. The Caenorhabditis elegans hsp70 gene family:a molecular geneticx characterization[J]. Gene,1988,64:241-255.
    [158]Qin W, Tyshenko M G, Wu B S, Walker V K, Robertson R M. Cloning and characterization of a member of the hsp70 gene family from Locusta migratoria, a highly thermotolerant insect[J]. Cell Stress Chaperones,2003,2:144-152.
    [159]Kapoor M, Curle C A, Runham C. The hsp70 family of Neurospora crassa:cloning, sequence analysis, expression, and genetic mapping of the major stress-inducible member[J]. J Bacteriol,1995,177 (1):212-221.
    [160]Sconzo G, Scardina G, Ferraro M G. Characterization of a new member of the sea urchin Paracentrotus lividus hsp70 gene family and its expression[J]. Gene,1992,121 (2): 353-358.
    [161]Leignel V, Cibois M, Moreau B, Chenais B. Identification of new subgroup of HSP70 in Bythograeidae (hydrothermal crabs) and Xanthidae[J]. Gene,2007,396:84-92.
    [162]Cheng P, Liu X, Zhang G, He J. Cloning and expression analysis of a HSP70 gene from pacific abalone (Haliotis discus hannai) [J]. Fish Shellfish Immunol,2007,22:77-87.
    [163]Eddie E, Deane, Norman Y S, Woo. Cloning and characterization of the hsp70 multigene family from silver sea bream:Modulated gene expression between warm and cold temperature acclimation[J]. Biochem Bioph Res Co,2005,330:776-783.
    [164]Cellura C, Toubiana M, Parrinello N, Roch P. HSP70 gene expression in Mytilus galloprovincialis hemocytes is triggered by moderate heat shock and Vibrio anguillarum, but not by V. splendidus or Micrococcus lysodeikticus [J]. Dev Comp Immunol,2006,30: 984-997.
    [165]王夔.生命科学中的微量元素.北京:中国计量科学出版社,1996,850-885.
    [166]Volesky B, Holan Z R. Biosorption of heavy metals [J]. Biotechnol Prog,1995,11(2): 235-250.
    [167]朱建华,王莉莉.不同价态铬的毒性及其对人体影响[J].环境与开发,1997,12(3):46-48.
    [168]高强.栉孔扇贝和海湾扇贝免疫学比较[D].中国科学院海洋研究所.2007
    [169]Dang W, Hu Y H, Zhang M, Sun L. Identification and molecular analysis of a stress-inducible Hsp70 from Sciaenops ocellatus[J]. Fish & Shellfish Immunology 2010,29:600-607.
    [170]李薇,张其中,张占会,崔淼,姚占娟,何毛贤.近江牡蛎热休克蛋白70基因的原核表达研究[J].中国水产科学,2010,17(3):424-430.
    [171]Matambo TS, Odunuga OO, Boshoff A, Blatch GL. Over-production, purification and characterization of the Plasmodium falciparum heat shock protein 70 [J]. Protein Expr Purif 2004;33:214-222.
    [172]Wiech H, Buchner J, Zimmermann R and Jakob U. Hsp90 chaperones protein folding in vitro[J]. Nature,1992,358:169-170.
    [173]高雅娟.热休克蛋白与肿瘤免疫[J].国外医学免疫学分册,2000,23(2):294-295.
    [174]Lai B T, Chin N W, Stanek A E, Keh W, Lanks K W. Quantitation and intracellular localization of the 85K heat shock protein by using monoclonal and polyclonal antibodies[J]. Mol Cell Biol,1984,4:2802-2810.
    [175]Lees-Miller S P. Anderson C W. The human double-stranded DNA-activated protein kinase phosphorylates the 90-kDa heat-shock protein, hsp90 alpha at two NH2-terminal threonine residues[J]. J Biol Chem,1989,264(29):17275-18280.
    [176]Theodoraki M A, Mintzas A C. cDNA cloning, heat shock regulation and developmental expression of the hsp83 gene in the Mediterranean fruit fly Ceratitis capitata[J]. Insect Mol Biol,2006,15:839-852.
    [177]Manchado M, Salas-Leiton E, Infante C, Ponce M, Asensio E, Crespo A, Zuasti E, Canavate J P. Molecular characterization, gene expression and transcriptional regulation of cytosolic HSP90 genes in the flatfish Senegalese sole (Solea senegalensis Kaup)[J]. Gene,2008,416: 77-84.
    [178]王婷婷,陈松林,孟亮,刘洋.大菱鲆热休克蛋白90基因cDNA的克隆及其表达特征[J].渔业科学进展,2010,31(2):51-59.
    [179]Hermesz E, Abraham M, Nemcsok J. Identification of two hsp90 genes in carp[J]. Comp Biochem Physiol C,2001,129:397-407.
    [180]Andrew A S, Warren A J, Barchowsky A, Temple K A, Klei L, Soucy N V, O'Hara K A, Hamilton J W. Genomic and proteomic profiling of responses to toxic metals in human lung cells[J]. Environ Health Perspect,2003,111(6):825-835.
    [181]李琳,徐兆师,刘丽,于卓等,小麦热激蛋白WHS P90基因的原核表达及多克隆抗体制备[J].麦类作物学报.2009,29(3):380-384.
    [182]张国华,白色念珠菌热休克蛋白90基因的原核表达及其免疫学活性初探.[D].东北师范大学.2010.
    [183]Cheng T C. Bivalves. In" Invertebrate Blood Cells" (N. A. Ratcliffe and A. F. Rowley, Eds) [M], Academic Press, London,1981,233-300.
    [184]Hine P M. The inter-relationships of bivalve haemocytes[J]. Fish & Shellfish Immunology, 1999,9:367-385
    [185]Lapeyre J F, Chu F L E, Meyers J M. Haemocytic and humoral activities of eastern and Pacific oysters following challenge by the protozoan Perkinsus marinus[J].Fish Shellfish Immunol,1995,5,179-190.
    [186]Allam B, Ashton-Alcox K A, Ford S E. Flow cytometric comparison of haemocytes from three species of bivalve mollusks[J]. Fish Shellfish Immunology,2002,13:141-158.
    [187]邢婧.栉孔扇贝血细胞及其免疫特性的研究[D].中国海洋大学,2003.
    [188]Xue Q G, Renault T, Chilmonczyk S. Flow cytometric assessment of haemocytes sub-populations in the European flat oyster. Ostrea edulis, haemolymph[J]. Fish Shellfish Immunology,2001,11:269-274.
    [189]Wootton E C, Dyrynda E A, Ratcliffe N A. Bivalve immunity:comparisons between the marine mussel(Mytilus edulis), the edible cockle (Cerastoderma edule) and the razor-shell (Ensis siliqua). Fish shellfish Immuunoloy,2003,15:195-210.
    [190]刘东武,王宜艳,孙虎山.菲律宾蛤仔、中国蛤蜊、文蛤和紫石房蛤血细胞的分类研究[J].水产科学,2005,24(10):5-7.
    [191]罗文,朱柳锋,郑大恒.三角帆蚌(Hyriopsis cumingii Lea)血细胞初.步研究[J].绍兴文理学院学报,2005,25(10):35-37.
    [192]孙虎山,李光友.栉孔扇贝血淋巴中超氧化物歧化酶和过氧化氢酶活性及其性质的研究[J].海洋与湖沼,2000,31(3):259-265.
    [193]杨军,石安静.3种淡水育珠蚌血细胞类型的研究[J].四川大学学报(增刊),2002,39:68-72.
    [194]Cima F, Matozzo V, Gabriella M M, Ballari L. Haemocytes of the clam Tapes philippinarum (Adams & Reece,1850):morphofunctional characterization[J]. Fish Shellfish Immunology,2000,10:677-693.
    [195]沈亦平,马丽君.淡水育珠蚌褶纹冠蚌血细胞的初步研究[J].水生生物学报,1993,17(2):190-192.
    [196]Reade P, Reade E. Phagocytosis in invertebrates Ⅱ. The clearance of carbon particles by the clam Tridacna maxima[J]. Journal of the Reticuloendothelial Society,1972,12:349-360.
    [197]Huffman J E,Tripp M R. Cell types and hydrolytic enzymes of soft shell clam (Mya arenaria) hemocytes[J]. J Invertebr Pathol,1993,40:68-74.
    [198]Lopez C, Carballal M J, Azevedo C, Villalba A. Enzyme characterisation of the circulating haemocytes of the carpet shell clam Ruditapes decussatus (Mollusca:Bivalvia)[J]. Fish Shellfish Immunol.,1997,7:595-608.
    [199]Zhang W Z, Wu X Z, Wang M. Morphological, structural, and functional characterization of the haemocytes of the scallop, Argopecten irradians[J]. Aquac,2006,251:19-32.
    [200]Carballal M J, Lopez C, Azevedo C & Villalba A. In vitro study of phagocytic ability of Mytilus galloprovincialis Lmk. haemocytes. Fish & Shellfish Immunology,1997a,7,403-416
    [201]Lars P D, Rasmussen. An electron microscope study of the circulating leucocytesof the marine mussel, Mytilus edulis[J]. J Invertebr Pathol,1985,45:158-167.
    [202]陈全震,杨俊毅,王小谷,高爱根.皱纹盘鲍血细胞的亚显微结构及分类研究[J].水产学报,2001,25(6):492-495.
    [203]Cheng T C, Foley D A. Hemolymph cells of the bivalve mollusc Mercenaria mercenaria: an electron microscopical study[J]. Journal of Invertebrate Pathology,1975,26:341-351.
    [204]Nakayama K, Nomoto A M, Nishijima M, Maruyama T. Morphological and functional characterization of hemocytes in giant clam Tridacna crocea[J]. J Invertebr Pathol,1997, 69:105-111.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700