用户名: 密码: 验证码:
纳米材料的SERS活性及其在光纤光谱传感器中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Studies on SERS-Active Nano Materials and Their Application on the Optical Fiber Sensor
  • 作者:徐蔚青
  • 论文级别:博士
  • 学科专业名称:物理化学
  • 学位年度:2004
  • 导师:樊玉国
  • 学科代码:070304
  • 学位授予单位:吉林大学
  • 论文提交日期:2004-04-01
  • 答辩委员会主席:李伯符
摘要
纳米结构材料的表面增强拉曼散射(SERS)效应具有非常强烈的纳米尺度依赖关系。在特定的条件下,SERS光谱的强度除了与激发光的波长,金属材料的种类,被检测分子的种类等因素有关外,还强烈地依赖于增强基底纳米结构尺度和形态。这种奇特的现象不但吸引着人们对纳米结构特殊性的注意力,而且有着巨大的应用前景。表面增强拉曼光谱和表面增强共振拉曼光谱(SERRS)技术的发展,使拉曼光谱在分析应用方面突飞猛进。利用各种方法制备SERS活性基底,可以使样品(如R6G)的分析浓度达到10~(-7)~10~(-12) mol/L,目前最低的检测下限可达10—100个分子水平。SERRS技术在此基础上更进一步,可以达到在1 nL的样品内检测数十个或几个分子的超高灵敏度。这为拉曼光谱在检测分析方面的应用开拓了全新的局面。
     然而,SERS技术的进步及应用范围的拓宽依赖于新型SERS活性基底的发展。目前人们制备的各式各样的拉曼增强活性基底并不能满足检测样品时对其稳定性、灵敏度、选择性、重复性等多方面的苛刻要求。人们仍需不断探索制备更适合于各种检测要求的SERS活性基底的方法;同时人们试图进一步弄清SERS的机理;这不但对提高SERS检测水平、扩大其应用范围有着指导意义,而且对更深刻地认识纳米结构材料的特殊性有重要意义。本论文用分子自组装与分子光谱结合的方法,对SERS活性纳米材料的结构和性能的关系进行研究,从理论分析和实验验证两个方面来探索SERS效应的机
    
     SERS活性纳米材料及其在光纤传感器中的应用
    理、SERS活性基底的制备和性能表征、SERS活性纳米材料在分析检测方面
    的应用等问题。具体分为以下几个方面:
    纳米材料光谱特性的理论分析
     材料的光谱特性能够直接反映材料的组成、结构和形态特征。纳米材料
    的光谱有许多特殊性。因此,深入研究材料的光学与光谱特性,可以进一步
    理解纳米材料结构与功能间的关系,为功能材料选择与设计提供坚实的物理
    基础。本章结合实验数据在理论原理方面讨论与SERS活性纳米材料研究有
    关的一些光谱学问题。
    1.由电磁场中球形粒子的电动力学经典结果出发,将介电函数引入这一结果
    中,讨论与此介电函数相关的表面等离子体共振SERS增强模型。理论分析
    表明位于光频电场中的金属纳米颗粒,在一定条件下其周围某区域电场将得
    到显著增强,并且增强因子随着电场频率、粒子的形状、尺寸及周围介质介
    电常数的变化而变化。当某些分子吸附于这样的区域时,将会产生较强的拉
    曼散射;对金、银、铜纳米粒子的讨论表明其增强趋势与实验中观测结果接
    近,这说明表面等离子体共振理论对于解释SERS效应具有相当的合理性。
    2.利用MPZ方法BVPP分子进行了结构优化和频率计算,并结合光谱实验
    数据讨论了BVPP的红外和拉曼光谱,对主要的红外和拉曼谱带作了分析与
    指认。结果表面MPZ计算所得的分子结构和振动频率与实验值相当吻合。为
    分析和讨论BVPP分子在SERS基底上的吸附形式、与基底间相互作用情况,
    进一步探讨SERS机理奠定了基础。
    3.用经典电磁理论一Mie理论研究了球形纳米颗粒的吸收特性,并结合实验
    数据进行了比较分析。对于非球形颗粒,详细介绍了一种数值计算方法一离
    散偶极近似方法(DDA),给出了三角形银纳米颗粒的DDA计算谱。
    SERS活性基底的制备和性能表征
     SERS活性基底的制备是SERS研究和应用的基础。在本论文工作中采用
    /宁‘
    
     吉林大学博士学位论文
    分子组装与分子光谱相结合的方法,即通过光谱手段研究组装过程,同时通
    过将组装体作为研究分子光谱的模型探讨结构的光谱的影响。为得到这一目
    的,本论文工作发展了银核纳米粒子生长法,光诱导制备三角形银纳米粒子,
    光诱导纳米粒子沉积三种制备SERS基底的新方法。这三种方法都可以较好
    地控制纳米纳米粒子的形貌和尺度,制得的SERS基底具有很好的活性和稳
    定性。通过监测制备过程各个阶段纳米粒子的变化情况,考察了纳米粒子的
    形貌对SERS增强能力及其光学性质的影响,获得了对探讨纳米材料结构与
    性能的关系有意义的实验结果。特别是光诱导纳米粒子沉积制备SERS基底
    的新方法,为SERS活性光纤传感器敏感层的修饰提供了方便、有效的方法。
    SERS标记纳米粒子用于生物分子识别
     设计了一种表面增强拉曼技术和纳米粒子标记技术相结合进行免疫检
    测的方法。纳米粒子SERS标记方法是通过具有SERS活性的纳米粒子或用
    SERS探针分子修饰过的纳米粒子与底物结合,形成谱学特征较为清晰的、
    容易检测的、具有SERS标记的底物分子。当这些底物与受体发生特异性识
    别作用时,能够检测到标记的SERS光谱。实验中采取4一琉基苯甲酸作为探
    针分子,固定在金溶胶粒表面,然后将抗体分子包裹溶胶形成MBA标记的
    免疫金胶粒。在硅或石英基底上固定乙肝表面多克隆抗体,根据免疫识别捕
    获对应抗原分子:当免疫金胶粒滴加在基底上时,通过抗体抗原之间作用,
    免疫金胶粒也被固定在基底上。通过银染色后,对胶粒表面的MBA分子进
    行拉曼检测。该检测方法利用了金溶胶粒子稳定均一的特点,制备了可长期
    保存的免疫金胶粒。通过银染色增强的方
Surface-enhanced Raman scattering (SERS) enhancement is related to the wavelength of the exciting laser, the size and morphology of the metal substrate, the quantities of the absorbate and so on. The development of SERS and SERRS has made much progress in analytical application. The lowest concentration of the absorbate in the solution can reach 10-12 mol/L by using of SERS technique. SERRS is more sensitive than SERS and thus it can even detect several molecules in lnL sample solution.
    The evolution of SERS technique and the broadening of SERS applications are dependent on the development of SERS substrates. Thus, the preparation and properties of SERS substrates become important to develop SERS as a usual analytical tool. However, the stability, sensitivity, selectivity and reproducibility of the present SERS substrates can not meet various analytical purposes.
    On the basis of the above facts, we focus our study on the preparation of SERS substrates and SERS application in various fields, as well as the SERS mechanisms from theoretical and experimental ways. We employed molecular spectroscopy to investigate the relationship between the structure and function of
    
    
    
    SERS substrates, and further explored the optical characteristics and properties of such nanomaterials.
    Theoretical Analysis of Nano Materials on Spectral Properties.
    The spectral characteristic of the materials can indicate its component, structure and morphology. Moreover, combined with it optical properties, we can investigate the relation between the structure and function of such materials and further lay a physical foundation on selecting and designing these materials for various purposes.
    1. We gave the enhanced factor of the local field around the Ag nanoparticle in external laser beam field. The dielectric function of some metals (Au, Ag, Cu) at optical band is analyzed. The result of calculation demonstrates that Ag is the best metal for surface enhanced Raman scattering. On roughed Ag surface, Raman spectrum can be increased by six orders of magnitude, when surface plasma resonance (SPR) is excited. The analysis also demonstrates that many factors can affect the intensity of SPR. First, while the dielectric constant out of the metal particle increases, the frequency of SPR shifts to low frequency (LF). And the enhancement of located electromagnetic field also increases. Secondly, if the Ag particle is ellipsoidal, the frequency of SPR will shift to LF while the ratio of major axis to minor axis increases. Finally, with the dimension of sphere increasing, the variety of enhancement is up first, then down. The optimized dimension is about 50 nm.
    2. The IR and Raman spectra of BVPP were calculated. All the calculations were completed at the work station of SGI-OCTAIN-TWO through Gaussian 98 program after the optimization of the molecule according to the symmetry of C2h. And the assignments of IR and Raman spectra were shown.
    
    The difference between the vacuum-deposited Ag island film and the self-assembled Ag colloid film were also compared.
    3. Absorption spectra of spherical particles were investigated with Mie theory on the basis of classical electrodynamics. The calculated spectra by the Mie theory are compared with the experimental results. For those nonspherical particles, we introduced a numerical method named discrete dipole approximation (DDA) . It can be applied to the arbitrary particles and their environments. Then, we described the applications of DDA to problems of recent interest, particularly to the description of the triangular silver particles.
    Preparation and Characteristics of SERS-Active Substrates.
    We employed molecular spectroscopy to study the fabrication process of SERS substrates. Our purpose is to explore the relationship of the nanoparticles' structures and spectra. Three novel methods were developed, (a) The small silver nanoparticles were used as the crystal seeds to prepare the SERS substrate, (b) Various lights were employed to induce the triangle silver nanoparticles formation in solution, (c)
引文
1. Raman, H. A.; Krisnan, K. S. Nature 1964, 203, 1052
    2. Smekl, A.; Naturwiss. 1923, 11, 873
    3. Landsberg, G.; Mandelstam, L. Naturwiss. 1928, 186, 1201
    4. Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Chem. Phys. Lett. 1974, 26,163
    
    
    5. Jeanmaire, D. L.; Van Duyne, R. P. J. Electroanal. Chem. 1977, 84, 1
    6. Albrecht, M. G.; Creighton, J. A. J. Am. Chem. Soc. 1977, 99, 5215.
    7. Philpott, M. R. J. Chem. Phys. 1975, 62, 1812.
    8. Chang, R. K.; Furtak, T. E. Eds. Surface Enhanced Raman Scattering; Plenum Press: New York, 1982.
    9. Campion, A.; Kambhampati, P. Chem. Soc. Rev. 1998, 27, 241.
    10.薛奇 高分子结构研究中的光谱方法 高等教育出版社,1993.
    11.朱自莹,顾仁敖,陆天虹 拉曼光谱在化学中的应用 东北大学出版社,1998.
    12.席时权,王玮,李微,薛奇,吉敏,分子光谱学专论 吴征铠,唐敖庆主编,山东科学技术出版社 1999.
    13.张鹏翔,郭伟力,李秀英,光谱学与光谱分析 1987,7,1.
    14. Zeman, E. J.; Schatz, G. C. J. Phys. Chem. 1987, 91,634.
    15. Fleischmann, M.; Tian, Z. Q. J. Electroanal. Chem. 1987, 217. 397.
    16. Moskovits, M. Rev. Mod. Phys. 1985, 57, 783.
    17. King, F. W.; Van Duyne, R. P.: Schatz, G. C. J. Chem. Phys. 1978, 69, 4472.
    18. Efrima, S.; Metiu, H. J. Chem. Phys. 1979, 70, 1602.
    19. Efrima, S.; Metiu, H. J. Chem. Phys. 1979, 70, 1939.
    20. Efrima, S.; Metiu, H. J. Chem. Phys. 1979, 70, 2297.
    21. Schatz, G. C. In Surface Enhanced Raman Scattering Chang R. K.; Furtak, T. E. Eds. Plenum, New York, 1982, 35.
    22. Kerker, M.; Wang, D. S.; Chew, H. Appl. Opt. 1980, 19, 4159.
    23. Wang, D. S.; Chew, H.; Kerker, M. Appl. Opt. 1980, 19, 2256
    24. McCall, S. L.; Platzman, P. M.; Wolff, P. A. Phys. Lett. 1980, 77A, 381.
    25. Gersten, J. I. J. Chem. Phys. 1980, 72, 5779.
    
    
    26. Gersten, J. I. J. Chem. Phys. 1980, 72, 5780.
    27. Gersten, J. I.: Nitzan, A. J. Chem. Phys. 1980, 73, 3023.
    28. Cotton, T. M.; Uphaus, R. H.; Mobius, D. J. J. Phys.Chem. 1986, 90, 6071.
    29.胡冰,徐蔚青,王魁香,谢玉涛,赵冰 吉林大学自然科学学报 2001,2,57.
    30.胡冰 吉林大学硕士学位论文,2001.
    31. Johnson, P. B.; Christy, R. W. Phys. Rev. B 1972, 6, 4370.
    32. Burstein, E.; Chen, C. Y.; Lundquist, S. In Light Scattering in Solids Birman, J. L. Ed., Plenum, New York, 1979, 479.
    33. Demuth, J. E.; Christmann, K.; Sanda, P. N. Chem. Phys. Lett. 1980, 76, 201.
    34. Sanda, P. N.; Warlaumont, J. M.; Demuth, J. E.; Tsang, J. C.; Christmann, K.; Bradley, J. A. Phys. Rev. Lett. 1980, 45, 1519.
    35. Seki, H.; Philpott, M. R. J. Chem. Phys. 1980, 73, 5376.
    36. Furtak, Y. E.; Roy, D. Phys. Rev. Lett. 1983, 50, 1301.
    37. Pettkofer, C.; Eiekmans, J.; Erturk, U.; Otto, A. Surf Sci. 1985, 151, 9.
    38. Kester, J. J. J. Chem. Phys. 1983, 78, 7466.
    39. Guy, A. L.; Pemberton, J. E. Langmuir 1985, 1,518.
    40. Otto, A. In Light scattering in solid Ⅳ. Electronic scattering, spin effects, SERS and morphic effects Cardona, M.; Guntherodt, G. Eds.; Springer-Verlag: Berlin, Germany, 1984.
    41. Otto, A.; Mrozek, I.; Grabhorn, H.; Akemann, W. J. Phys. Chem. Condens. Matter 1992, 4, 1143.
    42. Lombardi, J. R.; Birke, R. L.; Lu, T.; Xu, J. J. Chem. Phys. 1986, 84, 4174.
    43. Kambhampati, P.; Child, C. M.; Foster, M. C.; Campion, A. J. Chem. Phys. 1998, 12, 5013.
    44. Fleischmann, M.; Graves, P. R.; Hill, I. R.; Robinson, J. Chem. Phys. Lett.
    
    1983, 98, 503.
    45. Pockrand, I.; Otto, A. Solid State Commun. 1980, 35, 861.
    46. Moskovits, M.; DiLella, D. P. In Surface-Enhanced Raman Scattering, Chang, R. K.; Furtak, T. E. Eds. Plenum, New York, 1982, 243.
    47. Lund, P. A.; Smardzewski, R. R.; Terault, D. E. Chem. Phys. Lett. 1982, 89, 508.
    48. Loo, B. H. J. Chem. Phys. 1981, 75, 5955.
    49. Wood, T. H.; Klein, M. V. Solid State Comm. 1980, 35, 263.
    50. Furtak, T. E. Surf. Sci. 1981, 101, 1.
    51. Jiang, X.; Campion, A. Chem. Phys. Lett. 1987, 140, 95.
    52. Udagawa, M.; Chou, C.; Hemminger, J.; Ushioda, S. Phys. Rev. B 1981, 23, 6843.
    53. Pettinger, B.; Wenneng, U.; Wetzel, H. Surf. Sci. 1980, 101,409.
    54. Pemberton, J. E.; Buck, R. P. Anal. Chem. 1981, 53, 2263.
    55. Loo, B. H. J. Phys. Chem. 1983, 87, 3003.
    56. Fleischmann, M.; Graves, P. R.; Robinson J. J. Electroanal. Chem. 1985, 182. 87.
    57. Otto, A. Surf. Sci. 1978, 751,392.
    58. Otsuka, I.; Iwaskai, T. J. Vac. Sci. Technol. 1990, A8, 530.
    59. Sanchez-Cortes, S.; Garcia-Ramos, J. V. J. Raman Spectrosc. 1990, 21,679.
    60. Wang, J.; Zhang,P.J. Phys. Chem. 1988, 92, 1942.
    61. Zhang, P. Chem. Phys. Lett. 1988, 153, 215.
    62. Creighton, J. A.; Blatchford, C. G.; Albrecht, M. G. J. Chem. Soc. Faraday Trans. 1979, 75(Ⅱ), 790.
    63. Tran, C. D. Anal. Chem. 1984, 56, 824.
    
    
    64. Lee, P. C.; Meisel, D. J. Phys. Chem. 1982, 86, 3391.
    65. Nickel, U.; Zu Castell, A.; P(?)ppl, K.; Schneider, S. Langmuir, 2000, 16, 9087.
    66. Ahern, A. M.; Garrell, R. L. Anal Chem. 1987, 59, 2813.
    67. Pal, A.; Pal, T.J. Raman Spectrosc. 1999, 30, 199.
    68. Neddersen, J.; Chumanov, G.; Cotton, T. M. Appl. Spectrosc. 1993, 47, 1959.
    69. Sibblad, M. S.; Chumanov, G.; Cotton, T. M. J. Phys. Chem. 1996, 100, 4672.
    70. Siiman, O.; Bumm, L. A.; Callaghan, R.; Blatchford, C. G.; Kerker, M. J. Phys. Chem. 1983, 87, 1014.
    71. Chun, H. A.; Boo, D. W.; Kim, K.; Kim, M. S. J. Mol. Struct. 1990, 216, 41.
    72. Liang, E. J.; Engert, C.; Kiefer, W. J. Raman Spectrosc. 1993, 24, 775.
    73. Liang, E. J.; Engert, C.; Kiefer, W. Vib. Spectrosc. 1995, 8, 435.
    74. Sanchez-Cortes, S.; Garcia-Ramos, J. V.; Morcillo, G.; Tinti, A. J. Raman Spectrosc. 1990, 21,679.
    75. Siiman, O.; Bumm, L. A.; Callaghan, R.; Blatchford, C. G.; Kerker, M. J. Phys. Chem. 1983, 87, 1014.
    76. Lee, P. C.; Meisel, D. Chem. Phys. Lett. 1983, 99, 262.
    77. Ni, F.; Sheng, R.; Cotton, T. M. Anal Chem. 1990, 62, 1958.
    78. Tran, C. D. Anal Chem. 1984, 56, 824.
    79. Sequaris, J. M. L.; Koglin, E. Anal Chem. 1987, 59, 525.
    80. Ni, F.; Sheng, R.; Cotton, T. M. Anal. Chem. 1990, 62, 1958.
    81. Volkan, M.; Stokes, D. L.; Vo-Dinh, T. J. Raman Spectrosc. 1999, 30, 1057.
    82. Liu, F. X.; Xiao, Y.; Li, Y.-S. J. Raman Spectrosc. 2001, 32. 73.
    83. Freeman, R. G.; Grabar, K. G.; Allison, K. A.; Bright, R. M.; Davis, J. A.; Guthrie, A. P.; Hommer, M. B.; Jackson, M. A.; Smith, P. C.; Walter, D. G.; Natan, M. J. Science, 1995, 267, 1629.
    
    
    84. Chumanov, G.; Sokolov, K.; Gregory, B. W.; Cotton, T. M. J. Phys. Chem. 1995, 99, 9466.
    85. Emory, S. R.; Nie, S. J. Phys. Chem. B 1998, 102, 493.
    86. Rowe, I. E.; Chank, C. V. Phys. Rev. Lett. 1980, 44, 1770.
    87. Moskovits, M. Chem. Phys. Lett. 1983, 98, 498.
    88. Moody, R. L.; Vo-Dinh, T.; Fletcher, W. H. Appl. Spectrosc. 1987, 41,966.
    89. Alak, A.; Vo-Dinh, T. Anal, Chem. 1989, 61,656.
    90. Vo-Dinh, T.; Stokes, D. L. Appl. Spectrosc. 1993, 47, 1728.
    91. Xue, G.; Dong, J.; Zhang, J. Macromolecules 1991, 24, 4195.
    92. Xue, G.; Dong, J. Anal. Chem. 1991, 63, 2393.
    93. Li, F.; Lu, Y.; Xue, G.; Cao, Q. Chem. Phys. Lett. 1997, 264, 376.
    94. Ni, F.; Cotton, T. M. Anal. Chem. 1986, 58, 3159.
    95. Boo, D. W.; Oh, W. S.; Kim, M. S.; Kim, K.; Lee, H.-C. Chem. Phys. Lett. 1985, 120, 301.
    96. Wu, Y.; Zhao, B.; Xu, W.; Li, G.; Li, B.; Ozaki, Y. Langmuir 1999, 15, 1247.
    97. Wu, Y.; Zhao, B.; Xu, W.; Li, B.; Jung, Y. M.; Ozaki, Y. Langmuir 1999, 15, 4625.
    98. Li, F.; Cao, Q.; Lu, Y.; Xue, G. Spectrosc. Lett. 1997, 30(3), 451.
    99. Liao, P. F.; Bergmann, J. G.; Chemla, D. S,; Wokaun, A.; Melngailis, J.; Hawryluk, A. M.; Economou, N. P. Chem. Phys. Lett. 1981, 82, 355.
    100. Meier, M.; WoKaun, A.; Vo-Dinh, T. J. Phys. Chem. 1985, 89, 1843.
    101. Van Duyne, R. P.; Hulteen, J. C. J. Vac. Sci. Technol. A 1995, 13, 1553.
    102. Hulteen, J. C.; Treichel, D. A.; Smith, M. T.; Duval, M. L.; Jensen, T. R.; Van Duyne, R. P. J, Phys. Chem. B 1999, 103, 3854.
    103. Malinsky, M. D.; Kelly, K. L.; Schatz, G. C.; Van Duyne, R. P. J. Phys. Chem.
    
    B 2001, 105, 2343.
    104. Kahl, M.; Voges, E.; Kostrewa, S.; Viets, C.; Hill, W. Sensors and Actuators B 1998, 51,285.
    105. Tessier, P. M.; Velev, O. D.; Kalambur, A. T.; Rabolt, J. F.; Lenhoff, A. M.; Kaler, E. W. J. Am. Chem. Soc. 2000, 122, 9554.
    106. Joo, Y.; Suh, S. Bull, Korean. Chem. Soc. 1995, 16, 808.
    107. Yao, J.-L.; Xu, X.; Wu, D. Y.; Xie, Y.; Ren, B.; Tian, Z.-Q.; Pan, G. P.; Sun, D.-M.; Xue, K.-H. Chem. Commun. 2000, 1627.
    108. Yao, J. L.; Xue, K. H.; Sun, D. M.; Jiang, Y. X.; Tang, J.; Lin, L. G.; Ren, B.; Mao, B. W.; Tian, Z. Q. in Progress in Surface Raman Spectroscopy-Theory, Techniques & Applications Tian, Z. Q.; Ren, B. Eds. Xiamen University Press, 2000, p113.
    109. Haynes, C. L.; Haes, A. J.; Van Duyne, Ro P In Progress in Surface Raman Spectroscopy-Theory, Techniques & Applications Tian, Z. Q.; Ren, B. Eds. Xiamen University Press, 2000, p1.
    110. Hengoli, G.; Musiani, M. M.; Fleischmann, M.; Mao, B. W.; Tian, Z. Q. Electrochim. Acta. 1987, 32, 1232.
    111. Fleischmann, M.; Tian, Z. Q.; Li, L. J. J. Electroanal. Chem. 1987, 217, 385.
    112. Fleischmarm, M.; Tian, Z. Q. J. Electroanal. Chem. 1987, 217, 397.
    113. Leung, L.-W. H.; Weaver, M. J. J. Am. Chem. Soc. 1987, 109, 5113.
    114. Feilchenfeld, H.; Gao, X.; Weaver, M. J. Chem. Phys. Lett. 1989, 161,321.
    115. Weaver, M. J.; Zou, S. Z.; Chan, H. Y. H.Anal. Chem. 2000, 72, 38A.
    116. Gao, Y.; Lopez-Rios, T. Solid State Commun. 1986, 60, 55.
    117. Walls, D. J.; Bohn, P. W. J.. Phys. Chem. 1986, 90, 983.
    118. Van Duyne R. P.; Phaushalter J. J. Phys. Chem. 1983, 27, 1979.
    
    
    119. Tian, Z. Q.; Ren, B.; Mao, B. W. J. Phys. Chem. B 1997, 101, 1338.
    120. Cai, W. B.; Ren. B.; Li, X. Q.; She, C. X.; Liu, F. M.; Cai, X. W.; Tian, Z. Q. Surface Science 1998, 406, 9.
    121. Huang, Q. J.; Yao, J. L.; Gu, R. A.; Tian, Z. Q. Chem. Phys. Lett. 1997, 271, 101.
    122. Cai, W. B.; She, C. X.; Ren, B.; Yao, J. L.; Tian, Z. W.; Tian, Z. Q. J. Chem. Soc., Faraday Trans. 1998, 94, 3217.
    123. Cao, P. G.; Yao, J. L.; Ren, B.; Mao, B. W.; Gu, R. A.; Tian, Z. Q. Chem. Phys. Lett. 2000, 316, 1.
    124. Shalaev, V. M. Phys. Rep. 1996, 272, 61.
    125. Tsai, D. P.; Kovacs, J.; Wang, Z.; Moskovits, M.; Shalaev, V. M.; Suh, J. S.; Botet, R. Phys. Rev. Lett. 1994, 72, 4149.
    126. Markel, V. A.; Shalaev, V. M.; Zhang, P.; Huynh, W.; Tay, L.; Haslett, T. L.; Moskovits, M. Phys. Rev. B 1999, 59, 10903.
    127. Sanchez-Gil, J. A.; Garcia-Ramos, J. V.; Mendez, E. R. Phys. Rev. B 2000, 62,10515.
    128. Garcia-Vidal, F. J.; Pendry, J. B. Phys. Rev. Lett. 1996, 77, 1163.
    129. Sanchez-Gil, J. A.; Garcia-Ramos, J. V. J. Chem. Phys. 1998, 108, 317.
    130. Murray, C. A.; Allara, D. L.; Rhinewine, M. Phys. Rev. Lett. 1981, 46, 57.
    131. Cotton, T. M.; Uphaus, R. A.; Mobius, D. J. Phys. Chem. 1986, 90, 6071.
    132. Kovacs, G. L.; Loutfy, R. O.; Vincett, P. S.; Jennings, C.; Aroca, R. Langmuir 1986, 2, 689.
    133. Tsen, M.; Sun, L. Anal. Chim. Acta 1995, 307, 333.
    134. Xiao, T.; Qi, Y.; Sun, L. J. Phys. Chem. B 1997, 101,632.
    135. Ye, Q.; Fang, J.; Sun, L. J. Phys. Chem. B 1997, 101, 8221.
    
    
    136. Campion, A.; Ivanecky Ⅲ, J. E.; Child, C. M.; Foster, M. J. Am. Chem. Soc. 1995, 117, 11807.
    137. Kambhampati, P.; Child, C. M.; Foster, M. C.; Campion, A. J. Chem. Phys.1998, 108, 5013.
    138. Kneipp, K.; Kneipp, H.; Ltzkan, L.; Dasari, R. R.; Feld, M. S. Chem. Rev. 1999, 99, 2957-2975.
    139. Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Phys. Rev. Lett. 1997, 78, 1667.
    140. Nie, S.; Emory, S. R. Science 1997, 275, 1102.
    141. So-Jung Park, T.; Andrew Taton.; Chad, A.; Mirkin. Science 2002, 295, 1447.
    142. Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Paul Alivisatos, A. Science 1998, 281(9), 2013~2016.
    143. http://www.qcmresearch.com
    144. Hisao Matsuno.; Kenichi Niikura, Dr.; Yoshio Okahata, Prof.; Chemistry-A European Journal. 2001, 7(15), 3305-3312.
    145.徐金泽 吉林大学硕士学位论文.2001年7月
    146. Sakai, G.; Ogata, K.; Uda, T.; Miura, N.; Yamazoe, N. Sens. Actuators. B. 1998, 49, 5-12;
    147. Darren, M. D.; David, C. C.; Hong- Xing, Y.; Christopher, R. L. Biosens. Bioelectron. 1998, 13, 1213-1225.
    148. Toyama, S.; Shoji, A.; Yoshida, Y.; Yamauchi, S.; Ikariyama, Y. Sens. Actuators. B. 1998, 52, 65-71.
    149. Oh, B.; Kim,Y.; Lee, W.; Bae, Y. M.; Lee, W. H.; Choi, J. Biosens. Bioelectron. 2003, 18, 605--611.
    150. Lee, G. U.; Kidwell, D. A.; Colton, R. J. Langmuir 1994, 10, 354-357.
    
    
    151. Moy, V. T.; Florin, E. L.; Gaub, H. E. Science 1994, 266, 257-259.
    152. Dammer, U.; Hegner, M.; Anselmetti, D.; Wagner, P.; Dreier, M.; Huber, W.; Guntherodt, H-J. Biophys. J. 1996, 70, 2437-2441.
    153. Jones, V. W.; Kenseth, J. R.; Porter, M. D. Anal. Chem. 1998, 70, 1233-1241.
    154. Coen, M. C.; Lehmann, R.; Gr(?)ning, P.; Bielmann, M.; Galli, C.; Schlapbach, L.J. Colloid Interface Sci. 2001, 233, 180-189.
    155. Li, L.; Chen, S.; Oh, S.; Jiang, S. Anal Chem. 2002, 74, 6017-6022.
    156. Suri, C. R.; Jain, P. K.; Mishra, G. C. J. Biotechnol. 1995, 39, 27-34.
    157. Nakanishi, K.; Muguruma, H.; Karube, I. Anal Chem. 1996, 68, 1695-1700.
    158. Gosling, J. P. Clin. Chem. 1990, 36, 1408-1427.
    159. Ishikawa, E.; Hashida, S.; Kohno, T.; Hirota, K. Clin. Chim. Acta. 1990, 194, 51-72.
    160. Duan, C. M.; Meyerhoff, M. E. Anal. Chem. 1994, 66, 1369-1377.
    161. Chan, W. C. W.; Nie, S. M. Science 1998, 281, 2016-2018.
    162. Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Science 1998, 281, 2013-2016.
    163. Mangru, S. D.; Harrison, D. J. Electrophoresis 1998, 19, 2301-2307.
    164. Hashimoto, M.; Tsukagoshi, K.; Nakajima, R.; Kondo. K.; Arai, A. J. Chromatogr. A. 2000, 867, 271-279.
    165. Yakovleva, J.; Davidsson, R.; Lobanova, A.; Bengtsson, M.; Eremin, S.; Laurell, T.; Emn(?)us, J. Anal Chem. 2002, 74, 2994-3004.
    166. Hayat, M. A. Colloid Gold: Principles, Methods and Applications, Vol. 1, Academic Press, San Diego, 1989.
    167. Thanh, N. T. K.; Rosenaweig, Z. Anal. Chem. 2002, 74, 1624-1628.
    168. Levit-Binnun, N.; Lindner, A. B.; Zik, O.; Eshharm Z.; Moses, E. Anal Chem.
    
    2003, 75, 1436-1441.
    169. Ma, Z. F.; Sui, S. Angew. Chem. Int. Ed. 2002, 41, 2176-2179.
    170. Taton, T. A.; Mirkin, C. A. Science 2000, 289, 1757-1760.
    171. Mann, B. S.; Shenton, W.; Li, M.; Connolly, S.; Fitzmaurice, D. Adv.Mater. 2000, 12, 147-150.
    172. Masai, J.; Sorin, T.; Kondo, S.J. Vac. Sci. Technol. A. 1990, 8, 713-717.
    173. Dou, X.; Takama, T.; Yamaguchi, Y.; Yamamoto, H.; Ozaki, Y. Anal Chem. 1997, 69, 1492-1495.
    174. Ni, J.; Lipert, R. J.; Dawson, G.; Porter, M. D. Anal Chem. 1999, 71, 4903-4908.
    175. Grubisha, D. S.; Lipert, R. J.; Park, Hye-Young; Driskell, J.; Porter, M. D. Anal, Chem. 2003, 75, 5936-5943.
    176. Link, S.; Wang, Z. L.; El-Sayed, M. A. J. Phys. Chem. B. 1999, 103, 3529-3533.
    177. Liao, P. F.; Bergman, J. G.; Chemla, D. S. Chem. Phys. Lett. 1981, 82, 355-359.
    178. Kim, N. H.; Lee, S. J.; Kim, K. Chem. Commun. 2003, 6, 724-725.
    179.谢玉涛 吉林大学硕士学位论文.2001.
    180. Hu, J.; Zhao, B.; Xu, W.; Fan, Y.; Li, B.; Ozaki, Y. J. Phys. Chem. B. 2002, 106, 6500.
    181. Hu, J.; Zhao, B.; Xu, W.; Fan, Y.; Li, B.; Ozaki, Y. Langmuir 2002, 18, 839-6844.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700