用户名: 密码: 验证码:
聚碳酸酯/无机纳米复合材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物的高性能与多功能化是近年来高分子材料理论与应用领域研究热点,纳米粒子在聚合物中的填充改性对于开发新型复合材料具有十分重要的意义。本文从熔盐辅助煅烧技术制备小粒径高分散纳米粒子出发,采用偶联剂和聚合物接枝改性的方法对纳米粒子进行表面处理,并与聚碳酸酯(PC)熔融共混制备PC纳米复合材料。考察PC纳米复合材料的力学、耐热、抗紫外老化等性能。并通过溶胶-凝胶法制备了透明杂化体纳米材料,初步探索了该材料与PC树脂共混后的力学和光学等性能。
     (1)小粒径高分散纳米ZrO_2改性填料的制备与表征
     分别采用反相微乳液法和反相化学沉淀法结合熔盐辅助煅烧前驱物制备小粒径高分散的纳米ZrO_2。研究不同反应条件、煅烧温度和煅烧方式对纳米ZrO_2晶型和分散性的影响规律。
     反相微乳液法中,根据电导率的变化配制稳定的TritonX-100/Span85/环己烷/正己醇微乳液体系,为纳米颗粒制备提供微反应器。反相化学沉淀法中,在沉淀过程中加入表面活性剂,通过正丁醇共沸蒸馏干燥前驱物可以防止产物团聚。两种方法得到的前驱物辅以一定比例LiNO_3熔盐煅烧后,产物的分散性均得到明显的提高。优化制备工艺合成小粒径高分散的立方晶相球形纳米ZrO_2,最后讨论了熔盐煅烧对产物分散性的影响机理。
     (2)纳米ZrO_2粉体表面改性及其PC纳米复合材料的制备与表征
     以硅烷偶联剂3-甲基丙烯酰氧基丙基三甲氧基硅烷(KH570)接枝改性,聚对苯二甲酸乙二醇酯(PET)接枝聚合改性两种方法对纳米ZrO_2的表面进行有机改性。采用FT-IR,TGA,TEM,XPS接触角等分析了改性前后纳米粒子表面情况,两种改性方法均为化学改性。
     通过熔融共混法,将未改性ZrO_2、以KH570和PET接枝改性的纳米ZrO_2与PC复合,制得了PC/ZrO_2纳米复合材料,并考查了其力学、动态力学、耐热等性能。结果表明,粉体的加入能提高动态力学性能的储存模量、损耗模量。同时复合材料的耐热性也得到提高。在对力学性能考察时发现,粉体加入能不同程度的提高弯曲强度和模量,但当加入未改性ZrO_2时,复合材料的缺口冲击性能,拉伸性能都变差,而加入ZrO_2-KH570和ZrO_2-g-PET会使复合材料的缺口冲击强度、拉伸性能均随着添加量增加呈现先升高后降低的趋势。由缺口冲击断面的SEM可看出,改性后纳米粉体均匀地分散在PC基体中,具有较好的界面相容性,能够起到增强增韧的作用,填充ZrO_2-g-PET的效果好于ZrO_2-KH570,加入ZrO_2-g-PET的冲击强度最大值要比加入ZrO_2-KH570高出10%以上。同时通过引入TPT公式对三种粒子与PC的界面关系进行了半定量的分析,反映界面性能的B值ZrO_2-g-PET>ZrO_2-KH570>未改性ZrO_2,界面性能ZrO_2-g-PET最好。
     (3)纳米TiO_2粉体表面改性及其PC纳米复合材料的制备与表征
     通过熔融共混法,将未改性TiO_2、以KH570和PET接枝改性的纳米TiO_2与PC复合,制得了PC/TiO_2纳米复合材料,并考查了其力学、动态力学、耐热及抗紫外老化等性能。结果表明,所得PC/TiO_2纳米复合材料的力学、动态力学及耐热等性能均有不同幅度改变,改性后的粉体能在一定添加量内能有效提高综合性能,但过大的添加量会产生团聚导致力学性能下降。同时,添加了TiO_2的纳米复合材料显示出良好的抗紫外老化性能,紫外光照射240h后,材料的力学性能的保持率明显高于未加入改性TiO_2粉体的纯PC。
     (4) P(MMA-co-MSMA)/TiO_2/ZrO_2杂化体的制备及在PC中应用初探
     通过溶胶-凝胶法制备了均相透明的P(MMA-co-MSMA)/TiO_2/ZrO_2新型杂化体(hybrid)材料,并将其与PC树脂共混,得到了PC/hybrid复合材料。研究结果表明,随着无机组分的增加,杂化体的折射率提高,紫外吸收增强。同时,当纳米粒子粒径由20-30nm增大到80-90nm时,杂化体始终保持透明。另外,杂化体的添加,使得PC/hybrid复合材料拉伸强度保持不变,弯曲强度略有上升,而冲击强度下降。复合材料显示出优异的光学性能,具有较好的透明性。当150杂化体含量为3.0 wt%时,复合材料的折射率在300-800nm内均有较大幅度的提高,同时透光率可达75%。
In recent years,the multi-functionalization and high performance of polymer has been the hot field of polymer materials research and application.The filling nanoparticles in polymer is of great significance in terms of developing the new type of composite materials.In this dissertation,the research began from the molten salt assisted preparation of well-dispersed ZrO_2 nano particles and adopted the methods of coupling agent and the graft modification of polymer to modify the surfaces of nanoparticles.PC nanocomposites were prepared via the melting blending method.The mechanical properties,dynamic mechanical properties of PC nanocomposites as well as its thermal stability and UV light resistance were also studied.Meanwhile,a new transparent organic-inorganic hybrid was prepared via the Sol-Gel processing.The PC/hybrid composite mechanical properties and optics properties were also primarily explored.
     (1) The preparation and characterization of the well-dispersed,small diameter ZrO_2
     The well-dispersed,small diameter ZrO_2 was prepared via reverse microemulsion system and chemical sedimentation respectively assisted by molten salt to calcine the precursor.The influencing rules of the crystalline structure and dispersibility of nano-sized ZrO_2 were also studied from the following aspects of different reaction conditions,calcination temperature and mode.
     According to the variety of conductance,the stabilized Triton X-100/span85/yclohexane/hexyl alcohol/water could be synthesized by the method of reverse microemulsion and could provide micro-reactor for the preparation of nanoparticles.In the chemical sedimentation system,the agglomeration of outcomes could be prevented with the addition of surfactant during the course of sedimentation, azeotropic distillation through which to desiccate precursor.The dispersibility of outcomes could obviously be improved by the above two methods through which the precursor was obtained and calcined by molten salt with a certain amount of LiNO_3. Thus the well-dispersed small-diameter spherical cubic-crystalline nanopaticles ZrO_2 were synthesized with optimizing processing.The last phase also discussed about the mechanism of molten salt calcination's influence upon the dispersibilty of outcomes.
     (2) The surface modification of nano-ZrO_2 and the preparation and characterization of PC/ZrO_2 nanocomposites.
     The surface organic modification of nano zirconia was studied and the research was focused on the following two methods:silane coupling agent 3-(trimethoxydilyl) propylmethacrylate(KH-570) grafting modification and the modification of poly(ethylene terephthalate)(PET) graft polymerization.The preceding two methods all belong to the chemical modifications.The modified products,the surfaces of ZrO_2 were analyzed by FT-IR,TGA,XPS,TEM and contact angle test,respectively.
     The PC/ZrO_2 nanocomposites were prepared via melting blending.At the same time,their properties of mechanics,dynamic mechanics and thermal stability were examined.Results showed that the fill of nanoparticles was able to promote storage modululoss,loss modulus and the thermal dispersiblity of composites.With respect to the mechanical property,filling nanoparticles could increase the bending strength and modululoss.When blended with original ZrO_2,the notched impact strength and the tensile property of nanocomposites would be both weakened.However,these properties would present the tendency of changing from high to low as a result of gradual filling of ZrO_2-KH570 and ZrO_2-g-PET.The SEM photos of fractured surface of notched-impact showed that the modified nanoparticles dispersed in PC homogeneously and had preferable interfacial interactions so as to improve the toughening and strengthening.The result of filling ZrO_2-g-PET was better than that of filling ZrO_2-KH570.The max value of impact strength of filling ZrO_2-g-PET was 10% higher than that of ZrO_2-KH570.Meanwhile,the relationships of three types of nanoparticles with PC interfaces were analyzed half quantitatively by introducing the formula of TPT.Value B reflected the property of interface:ZrO_2-g-PET>ZrO_2-KH570>Original ZrO_2 and ZrO_2-g-PET had the best interfacial property.
     (3) The surface modification of nano-TiO_2 and the preparation and characterization of PC/TiO_2 nanocomposites.
     The original TiO_2 and the modified TiO_2 which included TiO_2-KH570 and TiO_2-g-PET were melting blended with PC to prepare PC/TiO_2 composites.Their properties of mechanics,dynamic mechanics,thermal stability and UV light resistance were equally examined.The result demonstrated that the obtained PC/TiO_2 nanocomposites varied in all of the properties of mechanics,dynamic mechanics and thermal stability.The modified nanoparticles could promote those comprehensive properties effectively within a certain amount of fill contents while too much fill contents would form the agglomeration which led to weaken the mechanics at last. However,the nanocomposites blended with TiO_2 displayed the favorable property of UV light resistance.After UV light radiation 240h,the keeping rate of mechanical properties of PC/TiO_2 nanocomposites was obviously higher than that of the neat PC.
     (4) The preparation of P(MMA-MSMA)/titania/zirconia hybrid materials by Sol-Gel processing and the primarily application in PC.
     A new transparent hybrid P(MMA-co-MSMA)/TiO_2/ZrO_2 was prepared via Sol-Gel processing and blended with PC resin and thus PC/hybrid composites was prepared. The result indicated that with the inorganic content increasing,the refractive indices increased and ultraviolet absorption became stronger.At the same time,the nanoparticles sizes increased from 20-30nm to 80-90nm and the hybrid materials kept transparent all the time.Besides,the fill of hybrid materials was able to make the tensile strength of PC/hybrid unchanged,bending strength increased appreciably and impact strength weakened.This kind of material also possessed excellent optic property and preferable transparence.When I50 hybrid contained 3.0wt%hybrid,the refractive ratio of composites would change from 300-800nm within which obvious increase was observed and the transparence could be 75%.
     This work was financially supported by Technical Innovation Team Project of Shanghai Science and Technology Committee(06DZ05902) and the Cooperative Project Between Shanghai University and Essilor Group of France.
引文
[1]李笃信,贾德民.聚合物/无机物纳米复合材料研究进展及应用前景[J].高分子材料科学与工程,2003,19(4):22-27.
    [2]Wang S Y,Li X A,Chun Y.Preparation of homodispersed nano zirconia[J].Powder Technol 2006,168(2):53-58.
    [3]施利毅,戴清,郭妍等.纳米SnO_2/TiO_2复合颗粒形态结构表征[J].功能材料,2001,32(5):532-533.
    [4]尹衍升,陈守刚等.氧化锆陶瓷的掺杂稳定及生长动力学[M].北京:化学工业出版社,2004.
    [5]Feng X,Bai Y J,Lu B.A novel reduction-oxidation synthetic route to cubic zirconia nanocrystallite[J].J Cryst Growth 2004,262(1):420-423.
    [6]陈大明,张晨,孟国文等.粒径与掺杂对ZrO2纳米粉相结构的影响[J].材料研究学报,1995,9(3):259-262.
    [7]唐裕华,李福,刘国庆等.ZrO_2(Y_2O_3)超细粉末的性能及其在定氧传感器上的应用[J].材料研究学报,1994,8(5):434-436.
    [8]张渊明,霍慧芳,庞先杰等.ZrO_2超细粒子的制备与表征[J].暨南大学学报(自然科学版),1998,19(3):64-68.
    [9]Cliord Y T,Lee M H,Wu Y C.Control of zirconia particle size by using two-emulsion precipitation technique[J].Chem Eng Sci 2001,56(7):2389-2398.
    [10]Duan G R,Yang X J,Huang G H,et al.Water/span80/Triton X-100/n-hexyl alcohol/n-octane microemulsion system and the study of its application for preparing nanosized zirconia[J].Mater Lett 2006,60(13):1582-1587.
    [11]Clifford Y T,Hsiao B Y,Chiu H Yi.Preparation of spherical hydrous-zirconia nanoparticles by low temperature hydrolysis in a reverse microemulsion[J].Colloids Surf,A Physicochem Eng Asp 2004,237(1-3):105-111.
    [12]Desheng Ai,Shinhoo Kanga.Synthesis of 3Y-ZrO_2 nano-powders via a W/O emulsion[J].Ceram Int 2004,30(4):619-623.
    [13]Ma T,Huang Y,Yang J L,et al.Preparation of spherical zirconia powder in microemulsion system and its densification behavior[J].Mater Design 2004(25):515-519.
    [14]赖升,尾畸文治.超微粒子导论[M].武汉工业大学出版社,1989.
    [15]段国荣,杨绪杰,陆路德等.溶胶-凝胶/共沸蒸馏法制备单相氧化锆超细粉[J].人工晶体学报,2006,35(2):327-331.
    [16]Viazzi C,Deboni A,Ferreira J Z,et al.Synthesis ofyttria stabilized zirconia by sol-gel route:influence of experimental parameters and large scale production[J].Solid State Sci 2006,8(9):1023-1028.
    [17]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社,2002.
    [18]Piticescu R.Hydrothermal synthesis of nanostructured zirconia materials:Present state and future prospects[J].Sensors Actuat B 2005,109(1):102-106.
    [19]Yin H B,Wada Y J,Kitamura T,et al.Novel synthesis of phase pure nano-particulate anatase and rutile TiO_2 using TICl_4 aqueous solutions[J].Mater Chem 2002,(12):378-383.
    [20]Wei G,Nan C W,Deng Y,et al.Self-organized synthesis of silver chainlike and dendritic nanost ructures via a solvot hermal method[J].Chem Mater 2003,15(23):4436-4441.
    [21]徐国财,张立德.纳米复合材料[M].北京:化学工业出版社,2002.
    [22]张心亚,沈慧芳,黄洪等.纳米粒子材料的表面改性及其应用研究进展[J].材料工程,2005,10:58-63.
    [23]吴崇浩,王世敏.纳米微粒表面修饰的研究进展[J].化工新型材料,2002,30(7):1-5.
    [24]何涛波,陈建峰.无机超细粒子表面聚合物包覆改性研究进展[J].高分子材料科学与工程,2004,20(3):13-17.
    [25]Takeuchil Y,Kazuhiro F,Tsubokawa N,et al.Preparation of amphiphilic carbon black by postgrafting of polyethyleneimine to grafted polymer chains on the surface [J].Polym Bull 1998,41(1):85-90.
    [26]Nishizawa N,Nishimura J,Tsubokawa N,et al.Grafting of branched polymers onto nano-sized silica surface:Postgrafting of polymers with pendant isocyanate groups of polymer chain grafted onto nano-sized silica surface[J].Prog Org Coat 2005,53(4):306-311.
    [27]Tsubokawa N,Shirai Y,Ysuchida H,et al.Photografting of vinyl polymers onto ultrafine inorganic particles:Photopolymerization of vinyl monomers initiated by azo groups introduced onto these surface[J].J Polym Sci A:Polym Chem 1994,32(12):2327-2332.
    [28]Shirai Y,Kawatsura K,Tsubokawa N,et al.Solid-phase photocatalytic degradation of polystyrene with modified nano-TiO_2 catalyst[J].Prog Org Coat 1999,36(4):217-224.
    [29]Arasawaa H,Odawaraa C,Yokoyamaa M,et al.Grafting of zwitterion-type polymers onto silica gel surface and their properties[J].React Funct Polym 2004,61(2):153-161.
    [30]Luo Y,Rong M Z,Zhang M Q,et al.Surface grafting onto SiC nano particles with glycidyl methacrylate in emulsion[J].J Polym Sci A:Polym Chem 2004,42(15):3842-3852.
    [31]Zan L,Liu Z S.Organic modification on TiO_2 nanoparticles by grafting polymer[J].J Mater Sci 2004,39(9):3261-3264.
    [32]Zeng Z,Yu J,Guo Z X.Preparation of Polymer/Silica composite nanoparticles bearing carboxyl groups on the surface via emulsifier-Free emulsion copolymerization[J].J Polym Sci A:Polym Chem 2005,43(13):2826-2835.
    [33]郭朝霞,李莹,于建等.聚芳酯树枝状分子接枝改性纳米二氧化硅[J].高等学 校化学学报,2003,24(6):1139-1141.
    [34]Yoshinaga K,Chiyoda M,Ishiki H,et al.Colloidal crystallization of monodisperse and polymer-modified colloidal silica in organic solvents[J].Colloid Surface A 2002,204(1):285-293.
    [35]张和鹏,张秋禹,谢钢等.磁性复合微球制备方法[J].化学通报,2005,68:1-7.
    [36]Carrot G,Diamanti S,Manuszak M,et al.Atom transfer radical polymerization of n butyl acrylate from silica nanoparticles[J].J Polym Sci A:Polym Chem 2001,39(24):4294-4301.
    [37]Christy R V,Zhang Z J.Atom transfer radical polymerization synthesis and magnetic characterization of MnFe_2O_4/polystyrene core/shell nanoparticles[J].J Am Chem Soc 2002,124(48):14312-14313.
    [38]Goodall A R,Wilkson L C.Mechanismof emulsiom polymerization of styrene in soap free systems[J].J Polym Sci A:Polym Chem 1977,15(9):2193-2202.
    [39]梁文平.乳状液科学与技术基础[M].北京:科学出版社,2001.
    [40]Xie X L,Kwok R,Li Y,et al.Structure-property relationships of in-situ PMMA modified nano-sized antimony trioxide filled poly(vinyl chloride) nanocomposites [J].Polymer 2004,45(8):2793-2802.
    [41]张良均,程菊兰,赵仲宇等.纳米TiO_2甲基丙烯酸甲酯原位乳液聚合研究[J].涂料工业,2003,33(8):1-4.
    [42]何涛波,毋伟,陈建峰等.碳酸钙/聚甲基丙烯酸甲酯纳米复合粒子制备及表征[J].化学反应工程与工艺,2003,19(2):135-141.
    [43]Erdem B,Sudol E D,Dimonie V L,et al.Encapsulation of inorganic particles via miniemulsion polymerization.I.Dispersion of titanium dioxide particles in organic media using OLOA 370 as stabilizer[J].J Polym Sci A:Polym Chem 2000,38(24):4419-4430.
    [44]Erdem B,Sudol E D,Dimonie V L,et al.Encapsulation of inorganic particles via miniemulsion polymerization.Ⅱ.Preparation and characterization of styrene miniemulsion droplets containing TiO_2 particles[J].J Polym Sci A:Polym Chem 2000,38(24):4431-4440.
    [45]Erdem B,Sudol E D,Dimonie V L,et al.Encapsulation of inorganic particles via miniemulsion polymerization.Ⅲ.Characterization of encapsulation[J].J Polym Sci A:Polym Chem 2000,38(24):4441-4450.
    [46]Caruso F.Nanoengineering of Particle Surfaces[J].Adv Mater 2001,13(1):11-22.
    [47]刘桂霞.稀土纳/微米颗粒的包覆技术与性能研究[D].天津大学博士学位论文,2003.
    [48]Sinha R S,Yamada K,Okamoto M,et al.New polylactide/layeredsilicate nanocomposites:5.Designing of materials with desired properties[J].Polymer 2003,44(21):6633-6646.
    [49]Paul M A,Alexandre M,Degee P,et al.Exfoliated polylactide/clay nanocomposites by in situ coordination insertion polymerization[J].Macromol Rapid Commun 2003,24(9):561-566.
    [50]Wypych F,Satyanarayana K G.Functionalization of single layers and nanofibers:a new strategy to produce polymer nanocomposites with optimized properties[J].J Colloid Interf Sci 2005,285(2):532-543.
    [51]Li Y,Yu J,Guo Z X.The influence of interphase on nylon-6/nano-SiO_2 composite materials obtained from in situ polymerization[J].Polym Int 2003,52(6):981-986.
    [52]熊传溪,闻获江.超微细Al_2O_3增韧增强聚苯乙烯的研究[J].高分子材料科学与工程,1994,10(4):69-72.
    [53]黄莹莹,叶忍记,吴嘉麟.纳米二氧化硅对涤纶拉伸性能的影响[J].合成纤维,2005,34(7):20-23.
    [54]Carotenuto G,Xuejun X,Nicolais L.Transparent organic-inorganic nanostructured materials:Preparationmethods[J].Polymer News 2000,25(1):6-10.
    [55]Chan C M,Wu J S,Li J X,et al.Polypropylene/calcium carbonate nanocomposites[J].Polymer 2002,43(10):2981-2992.
    [56]Wu C L,Zhang M Q,Rong M Z,et al.Silica nanoparticles filled polypropylene:effects of particle surface treatment,matrix ductility and particle species onmechanical performance of the composites[J].Compos Sci Technol 2005,65(3-4):635-645.
    [57]Sun S S,Li C Z,Zhang L,et al.Effects of surface modification of fumed silica on interfacial structures and mechanical properties of poly(vinyl chloride) composites[J].Eur Polym J 2006,42(7):1643-1652.
    [58]Tang E J,Cheng G X,Pang X S.Synthesis of nano-ZnO/poly(methyl methacrylate)composite microsphere through emulsion polymerization and its UV-shielding property[J].Colloid Polym Sci 2006,284(4):422-428.
    [59]Che J F,Luan B Y,Yang X J,et al.Graft polymerization onto nano-sized SiO_2surface and its application to the modification of PBT[J].Mater Lett 2005,59(13):1603-1609.
    [60]黄锐,王港.用超高速混合机及熔融共混法制备PP/纳米CaCO_3复合材料[J].工程塑料应用,2003(1):17-21.
    [61]岳巍,许澍华,江波.串联式磨盘挤出机提高聚合物复合材料混炼质量的研究[J].北京化工大学学报,2003,5:82-85.
    [62]Wu D Z,Wang X D,Jin R G.Nanocomposites of poly(vinyl chloride) and nanometric calcium carbonate particles:effects of chlorinated polyethylene on mechanical properties,morphology,and rheology[J].J Appl Polym Sci 2004,92(4):2714-2723.
    [63]Chan C M,Wu J S.P01ypropylene/calcium carbonate nanocomposites[J].Polymer 2002,43(10):2981-2992.
    [64]Kickelbick G.Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale[J].Prog Polym Sci 2003,28(1):83-114.
    [65]Iamamoto Y,Sacco H C,Bicazzotto J C.Porphyrinosilica and Met alloporphyrinosilica:Hybrid Organic-inorganic materials prepared by Sol-Gel processing[J].An Acad Bras Ci 2000,72(1):59-65.
    [66]Sanchez C,Lebeau B,Chaput F.Optical properties of functional hybrid Organic-Inorganic nanocomposites[J].Adv Mater 2003,15(23):1969-1994.
    [67]Wen J Y,Wilkes G L.Organic/inorganic hybrid network materials by the Sol-Gel approach[J].Chem Mater 1996,8(8),1667-1681.
    [68]Kickelbick G.Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale[J].Prog Polym Sci 2003,(28):83-114.
    [69]魏建红,余剑英,马会茹等.聚合物-无机纳米复合材料的制备[J].粘接,2001,22(3):1-3.
    [70]Wei M H,Lee C H,Chang C C,et al.Tunable near-infrared optical properties based on poly(methyl methacrylate)-oxide waveguide materials[J].J Appl Polym Sci 2005,98(3):1224-1228.
    [71]Lee L H,Chen W C.High-refractive-index thin films prepared from trialkoxysilane-capped poly(methyl methacrylate)-titania materials[J].Chem Mater 2001,13(3):1137-1142.
    [72]Zhang J,Luo S C,Gui L L.Poly(methyl methacrylate)-titania hybrid materials by sol-gel processing[J].J Mater Sci 1997,32(6):1469-1472.
    [73]Atik M,Luna FP,Messaddeq S H,et al.Orrnocer(ZrO_2-PMMA) films for stainless steel corrosion[J].J Sol-Gel Sci Techn1997,8(1):517-522.
    [74]张启卫,章永化,陈守明等.聚甲基丙烯酸甲酯/二氧化硅杂化材料制备与性能[J].应用化学,2002,19(9):874-877.
    [75]Joly C,Goizet S,Schrotter J C,et al.Sol-Gel polyimide-silica composite membrane:gas transport properties[J].J Membrane Sci 1997,130(1):63-74.
    [76]肖明艳,陈建敏.有机-无机杂化材料研究进展[J].高分子材料科学与工程,2001,17(5):6-11.
    [77]Novak B M,Ellsworth M,Wallow T.Simultaneous interpenetrating networks of inorganic glasses[J].Polym Prepr 1990,31(2):698-699.
    [78]Ellsworth M,Novak B M."Inverse" organic-inorganic composite materials.3.High glass content "nonshrinking" sol-gel composites via poly(silicic acid esters)[J].Chem Mater 1993,5(6):839-844.
    [79]Liu Y J,Rosidian A,Lenahan K,et al.Characterization of electrostatically self-assembled nanocomposite thin films[J].Smart Mater Struct 1999,8(1):100-105.
    [80]Fendler J H.Membrane mimetic approach to advanced materials[M].Springer Verlag Berlin Heidelberg,1994,Chapter 2.
    [81]Cha J A,Stucky G D,Morse D E,et al.Biomimetic synthesis of ordered silica structures by block copolypeptides[J].Nature 2000,403(20):289-292.
    [82]熊传溪,王雁冰,王银.聚合物/无机纳米复合材料的制备技术研究进展[J].材料导报,2002,16(9):60-633.
    [83] Zhou M Q, Crooks R M. Dendrimer-Encapsulated Pt Nanoparticles Synthesis, Characterization, and Applications to Catalysis [J]. Adv Mater 1999,11(3):217-220.
    [84] Nguyen T Q, Wu J J, Doan V, et al. Control of Energy Transfer in Oriented Conjugated Polymer-Mesoporous Silica Composites [J]. Science 2000, 288(28):652-655.
    [85] Akamatsu K, Deki S. Nanoscale metal particles dispersed in polymer matrix [J]. Nanostructured Materials 1997, 8(8):1121-1129.
    [86] Pethkar S, Patil R C, Kher J A, et al. Deposition and characterization of CdS nanoparticled polyaniline composite films [J]. Thin Solid Films, 1999, 349(1):105-109.
    [87] Lozano T, Lafeur P G, Grmela M, et al. Effect of filler dispersion on Polypropylene morphology [J]. Polym Eng Sci 2004,44(5):880-890.
    [88] Ma C G, Rong M Z, Zhang M Q, et al. Irradiation-induced surface graft polymerization onto calcium carbonate nanoparticles and its toughening effects on Polypropylene composites [J]. Polym Eng Sci 2005,45(4): 529-538.
    [89] Avella M, Cosco S, Lorenzo D L M, Pace E D, et al. iPP Based Nanocomposites Filled with Calcium Carbonate Nanoparticles: Structure/Properties Relationships [J]. Macromol Symp 2006, 234(1): 156-162.
    [90] Rong M Z, Zhang M Q, Pan S L, et al. Interfacial effects in Polypropylene-Silica nanocomposites [J]. J Appl Polym Sci 2004, 92(3): 1771-1781.
    [91] Weon J I, Gam K T, Boo W J, et al. Impact-toughening mechanisms of calcium carbonate-reinforced Polypropylene nanocomposite [J]. J Appl Polym Sci 2006, 99(6): 3070-3076.
    [92] Xie X L , Liu Q X, Li R K, et al. Rheological and mechanical properties of PVC/CaCO3 nanocomposites prepared by in situ polymerization [J]. Polymer 2004, 45(19): 6665-6673.
    [93] Xie X L , Li R K Y, Liu Q X, et al. Structure-property relationships of in-situ PMMA modified nano-sized antimony trioxide filled poly(vinyl chloride) nanocomposites [J]. Polymer 2004,45(8): 2793-2802.
    
    [94] 王旭, 黄锐. PP/纳米级CaCO_3复合材料性能的研究[J]. 纳米塑料, 2002, 1: 221-224.
    [95]任显诚,白兰英.王贵恒.纳米CaCO_3增强增韧聚丙烯的研究[J].纳米塑料,2000,3(1):224-228.
    [96]Srivastava V K,Pathak J P.Friction and wear properties of bushing bearing of graphite filled short glass composites in dry sliding[J].Wear 1996,197(1):145-150.
    [97]Wang Q H,Xue Q J,Shen W C.The Friction and wear properties of nanometer ZrO_2-filled Polyetheretherketone[J].J Appl Polym Sci 1998,69(1):135-141.
    [98]Han K Q,Yu M H.Study of the Preparation and Properties of UV-Blocking Fabrics of a PET/TiO_2 Nanocomposite Prepared by In Situ Polycondensation[J].J Appl Polym Sci 2006,100(2):1588-1593.
    [99]陶国良,侯寅,任明.纳米TiO_2/PP复合材料的研究[J].塑料工业,2002,30(1):21-29.
    [100]Fornes T D,Yoon P J,Paul D R,et al.Nylon 6 nanocomposites:the effect of matrix molecular weight[J].Polymer,2001,42(9):929-934.
    [101]Wang Z B,Wang X,Zhang Z K.Rheology enhancement of polycarbonate/calcium carbonate nanocomposites prepared by melt-compounding [J].Mater Lett 2006,60(8):1035-1038.
    [102]Nishio K,Tsuchiya T.Organic-inorganic hybrid ionic conductor prepared by sol-gel process[J].Solar Energy Materials & Solar Cells 2001,68(3):295-306.
    [103]许海燕,孔桦,杨子彬.聚氨酯/碳纳米纤维复合材料的结构和抗凝血性能[J].材料研究学报,2003,17(2):127-131.
    [104]Davies L,Samoc M,Woodruff M.Comparison of the linear and nonlinear optical properties of Poly(p-phenylenevinylene)/Sol-Gel Composites derived from Tetramethoxysilane and methyltrimethoxysilane[J].Chem Mater 1996,8(11):2586-2594.
    [105]Legrand D G,Bendler J T.Handbook of polycarbonate science and technology [M].New York:Marcel Dekker Inc,2000:7-26.
    [106]Laredo E,Grimau M,Muller A,et al.Influence of aging and crystallinity on the molecular motions in bisphenol-A polycarbonate[J].J Polym Sci:Polym Phys 1996,34(17):2863-2879.
    [107]Deshpande M M,Jadhav A S,Gunari A A,et al.Polycarbonate synthesis by the melt phase carbonate-ester interchange reaction of bisphenol-A diacetate with dimethyl carbonate[J].J Polym Sci:Polym Chem 1995,33(4):701-705.
    [108]Rivaton A.Recent advances in bisphenol-A polycarbonate photodegradation[J].Polym Degrad Stab 1995,49(1):163-179.
    [109]Marks M J.Interfacial synthesis and characterization of random and segmented block bisphenol A-tetrabromobisphenol A copolycarbonates[J].J Appl Polym Sci 1994,52(4):467-481.
    [110]董钜潮,周颖南,黄建军等.PC注塑制品常见缺陷分析及解决方法[J].工程塑料应用,2003,31(9):23-27.
    [111]张志毅,赵宁,魏伟等.核壳结构和层状结构改性剂的制备及其对PC性能的影响[J].工程塑料应用,2005,33(3):5-8.
    [112]郭刚,于杰,罗筑等.金红石型纳米TiO_2改性PC阳光板抗老化应用[J].东南大学学报(自然科学版),2005,35增刊(I):178-181.
    [113]Carri'on F J,Sanes J,Berm'udez M D.Influence of ZnO nanoparticle filler on the properties and wear resistance of polycarbonate[J].Wear 2007,262(11-12):1504-1510.
    [114]Wang Z B,Xie G W,Wang X,et al.Rheology enhancement of polycarbonate/calcium carbonate nanocomposites prepared by melt- compounding [J].Mater Lett 2006,60(8):1035-1038.
    [115]钱翼清,赵平,王卫华.烷基化纳米SiO_2╱MMA乳液聚合物的表征及对PC的改性效果[J].复合材料学报,2003,20(1):79-84.
    [116]钱翼清,赵平,王卫华.烷基化纳米SiO_2╱MMA乳液聚合物及其对PC的改性研究[J].工程塑料应用,2002,30(1):1-4.
    [117]刘正英,于润泽,杨鸣波.聚合物/纳米碳酸钙复合材料的制备[J].高分子学报,2007,1,53-58
    [118]Hsieh A J,Moy P,Madison P,et al.Mechanical response and rheological properties of polycarbonate layered-silicate nanocomposites[J].Polym Eng Sci 2004,44(5):825-837.
    [119]Yoon P J,Hunter D L,Paul D R.Polycarbonate nanocomposites.Part 1:effect of organoclay structure on morphology and properties[J].Polymer 2003,44(18):5323-5339.
    [120]Yoon P J,Hunter D L,Paul D R.Polycarbonate nanocomposites.Part 2:degradation and color formation[J].Polymer 2003,44(18):5341-5354.
    [121]Wang S F,Wang Z Z.Synthesis and characterization of polycarbonate/ABS/montmorillonite nanocomposites[J].Polym Degrad Stabil 2003,80(1):157-161.
    [122]洪浩群,贾德民,何慧.聚碳酸酯/碳纳米管纳米复合材料的研究进展[J].合成树脂及塑料,2007,24(1):82-87
    [123]Kim G M,Michler G H,Potschke R Defonnalion processes of porous multiwalled carbon nanotubes/polycarbonate composite fibers prepared by electrospirming[J].Polymer 2005,46(18):7346-7351.
    [124]Singh S,Pei Y Q,Miller R,et al.Long-range,entangled in carbon nanotube network in polycarbonate[J].Adv Funct Mater 2003,13(11):868-872.
    [125]Potschke P,Abdel Goad M.Alig I,et al.Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites[J].Polymer 2004,45(26):8863-8870
    [126]Sung Y T,Han M S,Song K H,et al.Rheological and electrical properties of polycarbonate/multi-walled carbon nanotube composites[J].Polymer 2006,47(12):4434-4439.
    [1]Viazzi C,Deboni A,Zoppas F J.Synthesis of yttria stabilized zirconia by sol-gel route:influence of experimental parameters and large scale production[J].Solid State Sci 2006,8(9):1023-1028.
    [2]Chang Y,Li X B.Preparation of ZrO_2 spherical nanometer powders by emulsion processing route[J].Trans Nonferrous Met Soc.China,2006,16:s332-s336.
    [3]Wang S Y,Li X A,Zhai Y C,et al.Preparation of homodispersed nano zirconia[J].Powder Technol 2006,168(2):53-58.
    [4]He T M,He Q,Wang N.Synthesis of nano-sized YSZ powders from glycine-nitrate process and optimization of their properties[J].J Alloy Compd 2005,396(1-2):309-315.
    [5]郑文裕,陈潮钿,陈仲丛.二氧化锆的性质、用途及其发展方向[J].无机盐工业,2000,32(1):18-21.
    [6]孙亚光,余丽秀.二氧化锆制备及发展趋势[J].化工新型材料,2000,28(4):28-30.
    [7]俞耀庭,张行栋.生物医用材料[M].天津:天津大学出版社,2000:124-125
    [8]Shukla S,Seal S,Vij R,Bandyopadhyay S.Reduced activation energy for grain growth in nanocrystalline Yttria-stabilized zirconia[J].Nano Lett 2003,3(3):397-401.
    [9]张立德,牟季美.纳米材料和纳米结构.北京,科学出版社,200 1:140.
    [10]黄浪欢,曾令可,罗民华.湿化学方法制备纳米粉体时团聚现象的探讨[J].佛山陶瓷,2001,11(10):11-13.
    [11]王宝利,朱振峰.无机纳米粉体的团聚与表面改性[J].陶瓷学报,2006,27(1):135-138.
    [12]李国栋,熊翔,黄伯云.纳米粉体大气环境团聚机理及无团聚纳米粉体的制备[J].中南大学学报(自然科学版),2004,35(4):527-531.
    [13]李雪东,朱伯铨,汪厚植.熔盐法在无机材料粉体制备中的应用[J].材料导报,2006,20(3):44-47.
    [14]Docters T,Chovelon J M,Herrmann J M,Deloume J P.Syntheses of TiO_2photocatalysts by the molten salts method:Application to the photocatalytic degradation of prosulfuron[J].Appl Cata B:Environ 2004,50(4):219-226.
    [15]Baranov A N,Panin G N,Kang T W,et al.Growth of ZnO nanorods from a salt mixture[J].Nanotechnology 2005,16(9):1918-1923.
    [16]Wang Y G,Ma J F,Tao J T,et al.Morphology-controlled synthesis of CdWO_4nanorods and nanoparticles via a molten salt method[J].Mater Sci Eng B 2006,130(1-3):277-281.
    [17]Liu H,Hu C G,Wang Z L.Composite-hydroxide-mediated approach for the synthesis of nanostructures of complex functional-oxides[J].Nano Lett 2006,6(7):1535-1540.
    [18]Hu C G,Liu H,Dong W T,et al.La(OH)_3 and La_2O_3 nanobelts-synthesis and physical properties[J].Adv Mater 2007,19(3):470-474.
    [19]Hu C G,Liu H,Lao C S,et al.Size-manipulable synthesis of single-crystalline BaMnO_3 and BaTi_(1/2)Mn_(1/2)O_3 nanorods/nanowires[J].J Phys Chem B 2006,110(29):14050-14054.
    [20]陈宗淇,郭荣.微乳液的微观结构[J].化学通报,1994(2):22-25.
    [21]Schulman J H,Stoeckenius W,Prince L M,et al.Mechanism of formation and structure of microemulsion by electron microscopy[J].J Phys Chem 1959,63(10):1677-1680.
    [22]Lindsay R,Evans D F,Ninham B W,et al.Three componentionic microemulsions [J].J Phys Chem 1983,87(4):538-540.
    [23]施利毅,华彬,张剑平.微乳液的结构及其在制备超细颗粒中的应用[J].功能材料,1998,29(2):136-139.
    [24]连洪洲,石春山.用于纳米粒子合成的微乳液[J].化学通报,2004,5:333-340.
    [25]Lee M H,Tai C Y,Lu C H.Synthesis of spherical zirconia by precipitation between two water/oil emulsions[J].J Eur Ceram Soc 1999,19(15):2593-603.
    [26]Tai C Y,Lee M H,Wu Y C.Control of zorconia participle size by using two-emulsion precipitation technique[J].Chem Eng Sci 2001,56(7):2389-2398.
    [27]Huang Y,Ma T,Yang J L.Preparation of spherical ultrafine zirconia powder in microemulsion system and its dispersibility[J].Ceram Int 2004,(30):675-681.
    [28]Duan G R,Yang X J,Huang G H,et al.Water/span80/Triton X-100/n-hexyl alcohol/n-octane microemulsion system and the study of its application for preparing nanosized zirconia[J].Mater Lett 2006,60(13):1582-1587.
    [29]马天,黄勇,杨金龙等.纳米微反应器法制备球形超细氧化锆粉体[J].无机材料学报,2003,18(5):1107-1112.
    [30]Winsor P A,Hydrotropy,solubilization and related emulsification processes[M].Trans Faraday Soc 1948,44:376
    [31]Paleos C M.Polymerization in Organized Medial[M].Gordon and Breach Science Publishers 1992.
    [32]李干佐,宋淑娥.中相微乳液的形成和特性[J].化学物理学报,1991,4(4):298-301.
    [33]何从林,王伯初.W/O型微乳液相行为的分析[J].重庆大学学报,2003,26(5):52-54.
    [34]谢刚.熔熔盐理论与应用[M].北京:冶金工业出版社,1998.
    [35]冯欣.低维氧化锌结构调控及熔盐辅助技术在纳米材料合成中的应用研究[D]上海大学博士论文,2007.6
    [36]李雪东,朱伯铨,汪厚植.熔盐法在无机材料粉体制备中的应用[J].材料导报,2006,20(3):44-47.
    [37]Duran C,Trolier-Mckinstry S,Messing G L.Fabrication and electrical properties of textured Sr_(0.53)Ba_(0.47)Nb_2O_6 ceramics by templated grain growth[J].J Am Ceram Soc 2000,83(9):2203-2213.
    [38]Cheng H M,Ma J M,Zhao Z G,et al.Hydrothermal synthesis of acicular lead titanate fine powders[J].J Am Ceram Soc 1992,72(5):1123-1128.
    [1]唐卫华,金日光.我国刚性粒子增韧HDPE的研究进展[J].现代塑料加工应用,2001,13(2):59-64.
    [2]Li D M,Zheng W G,Qi Z N.The J-integral fracture toughness of PP/CaCO_3composites[J].J Mater Sci 1994,29(14):3754-3758.
    [3]朱晓光,邓小华,洪萱等.填充增韧聚丙烯复合材料的断裂韧性及增韧机理[J].高分子学报,1996(2):195-201.
    [4]Wang S J,Wang C L,Zhu X G,et al.Structural characteristies of HDPE/CaCO_3polymer composites probe by positron annihilation[J].Phys Stat Sol(a) 1994,142(3-4):275-281.
    [5]Xie X L,Liu Q X,Li R K,et al.Rheological and mechanical properties of PVC/CaCO_3 nanocomposites prepared by in situ polymerization[J].Polymer 2004,45(19):6665-6673.
    [6]Xie X L,Li R K Y,Liu Q X,et al.Structure-property relationships of in-situ PMMA modified nano-sized antimony trioxide filled poly(vinyl chloride)nanocomposites[J].Polymer 2004,45(8):2793-2802.
    [7]Weon J I,Gam K T,Boo W J,et al.Impact-toughening mechanisms of calcium carbonate-reinforced polypropylene nanocomposite[J].J Appl Polym Sci 2006,99(6):3070-3076.
    [8]Okazaki M,Murota M,Kawaguchi Y,et al.Curing of epoxy resin by ultrafine silica modified by grafting of hyperbranched polyamidoamine using dendrimer dynthesis methodology[J].J Appl Polym Sci 2001,80(4):573-579.
    [9]Rong M Z,Ji Q L,Zhang M Q,et al.Graft polymerization of vinyl monomers onto nanosized alumina particles[J].Eur Polym J 2002,38(8):1573-1582.
    [10]Prithwiraj M,Ding J,Huang H,et al.Polyethylene oxide silananted nanosize fumed silica:DSC and TGA Characterization of the surface[J].Langmuir 2003,19(21):8994-9004.
    [11]Duguet E,Abbound M,Morvan F,et al.PMMA encapsulation of alumina particles through aqueous suspension polymerisation processes[J].Macromol Syrup 2000,151(1):365-370.
    [12]Flesch C,Unterfinger Y,Duguet E.Poly(ethylene glycol) surface coated magnetic particles[J].Macromol Rapid Commun 2005,26(18):1494-1498.
    [13]Che J F,Luan B Y,Yang X J,et al.Graft polymerization onto nano-sized SiO2surface and application to the modification of PBT[J].Mater lett 2005,59(13):1603-1609.
    [14]Guan G H,Li C C,Zhang D.Spinning and properties of Poly(ethylene terephthalate)/organomontmorillonite nanocomposite[J].J Appl Polym Sci 2005,95(6):1443-1447.
    [15]Lange F F,Radford K C.Fracture energy of an epoxy composites system[J].J Mater Sci 1979,6(9):1197-1203.
    [16]Swapan K.Metal-filled polymers properties and applications[M].New York,Marcel Dekker,1986.
    [17]Chacko V P,Karasz F E,Farris R.Dynamic mechanical behavior of filled polyethylenes and model composites[J].J Polym Engng Sci 1982,22(15):968-974.
    [18]Lee B L,Nielsen L E,Temperature dependence of the dynamic mechanical properties of filled polymers[J].J Polym Sci Polym Phys 1977,15:683-692.
    [19]Chacko V P,Karasz F E,Farris R,et al.Morphology of CaCO_3-filled polyethylene [J].J polym Sci Polym Phys 1982,20(9):2177-2195.
    [20]孙水升,李春忠,张玲等.纳米碳酸钙增韧聚氯乙烯复合材料的微结构及界面行为[J].华东理工大学学报,2005,31(5):522-516.
    [21]Nicolais L,Narkis M.Stress-strain behavior of styrene-acrylonitrile/glass bead composites in the glass region[J].Polym Eng Sci 1971,11(3):194-199.
    [22]Pukanszky B, Turczanyi B, Tudos F. Composites dependence of tensile yield stress in filled polymers [J]. J Mater Sci Lett 1988, 7(2): 160-162.
    [23] Ray S H, Okamoto M. Polymer/layered silicate nanocomposites: a review from preparation to processing [J]. Prog Polym Sci 2003,10(11): 1509-1612.
    [1]周大纲,谢鸽成.塑料老化与防老化技术[M].北京:中国轻工业出版社,1992.72-91.
    [2]祖庸,樊安.紫外线屏蔽剂纳米YiO_2[J].钛工业进展,1999,3:26-28.
    [3]曹建军,郭刚,段小平等.金红石型纳米TiO_2及改性聚丙烯的紫外-可见光谱特性研究[J].钢铁钒钛,2006,27(1):44-49.
    [4]Jiang Z Y,Gyurova L A,Schlarb A K,et al.Study on friction and wear behavior of polyphenylene sulfide composites reinforced by short carbon fibers and sub-micro TiO_2 particles[J].Compos Sci Technol 2008,68(3-4):734-742.
    [5]Turton T J,White J R.Effect of stabilizer and pigment on photo-degradation depth profiles in polypropylene[J].Polym Degrad Stab 2001,74(3):559-568.
    [6]Songa H J,Zhang Z Z.Study on the tribological behaviors of the phenolic composite coating filled with modified nano-YiO_2[J].Tribol Int 2008,41(5):396-403.
    [7]Han K Q,Yu M H.Study of the preparation and properties of UV-Blocking fabrics of a PET/TiO_2 nanocomposite prepared by in situ polycondensation[J].J Appl Polym Sci 2006,100(2):1588-1593.
    [8]郭刚,于杰,罗筑等.金红石型纳米TiO_2改性PC阳光板抗老化应用[J].东南大学学报(自然科学版)2005,35,Sup(Ⅰ):178-181.
    [9]Blackwood K M,Petrick R A,Simpson F I.Titanium dioxide induced failure in polycarbonate[J].Mater Sci 1995,30(17):4435-4445.
    [10]Hamamoto A,Tanaka T.Mechanical properties and dispersion behavior of composite materials compounded with surface treated titanium dioxides[J].Vinyl and Additive Technology 2000,6(1):20-25.
    [11]Rouabah F,Fois M,Ibos L,et al.Mechanical and thermal properties of Polycarbonate.Ⅱ.Influence of Titanium Dioxide Content and Quenching on Pigmented Polycarbonate[J].J Appl Polym Sci 2007,106(4):2710-2717.
    [12]Mo S D,Ching W Y.Electronic and optical properties of three phases of titanium dioxide:Rutile,anatase and brookite[J].Phys Rev B,1995,51(19): 13023-13029.
    [13]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社,2002.42-44.
    [14]Hosaka N,Sekiya T,Fujisawa M,et al.UV reflection spectra of anatase TiO_2[J].J Electron Spectrosc Relat Phenom 1996,78(5):75-79.
    [15]黄惠忠.论表面分析及其在材料研究中的应用[M].北京:科学技术文献出版社,2002.
    [16]Fray M F,Boccaccini A R.Novel hybrid PET/DFA-TiO_2 nanocomposites by in situ polycondensation[J].Mater Lett 2005,59(18):2300-2304.
    [17]张师民.聚酯的生产及应用中国石化出版社.1997
    [1]吴崇浩,王世敏,赵雷.溶胶-凝胶法制备无机/有机聚合物杂化材料的进展[J].胶体与聚合物,2003,21(1):39-42.
    [2]肖明艳,陈建敏.有机-无机杂化材料研究进展[J].高分子材料科学与工程,2001,17(5):6-11.
    [3]秦静,赵旭成,林爱梅.酞菁氯镓复合凝胶玻璃的谱学性能研究[J].光谱学与光谱分析,2006,26(2):255-286.
    [4]詹红兵,杜育红,林春莺.磺酸基对掺杂酞菁在溶胶.凝胶复合体系中UV/Vis 吸收光谱的影响[J].光谱学与光谱分析,2005,25(11):1850-1852.
    [5]Kickelbick G.Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale[J].Prog Polym Sci 2003,28(1):83-114.
    [6]Iamamoto Y,Sacco H C,Biazzotto J C.Porphyrinosilica and met alloporphyrinosilica:hybrid organic-inorganic materials prepared by Sol-Gel Processing[J].An Acad Bras Ci 2000,72(1):59-65.
    [7]Sanchez C,Lebeau B,Chaput F.Optical properties of functional hybrid Organic-Inorganic nanocomposites[J].Adv Mater 2003,15(23):1969-1994.
    [8]Wen J,Wilkes G L.Organic/Inorganic hybrid network materials by the Sol-Gel approach[J].Chem Mater 1996,8(8):1667-1681.
    [9]Zhang J,Luo S C,Gui L L.Poly(methyl methacrylate)-titania hybrid materials by sol-gel processing[J].J Mater Sci 1997,32:1469-1472.
    [10]Du W C,Wang H T,Zhong W,et al.High refractive index films prepared from titanium chloride and methyl methacrylate via a non-aqueous Sol-Gel Route[J].J Sol-Gel Sci Technol 2005,34(3):227-231.
    [11]Yeh J M,Weng C J,Huang K Y,et al.Thermal and optical properties of PMMA-titania hybrid materials prepared by Sol-Gel approach with HEMA as coupling agent[J].J Appl Polym Sci 2004,94(1):400-405.
    [12]Lee L H,Chen W C.High-refractive-index thin films prepared from trialkoxysilane- capped poly(methyl methacrylate)-titania materials[J].Chem Mater 2001,13(3):1137-1142.
    [13]黄智华,丘坤元.溶胶-凝胶法合成聚甲基丙烯酸甲酯/二氧化钛-二氧化硅杂化聚合物材料[J].高分子学报,1997,4:434-439.
    [14]Lopez T,Tzompantzi F,Hemandez-Vectura J,et al.Effect of zirconia precursor on the properties of ZrO_2-SiO_2 sol-gel oxides[J].J Sol-Gel Sci Technol 2002,24(3):207-219.
    [15]Pirson A,Mohsine A,Marchot R,et al.Synthesis of SiO_2-TiO_2 xerogels by sol-gel process[J].J Sol-Gel Sci Technol 1995,4(3):179-185.
    [16]Yuwono A H,Xue J M,Wang J,et al.Transparent nanohybrids of nanocrystalline TiO_2 in PMMA with unique nonlinear optical behavior[J].J Mater Chem 2003,13(6):1475-1479
    [17]Muhammad A Z,Wahab M,Abdul A K.Poly(methyl methacrylate)/SiO_2 Hybrid Membranes:Effect of Solvents on Structural and Thermal Properties[J].J Appl Polym Sci 2006,99(6):3163-3171.
    [18]Wu C S,Cheng L C.An improved synthesis of ultrafiltration zirconia membranes via the sol-gel route using alkoxide precursor[J].J Memb Sci 2000,167(2):253-261.
    [19]Perrin F X,Nquyen V N,Vemet J L.Preparation and properties of acrylic polymers/titania hybrid materials prepared by the in situ sol-gel process[J].Polym Int 2002,51(10):1013-1022.
    [20]Yi G H,Sayer M.An acetic/water based Sol-Gel PZT process 1:modification of Zr and Ti alkoxides with acetic acid[J].J Sol-Gel Sci Technol 1996,6(1):65-74.
    [21]梁丽萍,徐耀,张磊.溶胶-凝胶方法制备ZrO_2及聚合物掺杂ZrO_2单层光学增反射膜[J].物理学报,2006,55(8):4371-4382.
    [22]Nishimoto M,Keskkula H,Paul D R.Role of slow phase separation in assessing the equilibrium phase behavior of polycarbonate-polymethyl methacrylate blends[J].Polymer 1991,32(2):272-278.
    [23]隗明,刘念才,徐祥铭.催化剂作用下聚甲基丙烯酸甲酯/聚碳酸酯的反应共混[J].上海交通大学学报,1999,33(10):1220-1227.
    [24]Koo K K,Inoue T,Miyasaka K.Toughened plastics consisting of brittle particles and ductile matrix[J].Polym Eng Sci 1985,25,(12):741-746
    [25]王丽琴,张会轩,何大勇.PBA-PMMA核-壳增韧剂改性聚碳酸酯的研究[J].高分子材料科学与工程,1998,14(1):94-100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700