用户名: 密码: 验证码:
梁结构非线性振动的最优化控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文提出一种非线性振动系统主共振和超谐共振的最优化控制方法,并将其应用于梁结构的非线性振动控制。提出非线性振动的压电自反馈最优化控制方法、压电时滞反馈最优化控制方法、磁时滞反馈最优化控制方法和分阶最优控制方法,研究了梁结构和参数激励系统的非线性振动控制。
     论文的主要工作和创新性成果如下:
     1.利用线性和非线性反馈控制器实现非线性系统的控制振动,提出一种确定非线性振动系统稳定振动的反馈增益取值范围的方法。利用多尺度法和平均法得到雅可比本征方程,进而得到非线性振动系统稳定条件,构造参数方程,根据参数方程有无实数解的条件得到反馈控制增益范围。将主共振和超谐共振有控制和无控制振动峰值的比值为减振的衰减率。以减振系统的衰减率和能量函数为目标函数,以稳定振动的反馈控制参数的范围为约束条件,利用最优化方法可计算得到衰减率和能量最小的速度、位移控制参数的最优取值。设计线性和非线性最优化控制器控制非线性振动系统的动力学行为。提出一种梁结构非线性振动的压电自反馈的最优化控制方法。利用压电材料压电效应和逆压电效应来实现结构的自反馈闭环控制。由悬臂梁主共振和超谐共振实验实测数据计算出最优化控制参数,设计非线性主共振振动实验控制系统,进行减振控制实验研究。
     2.提出一种结构非线性振动的时滞自反馈最优化控制方法。分别以压电元件为感受器和驱动器,由受控系统和时滞控制系统组成闭合回路,应用时滞自反馈最优化控制方法控制梁的非线性振动。
     3.研究了参数激励系统的时滞反馈最优化控制。依据平均法得到稳态响应振幅和相位的平均方程。以非线性振动能量比值的衰减率为优化目标函数,以非线性振动系统稳定振动条件、最值条件和最优时滞条件为约束条件,利用最优化方法计算得到最佳线性和非线性反馈控制增益参数。
     4.提出非线性方程的分阶最优控制策略,并将其应用于悬臂梁非线性振动的压电减振控制,通过空间解耦,得到状态空间方程,设计非线性分阶控制器,对该减振系统进行分阶最优控制。
     5.研究纳米谐振梁非线性特性产生的物理机制,分析非局部效应对固有频率的影响,探讨非局部效应对主共振幅频特性曲线的影响,对纳米谐振梁的振动特性进行了分析。以压电结构为控制信号发生和驱动元件,研究考虑纳米尺度非局部效应的纳米梁的振动控制,研究非局部效应参数与控制参数和时滞的影响关系。提出一种非接触的碳纳米管的主共振响应的磁时滞最优化控制方法。利用发生褶皱变形碳纳米管弯曲力矩的二阶导数和梁的弯曲理论建立碳纳米管梁的微分方程。设计最优控制器控制碳纳米管系统的非线性振动。
An optimal control method is presented for the vibration control of the primary and super-harmonic resonances of nonlinear vibration system. The nonlinear vibration of beams is controlled bythe control methods. Some new control methods, such as optimal piezoelectric self-feedback, optimalpiezoelectric delayed self-feedback, optimal magnetic delayed feedback and non-linear grade optimalcontrol scheme, are proposed in the control of the nonlinear vibration. The nonlinear vibrations offlexible structures and nano structures are mitigated using the control methods.
     The main works and novel researched performed in this dissertation include:
     1. The optimal control method is utilized to control the vibration of the nonlinear system withlinear and nonlinear feedback controllers. The stable conditions of the nonlinear vibration systems aregiven from Jacobi eigenvalue equations. The equations of parameters function are constructed. Therange of feedback gains for a stable vibration is gotten according to the conditions of solutions. Theattenuation of vibration reduction is defined by the ratio of peak value for the primary resonance andharmonic resonance with control and without control. Taking the attenuation of vibration reductionsystem and the energy function as objective functions and taking the stable feedback controlparameters as constraint conditions, the optimal control parameters of the velocity and displacementare calculated by the optimization method. The linear and nonlinear optimal controllers are designedto control the dynamic behavior of the nonlinear vibration system. An optimal self-feedback controlmethodology is provided to mitigate the primary and superharmonic resonances of a cantilever beam.The controller is designed to control the vibration of primary and superharmonic resonances ofintelligent structures. An experimental control system is designed and control experiment is carriedout.
     2. The primary and superharmonic resonances of flexible beams are mitigated by a piezoelectricoptimal time delay self-feedack control methodology. The piezoelectric optimal controllers aredesigned to control the dynamic behaviors of the nonlinear dynamical systems. It is found that boththe optimal feedback gains and time delay can change the control performance.
     3. The optimal delayed feedback control of the nonlinear vibration is studied with parametricexcitation. The equations of the amplitude and phase are obtained by the average method. A vibrationdecay rate is defined by the energy ratio of the nonlinear vibration with control and without control.Taking the decay rate as the objective function and the stable conditions and the optimal delayconditions as constraints, the linear and non-linear optimal feedback control parameters arecalculated by optimization method.
     4. A non-linear grade optimal control scheme is proposed and used in the piezoelectric vibrationreduction control of non-linear cantilever beam. The differential equation is linearized into a set oflinear equations using perturbation method. The state space equations are obtained by decoupling inthe space coordinates. The non-linear grade controllers are designed to control the nonlinear vibration.
     5. The natural frequency is gotten and the principal resonance is studied considering non-localeffect and axial nonlinear elongation. The numerical results show that the nonlocal effect has aneffect on the natural frequency and the relationship between frequency and amplitude. Using thepiezoelectric elements to sign and control driving actuators, the influence of the nonlocal effects ofparameters and time delay on the control parameters is studied. An optimal maganetic delayed self-feedback control method is provided to mitigate the primary resonance of a single-walled carbonnanotube. The nonlinear governing equations of motion for the SWCNT under longitudinal magneticfield are derived. The optimal controllers are designed to control the dynamic behaviors of thenonlinear vibration systems.
引文
[1]David W. and Simon N. Nonlinear vibration with control. London:Springer Science BusinessMedia.2010.
    [2]闻邦偆,李以农,韩清凯.非线性振动理论中的解析方法及工程应用.沈阳:东北大学出版社.2001.
    [3]欧进萍.结构振动控制-主动、半主动和智能控控制.北京:科学出版社,2003:62–68.
    [4]李宏男,李忠献,祁皑等.结构振动与控制.北京:中国建筑工业出版社,2005.
    [5]杨枫,李杰,薛伟辰.压电智能梁振动控制研究进展.先进纤维混凝土试验·理论·实践-第十届全国纤维混凝土学术会议论文集,2004,11:67–69.
    [6]王宗利,林启荣,刘正兴.压电智能梁的状态相关LQR振动控制[J].上海交通大学学报,2001,35(4):503–508.
    [7] Lallart M., Lefeuvre E., Richard C. and Guyomar D. Self-powered circuit for broadband,multimodal piezoelectric vibration control. Sensors and Actuators A,2008,143:377–382.
    [8] HAN J. H. and LEE I. Optimal placement of piezoelectric sensors and actuators for vibrationcontrol of a composite plate using genetic algorithms.Smart Materials and Structures,1999,8(2):257-267.
    [9]胡海岩.应用非线性动力学.北京:航空工业出版社.2000.
    [10]黄文虎,曹登庆,韩增尧航天器动力学与控制的研究进展与展望.力学进展,2012,42(4):367–394.
    [11]愈翔,朱石坚,刘树勇.多自由度非线性隔振系统建模及其非共振响应.振动与冲击,2007,27(6):69–73
    [12]唐进元,周一峰,何旭辉.被动隔振体非线性振动的能量迭代解法.应用力学学报,2005,22(4):618–622.
    [13]陈安华,刘德顺,朱萍玉.被动隔振体的非线性振动分析.机械工程学报.2001,37(6):99–105.
    [14]Malatkar P. nonlinear vibration of cantilever beams and plates [博士学位论文]. VirginiaPolytechnic Institute and State University.2003.
    [15]彭献,唐驾时.非线性隔振理论初探.振动与冲击,1996,15(4):13–17.
    [16]陈泳斌,陈树辉.非线性隔振系统的运动响应和传递率.振动与冲击,1998,17(4):18–22.
    [17]Natsiavas S. Steady state oscillations and stability of non-linear dynamic vibration absorbers.Journal of Sound and Vibration,1992,156(2):227–245.
    [18]文明,邓子辰.具有三次非线性隔振的主被动控制系统的动力响应研究.机械科学与技术,2000,19(9):80–83.
    [19]Zhu S.J.,Zheng Y. F. and Fu Y. M. Analysis of nonlinear dynamics of a two degree offreedom vibrationsystem with non linear damping and non linear spring. Journal of Sound andVibration,2004,271:15–24.
    [20]Ji H.L., Qiu J.H., Zhu K.J. et al. Two-mode vibration control of a beam using nonlinearsynchronized switching damping based on the maximization of converted energy. Journal ofSound and Vibration,2010,329(14):2751-2767.
    [21]陈安华,高威,高永毅.被动隔振的非线性动力学研究.中国机械工程,2008,19(9):1022–1025.
    [22]徐亚兰,陈建军,谢永强,陈龙.几何非线性压电柔性板结构的模糊H∞振动控制.振动与冲击.2007,26(2):112–116.
    [23]赵永辉,胡海岩.一类非线性系统的滑模振动主动控制.南京航空航天大学学报,2003,35(3):308–312.
    [24]李芦钰,欧进萍.结构非线性振动的自适应模糊滑模控制.振动工程学报,2006,19(3):319–325.
    [25]卢殿臣,颜敏娟,田立新,张正娣.非线性简支梁振动的H∞控制.江苏大学学报(自然科学版),2004,25(5):405–408.
    [26]Gao J.X. and Shen Y.P. Active control of geometrically nonlinear transient vibration ofcomposite plates with piezoelectric actuators. Journal of Sound and Vibration,2003,264:911–928.
    [27]Zhou Y.H. and Wang J.Z.Vibration control of piezoelectric beam-type plates withgeometrically nonlinear deformation. International Journal of Non-Linear Mechanics,2004,39:909–920.
    [28]邱志成,凌德芳.压电悬臂板的非线性振动控制.华南理工大学学报(自然科学版),2012,40(11):45–51.
    [29]Olgac N. and Holm-Hansen B.T. A novel active vibration absorption technique: delayedresonator. Journal of Sound and Vibration,1994,176(1):93–104.
    [30] Olgac N,Elmali H. and Vijayan S. Introduction to the dual frequency fixed delayed resonator.Journal of Sound and Vibration,1996,189(3):355–367.
    [31] Hosek M.,Elmali H. and Olgac N. A tunable torsional vibration absorber: the centrifugaldelayed resonator. Journal of Sound and Vibration,1997,205(2):151–165.
    [32]胡海岩,王在华.时滞受控机械系统动力学研究进展.自然科学进展,2000,10(7):577–585.
    [33]王在华,胡海岩.时滞动力系统的稳定性与分岔:从理论走向应用.力学进展,2013,43(1):3–20.
    [34] Hu H. Y. and Wang Z. H. Stability analysis of damped SDOF systems with to time delays instate feedback. Journal of Sound and Vibration,1998,214(2):213–225.
    [35]Wang Z. H. and Hu H. Y. Delay-independent stability of retarded dynamic systems of multipledegrees of freedom.. Journal of Sound and Vibration,1999,226(1):57–71.
    [36]张文丰,胡海岩.含时滞的LQ控制车辆悬架的研究.应用力学学报,2003,20(1):37–41.
    [37]徐鉴,斐利军.时滞系统动力学近期研究进展与展望.力学进展,2006,36(1):17–30.
    [38]赵艳影,徐鉴.时滞非线性动力吸振器的减振机理.力学学报,2008,40(1):98–106.
    [39]Zhao Y.Y and Xu J. Effects of delayed feedback control on nonlinear vibration absorbersystem. Journal of Sound and Vibration,2007,308:212–230.
    [40]Ren C.B.,Zhao Z. and Liu L. Bifurcation and chaos control of Van der pol system with delay.2011CCDC. Mianyang Sichuan China,2011.957–963.
    [41]陈龙,王若尘等.含时滞半主动悬架及其控制系统.机械工程学报,2006,42(1):130–133
    [42]Du H.P. and Zhang N. H∞control of active vehicle suspensions with actuator time delay.Journal of Sound and Vibration.2007,301(2):236–252.
    [43]胡海岩,王在华.非线性时滞动力系统的研究进展.力学进展,1999,29(4):501–512.
    [44]徐鉴,陈予恕.时滞速度反馈对强迫自持系统动力学响应行为的影响.应用数学与力学,2004,25(5):455–466.
    [45]Nayfeh A.H., Chin C.M. and Pratt J. Perturbation methods in nonlinear dynamics:applications to matching dynamics. J Manufact Sci Tech,1997,119:485–493.
    [46]Hu H.Y.,Dowell E.H. and Virgin L.N. Resonance of a harmonically forced Duffingoscillators with time delay state feedback. Nonlinear Dynamics,1998,15(4):311–327.
    [47]Sato K,et al. Dynamic motion of a nonlinear mechanical system with time delay. TransJSME,Series C,1995,61(685):1861–1866.
    [48]JI J.C. and LEUNG A.Y.T. Responses of a non-linear sdof system with two time-delays inlinear feedback control. Journal of Sound and Vibration,2002,253:985–1000.
    [49]李殿璞.非线性控制系统.西安:西北工业大学出版社,2009.
    [50]李阳,朱家仪,李树民.非线性控制理论的回顾与展望.飞航导弹,2004,11:55–58.
    [51]李普,孙庆鸿,陈南.振动系统鲁棒H∞控制实验研究.振动工程学报,2002,15(3):311–314.
    [52]杨涛,马嘉,侯增广等. Stewart并联机构主动隔振平台的非线性L2鲁棒控制.机器人,2009,31(3):210–216
    [53]侯军芳,白鸿柏,赵海涛等.基于Riccat不等式的微动隔振平台鲁棒性能控制器设计.振动工程学报,2009(4):340–344.
    [54]洪奕光,程代展.非线性系统的分析与控制.北京:科学出版社,2005.
    [55]曹建福,韩崇昭,方洋旺.非线性系统理论及应用.西安:西安交通大学出版社,2001.
    [56]James P.D. and Wunsch D. Fuzzy regression by fuzzy number neural networks. Fuzzy Setsand Systems,2000,112:371–380.
    [57]Jun L. and Lin J. Application of system for the automatic generation of fuzzy neural networks.Engineering Application of Artificial Intelligence,2000,13:393–302.
    [58]Rao S. S. and Pan T. S. Optimal placement of actuators in actively controlled structures usinggenetic algorithms.A IAA Journal,1991,29(6):942–943.
    [59]Leehter Y.,William A. and Sethares D.,et al. Sensor placement for on-orbit modalidentification via a genetic algorithm. A IAA Journal,1993,31(10):1922–1928.
    [60]师黎,陈铁军,李晓媛等.智能控制理论与应用.北京:清华大学出版社,2009.
    [61]孙明轩.迭代学习控制.北京:国防工业出版社,1999.
    [62]王在华,李俊余.时滞状态正反馈在振动控制中的新特征.力学学报,2010,42(5):933–942.
    [63] Nayfeh A. H.,Masoud Z. N. and Nayfeh N. A. A smart sway controller for cranes fromtheory to laboratory to industry. In: Segla S,Tuma J, Petrikova I, et al. eds. VibrationProblems ICoVP2011Supplement-The10th International Conference on Vibration Problems.Technical University of Liberec,2011.14–29.
    [64]陈予恕.非线性振动.北京:高等教育出版社.2002.
    [65]张琪昌,王洪礼,竺致文等.分岔与混沌理想及应用.天津:天津大学出版社,2005.
    [66]刘延柱,陈立群.非线性振动.北京:高等教育出版社,2001.
    [67]陈树辉.强非线性振动系统的定量分析方法.北京:科学出版社,2007.77~78.
    [68]Schmidt G. and Tondl A. Non-linear vibration. London:Cambridge University Press.1986.
    [69]Potapov V.D. On almost sure stability of a viscoelastic column under random loading. Journalof Sound and Vibration.1994,173:301–308.
    [70]Potapov V.D.Numerical method for investigation of stability of stochastic integro-differentialequations,Appl. Numer. Math,1997,24:191–201.
    [71]Huang Z.L.and Jin. X.L. Response and stability of a SDOF strongly nonlinear stochasticsystem with light damping modeled by a fractional derivative,Journal of Sound and Vibration.2009,319:1121–1135.
    [72]Wang Z.H. and Hu. H.Y. Stabilization of vibration systems via delayed state differencefeedback, Journal of Sound and Vibration.2006,296:117–129.
    [73] Ariaratnam S.T. Stochastic stability of linear viscoelastic systems. Probab. Eng. Mech.1993,8:153–155.
    [74]Larionov G.S. Investigation of the vibrations of relaxing systems by the averaging method.Mech. Compos. Mater.1969,5:714–720.
    [75] Huang Q.and Xie W.C. Stability of SDOF linear viscoelastic system under the excitation ofwideband noise,ASME J. Appl. Mech.2008,75:12–21.
    [76]Ibrahim R.I. Recent advances in nonlinear passive vibration isolators. Journal of Sound andVibration,2008,314:52–71.
    [77] Lang Z.Q.,Billings S.A.,Tomlinson G.R. and Yue Y. Analytical description of the effectsof system nonlinearities on output frequency responses: a case study. Journal of Sound andVibration,2006,295:584–601.
    [78] Lang Z.Q.,Jing X.J.,Billings S.A.,Tomlinson G.R. and Peng Z.K. Theoretical study ofthe effects of nonlinear viscous damping on vibration isolation of sdof systems. Journal ofSound and Vibration,2009,323:352–65.
    [79]周一峰,唐进元,何旭辉.强非线性主动隔振系统的运动响应及传递率.中南大学学报,2005,36(3):498-500.
    [80]Nayfeh A.H. Perturbation Methods,Wiley,NewYork,1973.
    [81]JI J.C. and Zhang N. Suppression of the primary resonance vibrations of a forced nonlinearsystem using a dynamic vibration absorber. Journal of Sound and Vibration,2010,329:2044–2056.
    [82]LI X.Y.,JI J.C. and Hansen C.H et al. The response of a Duffing-van der Pol oscillator underdelayed feedback control. Journal of Sound and Vibration,2006,291:644–655.
    [83]LI.L and YE.H.L. The existence stability and approximate expressions of periodic solutions ofstrongly nonlinear nonautonomous systems with multi-degree-of-freedom. Nonlineardynamics,2006,46:87–111.
    [84]JI J.C and Zhang N. Suppression of super-harmonic resonance response using a linearvibration Absorber. Mechanics Research Communications,2011,38:411–416.
    [85]黄建亮,黄惠仪,陈树辉等.梁的强非线性超、次谐波共振.振动与冲击,2004,23(1):1–3.
    [86]袁尚平,张建武,王庆宇.薄板3倍超谐振动的分析与试验.上海交通大学学报,2001,35(7):955–961.
    [87] Amabili M. Nonlinear vibrations of rectangular plates with different boundary conditions:theory and experiments. Computers and Structures,2004,82:2587–2605.
    [88]李韶华,杨绍普.采用改进Bingham模型的非线性汽车悬架的主共振.振动与冲击,2006,25(4):109–111.
    [89]冯霏,李凌轩,陈亚哲,闻邦椿.汽车非线性悬架系统共振特性的研究.东北大学学报(自然科学版),2010,1(3):415–417.
    [90]丁虎,陈立群.轴向运动黏弹性梁横向非线性受迫振动.振动与冲击,2009,28(12):128–131.
    [91]农绍宁,周桐,田光明.基于Duffing方程的仪表板支架系统谐波响应分析.四川大学学报,2008,40:212–215.
    [92]Zhou Y.H. and Wang J.Z. Vibration control of piezoelectric beam-type plates withgeometrically nonlinear deformation. International Journal of Non-Linear Mechanics.2004,39:909–920.
    [93]Huang X.L.and Shen H.S. Nonlinear free and forced vibration of simply supported sheardeformable laminated plates with piezoelectric actuators. International Journal of MechanicalSciences.2005,47:187–208.
    [94]Alhazza K.A.,Nayfeh A.H.,Daqaq M.F. On utilizing delayed feedback for active multi-mode vibration control of cantilever beams. Journal of Sound and Vibration,2009,31(9):735–752.
    [95]Nayfeh A.H. and Nayfeh S.A. On nonlinear modes of continuous systems. Journal of Vibrationand Acoustics,1994,116:129–136.
    [96]Nayfeh A.H.,Chin C. and Nayfeh S.A. nonlinear normal modes of a cantilever beam. Journalof Vibration and Acoustics,1995,117:477–481.
    [97] Nayfeh A.H. and Mook D.T. Nonlinear Oscillations,Wiley,NewYork,1979.
    [98]钱长照.非线性动力系统的时滞反馈分岔控制研究[博士学位论文].长沙:湖南大学,2005.
    [99]Alhazza K.A., Daqaqv M.F. and Nayfeh A.H., et al, Non-linear vibrations ofparametrically excited cantilever beams subjected to non-linear delayed-feedback control.International Journal of Non-Linear Mechanics,2008,43:801–812.
    [100] Naim Ashour O. Nonlinear Control of Plate Vibrations. Virginia Polytechnic Institute andState University.2001.
    [101]李骊,叶红玲.强非线性系统周期解的能量法.北京:科学出版社,2008.
    [102]王宗利,林启荣,刘正兴.压电智能梁振动控制的优化设计.力学季刊,2000,21(4):454–461.
    [103]刘延柱,陈文良,陈立群.振动力学.北京:高等教育出版社,1998.
    [104]Naik R D, Singru P M. Resonance, stability and chaotic vibration of a quarter-car vehiclemodel with time-delay feedback. Commun Nonlinear Sci Numer Simulat,2011(16):3397–3410.
    [105]Qian C.Z. and Tang J.S. A time delay control for a non-linear dynamic beam under movingload. Journal of Sound and Vibration,2008,309:1–8.
    [106]Daqaq M.F.,Alhazza K.A. and Arafat H.N.,Non-linear vibrations of cantilever beams withfeedback delays.J. NonLinear Mechanics,2008,43:962–978.
    [107]Olgac N. and Jalili N. Modal analysis of flexible beams with delayed resonator vibrationabsorber: theory and experiments, Journal of Sound and Vibration,1998,218(2):307–331.
    [108]Hosek M.,Elmali H. and Olgac N. Tunable torsional vibration absorber:the centrifugaldelayed resonator,Journal of Sound and Vibration,1997,205(2):151–165.
    [109]赵艳影,徐鉴.利用时滞反馈控制自参数振动系统的振动.力学学报,2011,43(5):894–903.
    [110]李欣业,陈予恕,吴志强等.参数激励Duffing-Van der Pol振子的动力学响应及反馈控制.应用数学和力学,2006,27(12):1387-1396.
    [111]周加喜,徐道临,李盈利等.基于最优时延反馈控制的主-被动非线性隔振方法研究.振动工程学报,2011,24(6):639-645.
    [112]蔡国平,陈龙祥.时滞反馈控制的若干问题.力学进展,2013,43(1):21-28.
    [113]Olgac N.,Elmali H. and Hosek M.,et al. Active vibration control of distributed systemsusing delayed resonator with acceleration feedback,J. Dyn. Syst. Meas. Contr,1997,119:380–389.
    [114] Jalli N. And Olgac N. Multiple delayed resonator vibration absorber for multi-degree-of-freedom mechanical structures. Journal of Sound and Vibration,1999,223(4):567–585.
    [115]Filipovic D. and Olgac N. Delayed resonator with speed feedback-design and performanceanalysis,Mechatronics,2002,12:393–413.
    [116]Renzulli M.E., Roy R.G. and Olgac N. Robust control of delayed resonator vibrationabsorber. IEEE Transactions on Control Systems Technology,1999,7(6):683–691.
    [117]Jalili N. and Olgac N.Multiple delayed resonator vibration absorbers for multi-degree-of-freedom mechanical structures, Journal of Sound and Vibration,1999,223(4):567–585.
    [118]Plaut R.H.and Hsieh J.C. Nonlinear structural vibrations involving a time-delay in damping,Journal of Sound and Vibration,1987,117:497–510.
    [119]K Sato,Y. Sumio and T. Okimura. Dynamic motion of a nonlinear mechanical system withtime delay: Analysis of the self-excited vibration by an averaging method. Trans JSME,Series C,1995,685:1861–1866.
    [120]Maccari A.,The resonances of a parametrically excited van der Pol oscillator to a time delaystate feedback,Nonlinear Dynamics,2001,26:105–119.
    [121] Maccari A.Vibration control for the primary resonance of a cantilever beam by a time delaystate feedback. Journal of Sound and Vibration,2003,259:241–251.
    [122] Ji J.C. and Leung A.Y.T.,Bifurcation control of parametrically excited Duffing system,Nonlinear Dynamics,2002,27:411–417.
    [123]Narayanana S. and BalamuruganV. Finite element modeling of piezolaminated smartstructures for active vibration control with distributed sensors and actuators.Journal of soundand vibration,2003,262(3):529–562.
    [124]彭解华,唐驾时,等. Van der pol-Duffing系统的非共振Hopf分岔.国防科技大学学报,2001,23(2):107-110.
    [125]甘春标,陆启韶,黄克累.耦合Duffing-Van der Pol振子的强共振分岔解.应用数学和力学,1999,20(1):63-70.
    [126]许磊,陆明万,曹庆杰. Van der Pol-Duffing方程的非线性动力学分岔特性研究.应用力学学报,2002,19(4):130-133.
    [127]陈予恕,徐鉴.van der Pol-Duffing-Mathieu型系统主参数共振分岔解的普适分类.中国科学(A辑),1995,25(12):1287-1297.
    [128]黄志龙,孙志锋.谐和激励下强非线性杜芬范德波振子的响应.浙江大学学报(工学版),2005,39(3):445-448.
    [129]褚衍东,李险峰,张建刚. Van der Pol-Duffing耦合系统的分岔与混沌控制.江南大学学报(自然科学版),2007,6(1):119-123.
    [130] Maccari Attilio. Approximate solution of a class of nonlinear oscillators in resonance with aperiodic excitation. Nonlinear Dynamics,1998,15(4):329-343.
    [131] XU Jian, Chung K W. Effects of time delayed position feedback on a Van der Pol-Duffingoscillator. Physica D,2003,180(1):17-39.
    [132] Tsuda Y, Tamura H, Sueoka A, et al. Chaotic behaviour of a nonlinear vibrating system witha retarded argument. JSME Intern ational Jour nal, Ser ies ó,1992,35(2):259-267.
    [133] Li Xinye, Ji J C, Hansen C H, et al. The response of a Duffing-van der Pol oscillator underdelayed feedback control. Journal o f Sound and Vibration,2006,291:644-655.
    [134]杨平. Van der Pol-Duffing系统共振双Hoff分岔.淮海工学院学报(自然科学版),2008,17(2):42-62.
    [135]陈震,薛定宇,郝丽娜等.压电智能悬臂梁主动振动最优控制研究,东北大学学报(自然科学版),2010,31(11):1550-1553.
    [136]张京军,何丽丽,李现敏等.基于LQG最优控制法的压电智能结构独立模态空间控制.计算力学学报,2010,27(5):789-794.
    [137]常军,陈敏,刘正兴.基于能量准则的梁振动多模态主动控制的LQR法.固体力学学报,2004,25(4):423-429.
    [138]Eringen A. C. On differential equations of nonlocal elasticity and solutions of screwdislocation and surface waves. Journal of Applied Physics,1983,54(9):4703–4710.
    [139]李成.纳米梁及纳米类梁结构的静力学和动力学的非局部理论、模型及求解[博士学位论文].合肥:中国科学技术大学,2011.
    [140]杨晓东,林志华.利用多尺度方法分析基于非局部效应纳米梁的非线性振动.中国科学(技术科学),2009,40(2):152–156.
    [141]Wang C. M.,Kitipornchai S. and Lim C. W. Beam bending solutions based on nonlocalTimoshenko beam theory. Journal of Engineering Mechanics,2008,134(6):475–481.
    [142]Ke L.L., Xiang Y. and Yang J. Nonlinear free vibration of embedded double-walled carbonnanotubes based on nonlocal Timoshenko beam theory. Computational Materials Science,2009,47:409–417.
    [143]Yang J.,Ke L.L and Kitipornchai S.Nonlinear free vibration of single-walled carbonnanotubes using nonlocal Timoshenko beam theory. Physica E.2010,42:1727–1735.
    [144]Pradhan S.C. and Murmu T. Application of nonlocal elasticity and DQM in the flapwisebending vibration of a rotating nanocantilever. Physica E.2010,42:1944–1949.
    [145]Wang C. M.,Zhang Y. Y. and Kitipornchai S. Vibration of initially stressed micro andnano–beams. International Journal of Structural Stability and Dynamics,2007,7(4):555–570.
    [146]宋震煜,于虹.纳米梁非线性振动的动力学分析.微纳电子技术,2006,3:145–149.
    [147]朱年勇,于虹,黄庆安.纳机械谐振器的非线性特性分析.电子器件,2005,28(1):35–37.
    [148]夏晓媛,李昕欣,王跃林.超薄硅纳米谐振梁的制作及谐振特性的测量.纳米技术与精密工程,2008,6(1):1–4.
    [149]徐临燕,栗大超,胡小唐等.基于原子力显微镜的纳米梁杨氏模量的测量.天津大学学报,2007,40(7):816–820.
    [150]陈会军,范炜,张大成.铝纳米梁的电学特性测试.纳米技术与精密工程,2008,6(1):5–8.
    [151]Evoy,S. and Carr D. W. et al. Nanofabrication and electron static operation of single–crystalsilicon paddle oscillators. Journal of Applied Physics,1999,86:6072–6077.
    [152] Iijima,S. Helical microtubules of graphitic carbon,Nature,1991,354:56–58.
    [153]Gibson,R.F.,Ayorinde E.O. and Wen Y.F. Vibrations of carbon nanotubes and theircomposites: a review. Composites Sccience and Technonlogy,2007,67:1-28.
    [154]Cai,H. and Wang,X.,Effects of initial stress on transverse wave propagation in carbonnanotubes based on Timoshenko laminated beam models. Nanotechnology,2006,17:45-53.
    [155]Li,H.B. and Wang,X.,Effect of small scale on the dynamic characteristic of carbonnanotubes under axially oscillating loading. Physica E: Low-dimensional Systems andNanostructures,2012,46:198–205
    [156]Zhu,S. Q. and Wang,X.,Effect of environmental temperatures on elastic properties ofsingle-Walled carbon nanotube. Journal of Thermal Stresses,2007,30(7-12):1195-1210.
    [157] Ramezani, A., Alasty, A. and Akbari, J., Closed-form solutions of the pull-ininstability in nano-cantilevers under electrostatic and intermolecular surface forces,International Journal of Solids and Structures,2007,44:4925-4941.
    [158] Ramezani,A.,Alasty,A. and Akbari, J.,Analytical investigation and numericalverification of Casimir effect on electrostatic nano-cantilevers,Microsystem Technologies,2008,14:145-157.
    [159] Zhang,W.,Baskaran,R. and Turner,K. L.,Effect of cubic nonlinearity on auto-parametrically amplified resonant MEMS mass sensor, Sensors and Actuators A,2002,102:139-150.
    [160] Caruntu,D.L. and Knecht,M.W.,On nonlinear response near-half natural frequency ofelectrostatically actuated microresonators. International Journal of Structural Stability andDynamics,2011,11:641-672.
    [161]Postma,H. W. Ch.,Kozinsky,I.,Husain,A. et,al.Dynamic range of nanotube-andnanowire-based electromechanical systems,Apply Physics Letters,2005,86:223105.
    [162]Conley,W.G.,Raman,A.,Krousgrill,C.M. et,al,Nonlinear and nonplannar dynamicsof suspended nanotube and nanowire resonance,Nano letters,2008,8(7-6):1590-1595.
    [163]Ke, C.H., Espinosa, H.D. and Pugno,N.,Numerical analysis of nanotube basedNEMS devices-Part II: role of finite kinematics,stritching and change concentrations,Transaction of the ASME,2005,72:726-731.
    [164]Liu,J.Z.,Zheng,Q.S. and Jiang,Q.,Effect of a rippling mode on resonances of carbonnanotubes,Physics Review Letters,2001,86:4843–4846.
    [165]Wang,X.,Wang,X. Y. and Xiao,J.,A non-linear analysis of the bending modulus ofcarbon nanotubes with rippling deformations,Composite Structures,2005,69:315–321
    [166]Mehdipour,I.,Soltani,P. and Ganji,D.D.,Nonlinear vibration and bending instabilityof a single-walled carbon nanotube using nonlocal elastic beam throry, International Journalof Nanoscience,2011,10(7-3):447-453.
    [167]Wang,H.,Dong,K.,Men,F.,Yan,Y.J. and Wang,X.,Influences of longitudinallmagnetic field on wave propagation in carbon nanotubes embedded in elastic matrix,Applied Mathematical Modelling,2010,34:878–889.
    [168]Narendar,S., Gupta,S.S. and Gopalakrishnan,S.,Wave propagation in single-walledcarbon nanotube under longitudinal magnetic field using nonlocal Euler–Bernoulli beamtheory, Applied Mathematical Modelling,2012,36(7-9):4529-4538.
    [169]Murmua,T.,McCarthy,M.A.and Adhikari,S.,Vibration response of double-walledcarbon nanotubes subjected to an externally applied longitudinal magnetic field: A nonlocalelasticity approach. Journal of Sound and Vibration,2012,331:5069–5086.
    [170] Kraus,J.,Electromagnetics,Mcgrawhill.Inc.,USA,1984.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700