用户名: 密码: 验证码:
苗家坝水电站左岸溢洪道水力模型试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国有大批已建、正建、待建的大型水利水电工程,高速水流问题突出。为了充分发挥泄水道的作用,兼顾经济指标,常需将导流洞改为溢洪洞,而采用龙抬头形式。在高水头泄水建筑物中,高速水流问题就成为泄水建筑物中的一个重要问题。本文针对苗家坝水电站左岸溢洪道水力模型试验,通过减压和常压试验对溢洪道空化空蚀和掺气减蚀等水力学问题进行研究。
     通过左岸溢洪道常压水工模型试验,主要论证左岸溢洪道在不同特征水位、不同闸门开度下的流态,沿程压力分布及流速分布;通过减压模型试验,论述水流的空化数特性及空蚀的可能性;论证溢洪道掺气设施的数量、位置选择及体型优化,提出改进掺气措施;分析不同运行工况时,掺气设施的掺气特性。试验结果表明,修改后的掺气设施体型的掺气效果良好,可以满足工程运行的需要,为解决左岸溢洪道高速水流问题提供依据。
     水工模型试验取得的主要研究成果归纳如下:
     (1)拟定试验方案陡坡上的渐变段偏短,造成冲击波较强烈,影响溢洪道水流流态。经修改加长该渐变段后,流态明显改善,水流飞溅现象大为改观。门槽及溢洪道内压力正常,满足工程要求。
     (2)高0.16mm(模拟原型高度为7.2mm)垂直升坎凸体减压试验表明,各个部位均无发生稳定的空化云,因此,本溢洪道的空化空蚀问题并不突出。反弧末端及其下游是容易发生空蚀的部位;反弧末端下游发生空化的可能性沿程逐渐降低,越往下游越不容易空化。
     (3)拟定试验方案中,两道掺气坎均能形成稳定空腔,掺气效果较好,但1#掺气坎通气孔面积偏大;2#掺气坎溅水比较严重,其掺气坎体型有必要进一步优化。经优化修改后,1#掺气坎通风量比自然通风减少15%的通气量,并改用洞顶供气的方法。对2#掺气坎来说,溅水比拟定试验方案显著降低。
     (4)施工不平整度是高水头泄水建筑物普遍涉及到的问题,本溢洪道是一典型泄水道,结合本试验对施工不平整度问题进行探讨,不同部位的水流空化数和凸体初生空化数也各自不同,水流空化数和初生空化数都与溢洪道位置关系密切,并且σ/σ_i指标能够较好的反映溢洪道的空化特性。
There is the high-velocity fluid problem in the hydraulic and electricity projects that are constructed, constructing, planning to construct and the large-scale water conservations and electricity projects in our country. In order to make full use of the spillway and reduce the project construction cost, it has to been changes the conduction hole to spillway, and it’s often ogee spillway.In high-flood peak discharge structure, high-velocity fluid problem has become an important issue. In this paper, we took a hydraulic model test according to Miaojiaba Hydropower Station, study on such as cavitation erosion and aeration to alleviate cavitation hydraulics issues through the decompression and normal test on the spillway.
     Over the hydraulic model test of the left spillway in the Miaojiaba hydropower station, mainly proves the flow states under the different characteristic water level, the different gate opening of the left spillway, the pressure distribution with regulation and the flow velocity distribution; elaboration cavitation number characteristic of the current and cavitation erosion possibility; the proof over the aeration facility quantity to alleviate cavitation, the choice of location and the build optimize, proposed the improvement to the aeration facility; analyzes the aeration characteristic in different operating mode. The test result indicated that, after the optimized aeration facility is good effect in aeration effect, can satisfy the need of the project, provide the basis to solve the high-velocity flow question in the left spillway.
     The left spillway hydraulic model test main research results induction that is as follows:
     (1)In original scheme plan steep slope gradation section is short, and the shock-wave is to be intensed, and affects the spillway flow state. Then lengthens this gradation section, in the optimized plan, the flow state has obviously improved, the fluent splash phenomenon has a greatly effect. The pressure distribution is normal in the gate jiont and the spillway, satisfied the project request.
     (2)The decompression test of the height 0.16mm ( prototype height 7.2mm) vertical convex body indicates that: every spot have not the stable cavitation cloud, therefore, the cavitation erosion question of this spillway doesn’t catch the eyes. The end of the bucket and the downstream are the spots which are suffered from cavitation erosion;The possibility of cavitation erosion has been reduced downstream the bucket terminal, and securer and securer toward downstream.
     (3)In original scheme, there all can be formed the stable cavity downstream the two aerator. The aeration effect is good, but the hole shape of the ventilation is on the large side under 1# aerator, the splashes is seriously downstream 2# aerator, hereby, the shape of the aerator has the necessity to be further optimized; In the optimization scheme: the quantity ventilation reduced by 15% than by natural way downstream 1# aerator, and the method of ventilation replaced with the hole. The phenomenon of the splashes sharply reduced than the original scheme downstream 2# aerator.
     (4)The uneveness control standard is universal in the high-flood peak discharge structure. The very spillway is the typical one. This paper has studied the uneveness control standard through the hydraulic model test. The flow cavitation number and the incipient cavitation number are tight related to the location of the spillway, the flow cavitation number is different from the incipient cavitation of the convex body in the different position of the spillway,and it can truely reflect the very characteristics byσ/σi.
引文
[1]吴持恭主编.水力学[M]北京:高等教育出版社,1985.
    [2]R.T.柯乃普J.W.戴利F.G.哈密脱.空化与空蚀[M]北京:水利出版社出版,1981.
    [3]南京水利科学研究院,水利水电科学院研究院.水工模型试验[M]北京:水利电力出版社,1985
    [4]C.M.斯里斯基著.毛世民,杨立信译.高水头水工建筑物的水力计算[M]北京:水利电力出版社,1984.
    [5]松辽水利委员会科学研究所,长江流域规划办公室长江科学院.水工建筑物水力学原型观测[M]北京:水利电力出版社.1988,112~132.
    [6]杨庆,张建民,戴光清,王海云,等.气核对空化比尺效应的影响[J]水力发电学报,200524(3):75~77.
    [7]颜开.气核对空化的影响--法国的研究进展[J]船舶力学,1998,2(2):70~75.
    [8]王国玉,曹树良,赵令家,刘淑艳.高速水流中旋涡空化所引起的空蚀和振动[J]工程热物理学报,2002,23(6):707~710.
    [9]高秋生.对液体空化机理的进一步探讨[J]河海大学学报,1999,27(5):63~67.
    [10]计志也.空蚀研究现状[J]力学进展,1992,22(1):58~63.
    [11]纪伟.龙抬头泄洪洞反弧段空化空蚀研究综述[J]水科学与工程技术,2006,1:51~53.
    [12]张受天,聂孟喜.陡坡明槽反弧段空化问题的试验研究[J]水利学报,1984,6:28~35.
    [13]王玲玲,金忠青.高土石坝龙抬头泄洪洞抗蚀体型研究[J]水利学报,1997,8:44~48.
    [14]夏毓常.判别泄洪洞反弧段发生空蚀的水力特性标准[J]长江科学院院报,1998,15(2):49~53.
    [15]胡明龙.泄洪洞反弧段下游空化特性分析[J]水利学报,1983,3:14~21.
    [16]胡明龙.压力梯度区空化特性试验研究[J]水利水电科技进展,1996,8:36~41.
    [17]胡明龙.紊动剪切流中气核震荡对空化的作用[J]水动力学研究与进展,1994,9(2):182~189.
    [18]李玲,陈永灿,李旭东.泄洪隧洞防空蚀体型的数值研究[J]水利学报,2003,(7):12~15.
    [19]牛德东,张孝纯.略论水工建筑物空蚀的危害及防治[J]科技创新导报,2008,17:76.
    [20]王福霞,赵丽,付显威,宋学燕,等.空化初生研究综述[J]中国石油大学胜利学院学报,2006,20 (3):3~6
    [21]倪汉根.初生空化数比尺效应的修正[J]水利学报, 1999,9: 28~32.
    [22]倪汉根,陈霞.凹槽中的旋涡及初生空化数的估算[J]水利学报, 2000,2:16~21.
    [23]倪汉根.孔板泄洪洞初生空化数的估计[J]水动力学研究与进展, 1995,10(4):419~428.
    [24]梁川,倪汉根.三角形突体初生空化数与空蚀的实验研究[J]成都科技大学学报,1996,2:32~40.
    [25]王国玉,曹树良,等.剪切层区域旋涡空化的发生机理[J]清华大学学报(自然科学版), 2001,41 (10):62~64.
    [26]王国玉,曹树良.通气对空化引起振动的影响[J]水力发电学报,2001,2:55~62.
    [27]何国庚,罗军,黄素逸.空化初生的热力学影响研究[J]华中理工大学学报,1999,27(1):66~68.
    [28]乔慧琼,孙三祥,王惠敏,武金明.水力空化的最佳条件研究[J]环境科学与管理,2006,31(8):123~125.
    [29]魏群,高孟理.水力空化及其研究进展[J]湖南城市学院学报,2004.13(4):23~25.
    [30]武君等.水力空化及应用[J]化学工业与工程,2003,20(6):387~390.
    [31]王惠敏,孙三祥.水力空化及其研究现状[J]甘肃科技,2005,21(12):150~151.
    [32]曲景学,杨永全,张建民,等.消能孔板空化特性的数值模拟[J]四川大学学报(工程科学版),2001,33(3):30~33.
    [33]V.K.Kedrinskii,V.V.Kovalev and S.I.Plaksin.A model of bubble cavitation in a real liquid[J] Journal ofApplied Mechanics and Technical Physics,1986,27(5):703~707.
    [34]V.I.Makar'in.The method of successive approximation of a free boundary in problems of cavitation flow[J] Journal of Mathematical Sciences,1996,82(2):3335~3338.
    [35]L.A.Zolotov and V.Ya.Karelin.Two-phase flows and cavitation in power plants[J] Power Technology and Engineering (formerly Hydrotechnical Construction), 1977,11(2):174~179.
    [36]V.P.Karlikov and G.I.Sholomovich.Method of approximate account for the wall effect in cavitation flow around bodies in water tunnels[J] Fluid Dynamics,1966,1,(4):61~64.
    [37]Anindya Chatterjee and Dhiman Chatterjee.Analytical Investigation of Hydrodynamic Cavitation Control by Ultrasonics[J] Nonlinear Dynamics,2006,46,(1-2):179~194.
    [38]I.N.Bogachev, Yu.G.Veksler and Yu.A.Karasyuk.Effect of the corrosion medium on the cavitation-erosion resistance of brasses[J] Materials Science,1973,7(2):155~159.
    [39]V. K. Kedrinskii.Dynamics of the cavitation zone during an underwater explosion near a free surface[J] Journal of Applied Mechanics and Technical Physics, 1975:724~733.
    [40]Yu.P.Inozemtsev.Cavitation destruction of concrete and protective facings under natural conditions[J] Power Technology and Engineering (formerly Hydrotechnical Construction),1969,3(1):35~42.
    [41]é.L.Amromin,V.K.Aleksandrov and Yu.L.Levkovskii.Determination of conditions of cavitation inception on bodies in a flow with separation and attachment of the boundary layer[J] Journal of Applied Mechanics and Technical Physics,1986,27(2):184~189.
    [42]张云莲.泄水建筑物的空蚀破坏和处理方法[J]腐蚀与防护,2001,22(8):343~345.
    [43]何雄.锦江水库第二溢洪道空化与空蚀问题分析[J]人民珠江,2006,6:48~50.
    [44]杨志明,丁宇健.关于初生空化试验技术的规范[J]科学技术与工程,2003,3(3):219,223.
    [45]杨志明.初生空化与液体抗拉强度的关系[J]水动力学研究与进展,1990,4:27~34.
    [46]吴建华,柴恭纯.垂直汇流中超空穴空化噪声特性及其噪声预报[J]水力发电学报,1991,1:53~58.
    [47]夏维洪.液体抗拉强度与空化比尺效应[J]水动力学研究与进展,2001,6(3):366~373.
    [48]夏维洪.水质对空化初生的影响[J]水利学报,1993,11.48~55.
    [49]邓军,许唯临,雷军,刁明军.高水头岸边泄洪洞水力特性的数值模拟[J]水利学报,2005, 36(10):1209~1212.
    [50]刘超,杨永全.龙抬头明流泄洪洞反弧段下游边墙防蚀探讨[J]水利水电技术,2003,34(9):26~38.
    [51]杨永森.明流隧洞反弧段水力及空化特性研究[J]成都科技大学学报,1991,3:21~28.
    [52]刘韩生,张勇.论掺气减蚀[J]西北水资源与水工程,1996,7(1):42~47.
    [53]丁澎涛.盘石头水库泄洪洞的掺气减蚀研究[J]水利水电工程设计,2000,3:43~44.
    [54]焦爱萍,张春满,刘宪亮.溪洛渡泄洪洞掺气减蚀设施及体型优化的试验研究[J]灌溉排水学报,2008,27(2):70~73.
    [55]杨永森.低Fr数流动跌坎掺气槽的水力及掺气特性[J]水利学报,2000,2:27~31.
    [56]杨永森,等.挑坎掺气槽过流空腔区掺气特性的研究[J]水动力学研究与进展,1994,9 (1):71~77.
    [57]邓军,许唯临.自掺气水流流速分布[J]水动力学研究与进展,2002,17(3):369~375.
    [58]邓军,许唯临,曲景学,杨忠超,等.明渠水流自掺气对断面平均流速的影响[J]水力发电学报,2003,4:88~94.
    [59]Deng Jun,Xu Weilin,Qu Jingxue,et al.The inflnence of aerationon average velocity of self2aerated chute flow[J] Journal of Hydroelectric Engineering,2003,4:88~94.
    [60]夏勇,邓军,许唯临,陈先朴.明渠自掺气水流速度分布的试验研究[J]四川大学学报(工程科学版),2005,37(2):5~9.
    [61]陈先朴,西汝泽,邵东超等.掺气减蚀保护作用的新概念[J]水利学报,2003,8:70~74.
    [62]陈先朴,邵东超.掺气水流的气泡尺寸检测[J]水利水电技术,2006,37(10):33~36.
    [63]陈先朴,西汝泽,邵东超,柴恭纯.掺气减蚀研究的新方向[J]水利水电技术,2001,10:13~16.
    [64]梁斌,陈先朴,邵东超,等.高速掺气水流的气泡级配[J]水利水运工程学报, 2002,2:66~68.
    [65]董志勇,居文杰,吕阳泉,等.减免空蚀掺气浓度的试验研究[J]水力发电学报,2006,25(3):106~109.
    [66]董志勇,吕阳泉,居文杰,蔡新明,等.高速水流空化区和空蚀区掺气特性的试验研究[J]水力发电学报,2006,25(4):62~65.
    [67]董志勇.高速掺气水流可压缩流特性[J]水力发电学报,1998,4:42~49.
    [68]谢省宗,陈文学.掺气水流掺气浓度缩尺影响的估计[J]水利学报,2005,36(12):1420~1425.
    [69]庞昌俊.大型龙抬头明流泻洪洞的体形设计[J]水力发电,1992,8:23~28
    [70]庞昌俊.大型“龙抬头”明流泄洪洞小底坡掺气减蚀设施的选型研究[J]水利学报,1993, 6:61~66.
    [71]王海云,戴光清,杨永全,杨庆.明流泄洪洞掺气减蚀设优化试验研究[J]水力发电,2003,11:54~56.
    [72]刘超,杨永全.泄洪洞反弧末端掺气减蚀研究[J]水动力学研究与进展,2004,19(3):375~382.
    [73]杨永森,杨永全.掺气减蚀设施体型优化研究[J]水科学进展,2000,11(2):144~147.
    [74]罗克湘.白云水电站高水头明流泄洪洞水力学问题的试验研究[J]湖南水利,1995,5:15~20.
    [75]王均星,王汉辉,雷川华,邹鹏飞,等.云龙水库泄洪洞空蚀及体形优化研究[J]武汉大学学报(工学版),2003,36(1):17~20.
    [76]李忠义,陈霞,陈美法.导流洞改建为孔板泄洪洞水力学问题研究[J]水利学报,1997 (2):1~7.
    [77]谢省宗,李世琴.高坝厂房顶溢流反弧曲线的改进[J]水力发电,1982,(1):31~35.
    [78]李忠义.高水头溢流面体型的研究[J]水利学报,1982,(9):1~10.
    [79]许协庆,孙晓霞.多参数曲率缓变溢流面的水力特性[J]水力发电学报,1983,(3):15~21.
    [80]李炜.关于超音速掺气水流的若干问题[J]泄水工程与高速水流,1993,2:9~13.
    [81]赵建福,李炜.高速掺气水流的压缩性准则[J]水利学报,1999,5:35~38.
    [82]董曾南,王晋军,陈长植,夏震寰.粗糙床面明渠均匀紊流水力特性[J]中国科学, 1992,3:541~547.
    [83]尚晓峰,董曾南.光滑溢流坝面水流边界层特性试验研究[J]水利学报,1984,6:1~9.
    [84]张志昌,李建中,牛争鸣.陡坡紊流边界层的分析与计算[J]陕西机械学院学报,1991,7(1):53~59.
    [85]黄天润,李建中.溢流曲面紊流边界层计算探讨[J]陕西水力发电,1993,9(4):9~l8.
    [86]牛争鸣,李建中.溢流坝反弧段动量积分方程的数值解及有关水力特性的试验研究[J]水力发电学报,1991,2:7l~79.
    [87]牛争鸣,李建中.等溢流反弧段的紊流边界层及摩阻特性[J]水利学报,1994,3:57~65.
    [88]何文学,李茶青.考虑边界层发展时溢流反弧段动水压强的确定[J]水科学进展,1996,7(3):247~251.
    [89]何文学.溢流反弧段壁面势流流速计算方法的探讨[J]水利水电技术,1996,7:7~9.
    [90]肖兴斌.泄洪深孔掺气减蚀研究[J]水电站设计,2003,19(2):85~89.
    [91]周菊华.水工建筑物掺气减蚀设施近况简介[J]云南水电技术,1991,2:14~19.
    [92]聂孟喜.掺气折流器对侧空腔和底空腔长度的影响[J]水利学报,2002,5:91~96.
    [93]效先,孙可寅,高学平,等.水利枢纽溢洪道掺气坎槽体型研究[J]水利水电技术, 2004,35(9):51~53.
    [94]邱勇,龚爱民,张凌.平甸水库溢洪道高速水流流态试验研究[J]水利科技与经济,2003,9(2):1~1.
    [95]任静,常近时.大型水力机组中空化现象的比尺效应[J]水利水电技术,1998,29(4):22~25.
    [96]程晓俊,鲁传敬.二维水翼的局部空泡流究[J]应用数学和力学,2000,21(12):1310~1318.研
    [97]黄景泉.气核成份及其对空化现象的影响[J]水动力学研究与进展,1992,2:138~140.
    [98]彭晓星,王力,潘森森.水中含气量对旋涡空化的影响[J]水动力学研究与进展,1989,4:60~68.
    [99]李广来,刘韩生,安梦雄.苗家坝水电站左岸溢洪洞反弧段掺气减蚀试验[J]人民长江,2008,12:64~66.
    [100]鲍尔.高速水流中表面不平整引起的空穴[A]北京:水利电力出版社,1979:64~74.
    [101]许协庆,周胜.沿圆弧弓形和半弓形突体的水流压力分布和初生空穴数[A]北京:中国水利水电出版社,1997:90~101.
    [102]刘长庚.泄水建筑物局部突体初生空化数试验研究[A]北京:水利电力出版社,1983:36~56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700