用户名: 密码: 验证码:
超空泡运动体尾拍冲击振动特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超空泡减阻是实现水下航行体超高速运动的一种理想手段,借助于超空泡,水下航行体的粘湿面积可以降到最小状态,从而极大地降低了航行体表面所受到的液体摩擦阻力。水下超空泡运动体在不同的航速下有不同的运动模式,尾拍飞行是超空泡运动体在较高速度段的一种运动模式。在该运动模式下,由于存在连续的尾拍冲击作用,超空泡运动体的结构动力学特性与按传统方式运动的航行体相比将存在很大的不同。
     目前对超空泡航行体的流体动力学特性的研究相对较多,而对于航行体自身动力学和振动学特性的研究文献则相对较少,尤其是对尾拍阶段高速运动的超空泡运动体振动特性的研究就更少了;而该项研究对后续的超空泡运动体的结构设计、优化、运动稳定性等方面的研究工作又有着重要的影响。所以,开展该项研究对超空泡武器的研制有着重要的理论与现实意义。
     本文主要采用理论分析和数值仿真的方法,对尾拍过程中超空泡运动体的尾部激振力和结构振动特性进行了研究。主要内容如下:
     针对超空泡运动体尾拍飞行时的运动特点,运用作大范围转动的弹性梁耦合动力学理论,得出了超空泡射弹尾拍振动的频率和模态,并对其时变特性进行了计算和分析;同时,研究了弹体的长细比、材料及转速对系统振动特性的影响。
     研究超空泡运动体尾拍振动时的一个关键和难点,就是尾拍冲击载荷的确定。本文分别采用理论分析和流固耦合仿真计算的方法,对小型超空泡射弹自由飞行时的尾拍冲击载荷进行了研究,得出了尾拍载荷的时间变化规律,以及尾拍载荷与弹体结构参数的关系。
     然后,分别利用前面的尾拍载荷理论分析结果和流固耦合仿真方法,对射弹自由飞行时尾拍振动的结构响应进行了数值计算;得到了加速度响应的时域和频域特性、弹体主应力最大值的变化和分布规律、结构响应与弹体结构参数的关系。
     在论文的最后部分,对大尺寸超空泡航行体(超空泡鱼雷),在不同速度段匀速巡航时的尾拍振动响应进行了有限元数值模拟,给出了航行体的结构响应与巡航速度的关系。
     到目前为止,对超空泡运动体在尾拍飞行阶段的尾拍激振力及动力响应方面的试验研究还未曾见于报道,因而,本文的研究结果,可以为以后的超空泡运动体尾拍振动方面的实验研究提供参考;同时,也为超空泡运动体的结构稳定性设计、结构优化设计等后续工作提供必要的基础。
Using supercavitation to enormously reduce the drag on the underwater vehicle is an ideal way to increasing the velocity of the underwater vehicle. A supercavity can minimize the water-contacting surface of the vehicle, thus the friction by the water also would be reduced. Several possible modes of vehicle motion would arise according to the magnitude of velocity of the vehicle and when the velocity is enough large, the vehicle would advance with tail-slapping. The successional impacts as tail-slappings result great difference between the structural dynamics characteristics of a supercacitating vehicle and that of a traditional vehicle.
     Now there have been many researches about the supercavitating flow, but the researches about the structral dynamics characteristics of the supercavitating vehicle are few. And the researches on structral dynamics characteristics of a supercavitating vehicle with tail-slapping are especially little. But these researches are important to the studies of the structral optimum design and the motion stability analysis for supercavitating vehicle. So, the reserch in this paper has very important theorical and practical values for the prepare and manufacture of the supercavitating weapons.
     In this paper, the tail-slapping force and the structral dynamics characteristics of the supercavitating vehicle with tail-slapping have been investigated by theoretical analysis and simulation. The main works are as follows: Based on the coupling dynamics theory of elastic beam in large overall rotation and according to the characteristic of the motion of the body, the fundamental frequency and the mode of vibration of a supercavitating projectile with tail-slapping were given and their variations with time were calculated and analysised. Also, the influences of the projectile's slenderness radio, material and rotational velocity on the vibration characteristics were investigated.
     The calculation of the tail-slapping force is a key and a difficulty for the research of vibration of the projectile with tail-slapping. By the theoretical method and fluid-solid interaction simulations, the impact load of a projectile, which is freely advancing with tail-slappings, was investigated. The variation of the impact load with time and the relation between the load and the structural design parameters of the projectile were given.
     On the base of the above results of the tail-slapping load, the structral responds of a projectile uhdergoing tail-slapping were simulated. The acceleration responds were analysised respectively in time domain and in frequency domain. The variation and location of the maximum values of the principal stresses were presented. The relation between the structral responds and the parameter of the body were given.
     In the last chapter of this paper, for the supercavitating vehicle of large demention (the supercavitating torpedo) cruising with uniform speed and undergoing tail-slaps, the structral responds of the body were simulated by FEM (finite element method). The relation between the structral responds and the velocity were obtained.
     To present, there hasn’t been the document on the experimental investigation for the tail-slaps force and the corresponding vibration of a supercavitating veicle. So the results presented in this paper can provide some references for the experimental investigations in the future and benefit the subsequent studies in structral stability analysis and structral optimum design.
引文
1于开平,隗喜斌,蒋增辉.俄罗斯和乌克兰超空泡减阻技术研究进展.飞航导弹. 2007(8):5-11
    2曹伟,魏英杰,王聪,邹振祝等.超空泡技术现状、问题与应用.力学进展. 2006,36(4):571~579
    3魏平,侯健,杨柯.超空泡射弹研究综述.舰船电子工程. 2008(28)4:13~17
    4陈兢.新概念武器——超空泡水下高速武器.飞航导弹. 2004(10):34~37
    5谭顺谋.“水下快车”美国研制超高速潜艇.现代船舶. 2007年第2期
    6黄继汤.空化与空蚀的原理与应用.清华大学出版社. 1991:7~14
    7 Y. N. Savchenko, V. N. Semenenko, S. I. Putlin, G. Yu. Savchenko, and Ye. I. Naumova. Some Problems of the Supercavitating Motion Management. Sixth International Symposium on Cavitation, Cav2006, Wageningen, September 2006
    8 J. A. Geurst. Linearized Theory for Partially Cavitated Hydrofoils. International Shipbuilding Progress,1959,6(60):369~384
    9 M. P. Tulin. Supercavitating Flows—Small Perturbation Theory. Journal of Ship Research,1964,5(1):13~33
    10 M. P. Tulin. Steady Two-Dimensional Cavity Flows about Slender Bodies. The David W. Taylor Model Basin, Washington,1953,Report 834
    11 H. Cohen, C. D. Sutherland, Y. O. Tu. Wall Effects in Cavitating Hydrofoil Flow. Journal of Ship Research,1957,3:31~39
    12 Y. S. Chou. Axisymmetric Cavity Flows Past Slender Bodies of Revolution. Hydronautics,1974,8(1)
    13 A. N. Varghese, J. S. Uhman, I. N. Kirchner. Axisymmetric Slender-Bodies Analysis of Supercavitating High-Speed Bodies in subsonic Flow. PhD Dissertation, in Gieseke, 1997
    14 A. D. Vasin. Supercavities in Compressible Fluid. RTO AVT/VKI special course: supercavitating flows, von Karman Institute for Fluid Dynamics, Rhode-Saint-Genese, Belgium, 12–16 February 2001
    15 V. Serebryakov. Supercavitation Flows with Gas Injection Prediction and Drag Redaction Problems. Proceedings of the 5th International Symposium onCavitation. Osaka, Japan:cav2003,Cav03-OS-7-003
    16 I. Nesteruk. Influence of the Unsteadiness, Compressibility and Capillarity on Long Axisymmetrie Cavities. Proceedings of the 5th International Symposium on Cavitation. Osaka,Japan:Cav2003,Cav03.GS.6-004
    17 G. V. Logvinovich. On Law of an Unsteady Cavity Expansion. Applied hydromechanics, Kiev, v. 2(74), #3, 2000: 60-64 (in Russian)
    18 G. V. Logvinovich, V. N. Buyvol, A. S.Dudko, S. I.Putilin and Yu. R. Shevchuk. Flows with Free Boundaries. Naukova Dumka, Kiev, 1985: 296 (in Russian)
    19张学伟,张亮,王聪,张嘉钟,魏英杰.基于Logvinovich独立膨胀原理的超空泡形态计算方法.兵工学报. 2009,30(3):361~365
    20 H. Lemonnier, A. Rowe. Another approach in modelling cavitating flows. J Fluid Mech, 1988, 195: 557~580
    21 S. A. Kinnas, N. E. Fine. A numerical nonlinear analysis of the flow around 2-D and 3-D partially cavitating hydrofoils. J Fluid Mech, 1993, 254(9): 151~181
    22 M. Deshpande, J. Feng, C. L. Merkle. Nonlinear euler analysis of 2-D cavity flow. Cavitation and Multiphase Flow Forum FED, 1993, 135: 149~155.
    23 Y. Chen, S. D. Heister. A numerical treatment for attached cavitation. J Fluid Eng, 1994, 116: 613
    24 C. L. Merkle, J. Feng. Buelow. Computational modeling of the dynamics of sheet cavitation. In 3rd International Symposium on Cavitation, Grenoble, France, 1998
    25 R. F. Kunz, D. A. Boger, T. S. Chyczewski, et al. Multi-phase CFD analysis of natural and ventilated cavitation about submerged bodies. ASME FEDSM 99-7364, San Francisco, USA, 1999
    26 I. Senocak. Computatuonal methodology for the simulation of turbulent cavitating flows. PhD Dissertation, University of Florida, USA, 2002
    27 R. Vaidyanathan, I. Senocak, J. Wu, W. Shyy. Sensitivity Evaluation of a Transport Equation Based Turbulent Cavitation Model. AIAA, 2002~3184
    28黄海龙,魏英杰,黄文虎,王聪,于开平,黄庆新.重力场对通气超空泡影响的数值模拟研究.哈尔滨工业大学学报. 2007,39(5):800~803
    29王海斌,张嘉钟,魏英杰,等.空泡形态与典型空化器参数关系的研究——小空泡数下的发展空泡形态.水动力学研究与进展. 2005, 20(2):251~257
    30张鹏,傅慧萍.跨超音速射弹的超空泡数值模拟. 2009, 29(5):166~169
    31易文俊,李月洁,王中原,熊天红,钱吉胜.小攻角下水下高速射弹的空泡形态特性.南京理工大学学报(自然科学版). 2008, 32(4):464~467
    32 A. Kubota, H. Kato, H. Yamaguchi. A new modeling of cavitating flows: a numerical study of unsteady cavitation on a hydrofoil section. Journal of Fluid Mechanics, 1992, 240:59~96
    33 C. C. S. Song, Q. Qin. Numerical simulation of unsteady cavitating flow. In 4th International Symposium on Cavitation, Pasadena, USA, 2001
    34 Q. Qin, C. C. S. Song, R. E. A. Arndt. A virtual single-phase nature cavitation model and its application to CAV2003 hydrofoil. In 5th International Symposium on Cavitation, Osaka, Japan, 2003
    35冯光,颜开.超空泡航行体水下弹道的数值计算.船舶力学. 2005, 9(2):1~8
    36程晓俊,鲁传敬.二维水翼的局部空泡流研究.应用数学和力学. 2000, 21(12):1310~1317
    37袁绪龙,张宇文,杨武刚.高速超空化航行体典型空化器多相流CFD分析弹箭与制导学报. 2005, 25(1):53~55
    38贾力平,张嘉钟,于开平,王聪,王海斌.空化器线形与超空泡减阻效果关系研究.船舶工程. 2006, 28(2):20~23
    39褚学森,王志,颜开.自然空化流动数值模拟中参数取值影响的研究.船舶力学. 2007,11(1):32~39
    40曹伟,魏英杰,韩万金,等.超空泡航行体阻力系数的数值模拟研究.工程力学. 2008, 25(12):208~212
    41易文俊,李铁鹏,熊天红,等.水下高速航行体自然超空泡形态特性仿真研究.南京理工大学学报. 2009, 33(3):330~334
    42 Y. D. Vlasenko. Experimental Investigations of High Speed Unsteady Supercavitating Flows. Proceedings of Third International Symposium on Cavitation, 1998(24):524-528
    43 Y. N. Savchenko. Modeling the Supercavitation Processes. International Journal of Fluid Mechanics research. 2001, 28(5):644-659
    44 R. Kuklinski, C. Henoch and J. Castano. Experimental Study of Ventilated Cavities on Dynamic Test Model. Naval Undersea Warfare Center, Cav2001:Session B3. 004
    45 H. Reichardt. The Laws if Cavitation Bubbles at Axially Symmetrical Bodies in a Flow. Ministry of Aircraft Production Volkenrode, MAP-VC,Report and Translations766,ONR,1946
    46 B. B. Phillip. Supercavitation. California State Science Fair 2002 Project Summary. Project Number: J0102, 2002
    47 E. Silberman, C. S. Song. Instability of Ventilated Cavities. Journal of Ship Research, 1961,5(1):13~33
    48 R. Kuklinski, C. Henoch, J, Castano. Experimental Study of Ventilated Cavities on Dynamic Test Model. Cav2001:Session B3.004
    49 J. D. Hrubes. High-speed imaging of supercavitating underwater projectiles. Experiments in Fluids. 2001,30:57~64
    50蔡悦斌,鲁传敬,何友声.瞬态空化泡的成长与溃灭.水动力学研究与进展. 1995,10(6):653~659
    51王怀应.不同测量点的潜艇螺旋桨空化噪声差异性研究.声学与电子工程. 1996,4:40~43
    52刘全俊.利用尖脉冲检测螺旋桨空化.声学与电子工程. 1988年02期
    53孙小鹏.压力脉动下空化的概率估计.水利学报. 1988年12期
    54谢正桐,何友声.小攻角带空泡细长体的试验研究.水动力学研究与进展. 2001, 16(3):374~381
    55谢正桐,何友声.小攻角下轴对称细长体的充气肩空泡试验研究.试验力学. 1999, 14(3):279~287
    56 X. M. Feng, C. J. Lu, T. Q. Hu. Experimental Research on A Supercavitating Slender Body of Revolution With Ventilation. Journal of Hydrodynamics, Ser. B , 2002 14(2):17~23
    57袁绪龙,张宇文,刘乐华,陈伟政,邓飞.水下航行体通气超空泡形态试验研究.应用力学学报. 2004, 21(3):33~37
    58 G. Y. Wang, X. B. Li, M. D. Zhang. Multiphase Dynamics of Supercavitating Flows around a Hydrofil. Sixth International Symposium on Cavitation. Cav2006, Wageningen, The Nethelands, September 2006
    59张博,张宇文,李文哲,杨武刚,范辉.超空泡航行体前部线型对空泡生成速度影响实验研究.西北工业大学学报. 2008, 26(5):540~544
    60张学伟,魏英杰,张嘉钟,王聪,于开平.模型结构对通气超空泡影响的实验研究.工程力学. 2008, 25(9):203~208
    61 R. Rand, R. Pratap, D. Ramani, J. Cipolla, I. Kirschner. Impact Dynamics of a Supercavitating Underwater Projectile. 1997 ASME Design Engineering Technical Conferences. 1997, Sacramento, California: DETC97/VIB-3929
    62 Salil S. Kulkarni, R. Pratap. Studies on the dynamics of a supercavitating projectile. Applied Mathematical Modelling. 2000 (24):113~129
    63 M. Ruzzene, F. Soranna. Impact Dynamics of Elastic Supercavitating Underwater Vehicles. 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. 2002, Atlanta, Georgia: AIAA 2002-5632
    64 M. Ruzzene, Dynamic buckling of periodically stiffened shells: application to supercavitating vehicles. International Journal of Solids and Structures. 2004,41:1039~1059
    65 J. Sweger, R. Kamada, M. Ruzzene. Optimization of Trimmed Flight Configurations for Supercavitating Vehicles. 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 2004, Palm Springs, California: AIAA 2004-1546
    66 A. Abe, M. Katayama, T. Saito, K. Takayama. Numerical simulation on supercavitation and yawing of a supersonic projectile traveling in water. Symposium on Interdisciplinary Shock Wave Research, March 22-24, 2004, Sendai, Japan
    67 E. Alyanak, V. Venkayya, R. Grandhi, R. Penmetsa. Structural response and optimization of a supercavitating torpedo. Finite Elements in Analysis and Design. 2005,41:563~582
    68 E. Alyanak, R. Grandhi, R. Penmetsa. Optimum design of a supercavitating torpedo considering overall size, shape, and structural configuration. International Journal of Solids and Structures. 2006,43: 642~657
    69 S. S. Ahn, M. Ruzzene. Optimal design of cylindrical shells for enhanced buckling stability: Application to supercavitating underwater vehicles. Finite Elements in Analysis and Design. 2006,42: 967~976
    70 Mohammad Hassan Ziraksaz. Solid Propellant Application in High Speed Underwater Projectiles and Bullets. 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, July 2008, Hartford, CT: AIAA-2008-4975
    71 V. D. Kubenko, O. V. Gavrilenko. Impact interaction of cylindrical body with a surface of cavity during supercavitation motion in compressible fluid. Journal of Fluids and Structures. 2009, 25:794~814
    72杨传武,王安稳.动态轴向载荷对超空泡航行体振动特性的影响.华中科技大学学报(自然科学版). 2008,36(12):71~74
    73杨传武,王安稳.超空泡水下航行体振动特性分析.海军工程大学学报. 2008,20(4):30~32
    74孟庆昌,张志宏,顾建农,刘巨斌.超空泡射弹尾拍分析与计算.爆炸与冲击. 2009,29(1):56~60
    75杨传武,刘刚,王安稳.超空泡体结构响应问题的有限元分析.海军工程大学学报. 2008,20(2):101~104
    76潘展程,鲁传敬,李杰,郭建红.超空泡航行体做受迫纵荡运动的数值模拟.第二十一届全国水动力学研讨会暨第八届全国水动力学学术会议暨两岸船舶与海洋工程水动力学研讨会文集:749~755
    77周凌,安伟光,安海.超空泡运动体强度与稳定性的非概率可靠性分析.哈尔滨工程大学学报. 2009,30(4):362~367
    78蒋丽忠,洪嘉振.作大范围运动弹性薄板中的几何非线性与耦合变形.力学学报. 1999,31(2):243~249
    79肖世富,陈滨.一类刚-柔耦合系统柔体模态分析的特征.中国空间科学技术. 1998,4:8~13
    80 A. D. Wright, C. E. Smith. Vibration mode of centrifugal stiffened beam. Journal of Applied Mechanics. 1982,49:197~202
    81 H. EI-Absy, A. A. Shabana. Coupling between rigid body and deformation modes. Journal of Sound and Vibration. 1996,198(5):617~637
    82洪嘉振,蒋丽忠.柔性多体系统刚-柔耦合动力学.力学进展. 2000,28(1):8~12
    83 H. H. Yoo, S. H. Shin. Vibration analysis of rotating cantilever beams. Journal of Sound and Vibration. 1998,212(5):807~828
    84 T. R. Kane, R. R. Ryan, A. K. Banerjee.Dynamics of a cantilever beam attached to a moving base. Journal of Guidance, Control and Dynamics, 1987, 10(2): l39~l51
    85 D. J. Zhang, C. O. Liu, R. L. Huston. On dynamic stiffening of an arbitrary flexible body with large overall motion: an integrated approach. Mech. Strut & Mach. 1995,23:419~438
    86 A. K. Banerjee. Block-diagonal equations for multibody elastodynamics with geometric stiffness and constraints. Journal of Guidance, Control and Dynamics. 1994,16(6):1092~1100
    87 J. Ryu, S. S. Kim. A general approach to stress stiffening effects on flexible multibody dynamic systems. Mech. Strut & Mach. 1994,22(2):157~180
    88 J. Mayo, J. Dominguez. Geometrically nonlinear formulation of flexiblemultibody systems in terms of beam elements: geometric stiffness. Computers & Structures. 1996,59:1039~1050
    89 J. D. Connelly, R. L. Huston. The dynamics of flexible multibody system: a finite segment approach - II example problems. Computers & Structures. 1994,50:259-262
    90 O. Wallrapp, R. Schwertassek. Representation of geometric stiffening in multibody system simulation. International Journal for Numerical Methods in Engineering. 1991,32:1833~1850
    91 D. J. Zhang. R. L. Huston On Dynamic Stiffening of Flexible Bodies Having High Angular Velocity. Mech. Strut & Mach. 1996,24:313~329
    92蒋丽忠,洪嘉振.作大范围运动弹性梁的动力刚化分析.计算力学学报. 1998,15(4):407~413
    93蒋丽忠,周凌宇,罗小勇.刚一柔耦合系统动力学分析.长沙铁道学院学报. 2000,18(3):1~5
    94蒋丽忠,洪嘉振,赵跃字.作大范围运动弹性梁刚—柔耦合动力学建模.计算力学学报. 2002,19(1):12~15
    95蒋丽忠,刘仲武,余志武.作大范围运动弹性结构振动频率及模态的摄动解.中南工业大学学报(自然科学版). 2003,34(6):683~686
    96蒋丽忠,洪嘉振.大范围运动对弹性梁振动频率及模态的影响.振动与冲击. 1999,18(1):12~16
    97 D. T. Greenwood. Principles of Dynamics. Prentice-Hall. 1988: 382
    98吴三灵,温波,于永强.火炮动力学试验.国防工业出版社. 2004: 92~100
    99 A. May. Water Entry and Cavity-Running Behavior of Missiles. Navsea Hydroballistics Advisory Committee Technical Report SEAHAC/TR 75-2, 1975.
    100 I. N. Kirschner, D. C. Kring, A. W. Stokes, et al. Control strategies for supercavitating vehicles. Journal of Vibration and Control. 2002, 8: 219-242
    101 Y. N. Savchenko.Experimental investigation of supercavitating motion of bodies. RTO AVT/VKI special course: supercavitating flows, von Karman Institute for Fluid Dynamics, Rhode-Saint-Genese, Belgium, 12–16 February 2001
    102 A. D. Vasin. The Principle of Independence of the Cavity Sections Expansion (Logvinovich’s Principle) as the Basis for Investigation on Cavitation Flows. RTO AVT/VKI special course: supercavitating flows, von Karman Institute forFluid Dynamics, Rhode-Saint-Genese, Belgium, 12–16 February 2001
    103 V. N. Semenenko. Artificial supercavitation: Physics and calculation. RTO AVT/VKI special course: supercavitating flows, von Karman Institute for Fluid Dynamics, Rhode-Saint-Genese, Belgium, 12–16 February 2001
    104李裕春,时党勇,赵远. ANSYS11.0/LS-DYNA基础理论与工程实践.中国水利水电出版社. 2008
    105朱洪来,白象忠.流固耦合问题的描述方法及分类简化准则.工程力学. 2007,24(10): 92~99
    106邢景棠,周盛,崔尔杰.流固耦合力学概述.力学进展. 1997, 21(7): 19~38
    107刘云贺,俞茂宏,陈厚群.流体固体动力耦合分析的有限元法.工程力学. 2005, 22(6): 1~6
    108 M. Souli, A. Ouahsine, L. Lewin. ALE Formulation for Fluid-Structure Interaction Problems. Computer Methods in Applied Mechanics and Engineering, 2000.
    109 M. Souli. LS-DYNA Advanced Course in ALE and Fluid-Structure Coupling. Livermore Software Technology Corporation. Livermore, 2002
    110 L. Olovson, M. Souli, I. Do. LS-DYNA-ALE Capabilities (Arbitrary-Lagrangian-Eulerian) Fluid-Structure Interaction Modeling. Livermore Software Technology Corporation. Livermore, 2003
    111白金泽. LS-DYNA3D理论基础与实例分析.科学出版社. 2005
    112曹伟,王聪,魏英杰,等.自然超空泡形态特性的射弹试验研究.工程力学. 2006, 23(12): 175~179
    113 J. D. Hrubes. High-speed imaging of supercavitating underwater projectiles. Experiments in Fluids. 2001,30:57~64
    114 Release 11.0 Documentation for ANSYS Workbench. Ansys Inc,USA. 2007.
    115李政,金先龙,亓文果.流体-结构耦合问题的有限元并行计算研究.计算力学学报. 2007,24(6): 727~732
    116 Y. N. Savchenko. Control of Supercavitation Flow and Stability of Supercavitating Motion of Bodies. RTO AVT lecture series on supercavitating flows, Von Karman Institute, Brussels Belgium, February 12-16 2001
    117 Seong Sik Ahn. An Integrated Approach to the Design of Supercavitating Underwater Vehicles. Dissertation for the Doctoral Degree. 2007:2~5
    118陈春玉.反鱼雷技术.国防工业出版社. 2006:168~170
    119李凝,杨飚.德国轻型超空泡鱼雷研发现状及展望.鱼雷技术. 2008,16(2): 1~4.
    120姜百汇,马春勋,刘乐华.国外超空泡技术及其应用.飞航导弹. 2008,11: 20~24

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700