用户名: 密码: 验证码:
基于脉冲控制的分叉与混沌系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在非线性科学领域中,分叉和混沌的分析、控制及反控制都是前沿的研究课题,极具挑战性。研究的目的是对给定的非线性动力系统设计一个控制器来抑制或者削弱系统中有害的分叉和混沌行为(控制分叉和混沌);产生、保持或增强健康的、有益的分叉和混沌行为(反控制分叉和混沌),从而产生人们所需要的动力学行为,迄今为止,这方面的研究还很少。我们采用的脉冲控制方法是可以直接或者间接地用来控制一个复杂动力系统的分叉和混沌行为的有效控制方法,可以实现对混沌或分叉系统稳定控制;利用脉冲控制使原本非混沌的系统混沌化(混沌反控制);利用脉冲实现动力系统的分叉反控制等都是我们的研究对象。
     在全面分析和总结非线性动力系统分叉和混沌研究现状的基础上,基于非线性动力学、分叉和混沌理论等非线性科学的现代分析方法和脉冲控制理论,对非线性动力系统混沌和分叉行为的分析、控制及反控制问题进行了系统和深入的研究,并对相应的控制器的设计进行了理论分析和仿真验证。主要研究内容如下:
     讨论了离散脉冲控制系统的稳定性问题。用李雅普诺夫定理和一些引理研究离散脉冲系统的解的稳定性。用李雅普诺夫函数对离散脉冲系统的渐近稳定性进行了分析且得到系统渐近稳定的基本条件,并且举例验证了理论结果。
     讨论了脉冲控制非线性动力系统分叉的问题。提出了一种脉冲控制非线性动力系统分叉的策略,用李雅普诺夫函数证明了脉冲控制系统的稳定性并且推导出了该系统渐近稳定的一些充分条件,并且用数值仿真验证了该方法的有效性。
     研究了小世界网络分叉和混沌的分析及控制问题。分析了小世界网络的分叉和混沌行为并且推导出分叉和混沌产生的参数条件。提出一种脉冲混杂控制方法来控制倍周期分叉和稳定嵌入混沌吸引子的不稳定的周期轨道。仿真结果表明,此方法可以延迟或完全消除小世界网络中的倍周期分叉,使整个系统能够在较大的参数值变化范围内保持稳定的动态特性。可以稳定嵌入混沌吸引子中的不稳定周期轨道;也可以将任意的p周期轨道有效地控制到2n ,3m及2n×3m周期以及预期的周期轨道。
     研究了Internet网络拥塞控制系统分叉和混沌的分析及控制问题。首先分析了TCP-RED网络拥塞控制系统(具有RED(随机早期检测)排队管理的TCP(传输控制协议)网络)的分叉和混沌行为并且推导出分叉和混沌产生的参数条件;由于存在分叉和混沌造成TCP-RED系统的失稳现象,提出了一种脉冲混杂控制方法来稳定TCP-RED系统,实现改进RED路由器队列管理机制的性能。仿真表明这种控制方法可以较大增加系统的稳定工作区域并且增强工作点的稳定性。
     研究了基于脉冲控制方法的分叉反控制问题。分析了在离散系统中分叉产生的条件和脉冲控制系统中分叉的存在性。提出了一种在离散非线性系统中用脉冲控制方法实现分叉反控制的方法。仿真结果显示,在受周期性脉冲控制的逻辑斯蒂映射中,产生了新的分叉类型,发现存在一条新的多重倍周期分叉通往混沌的路径,而且很大程度修改了分叉的结构和混沌行为的范围。说明了复杂动力学系统在周期性的脉冲控制作用之下改变系统的分叉和混沌轨道。
     研究了基于脉冲控制方法的混沌反控制问题。提出一种反控制混沌的策略,对一个离散系统施加脉冲控制从而改变系统的状态。仿真结果显示可以用脉冲控制方法实现对离散系统混沌反控制,并且用不同的方法验证了,用脉冲控制方法能够把系统从稳定的周期运动状态驱动到随机的混沌运动状态。
     最后对全文的研究工作进行了总结,并对将来要做的研究工作进行了展望。
In the nonlinear science field, bifurcation and chaos analysis, control and anti-control have become front research topics, extremely challenging. The research purposes is to de-sign a controller to suppress or reduce some harmful bifurcation and chaotic behavior of a given nonlinear system (control bifurcation and chaos) or to created, maintain, or enhance the healthy and useful behaviors of bifurcation and chaotic for a given nonlinear system (anti-control bifurcation and chaos), thereby achieving some desirable dynamical behav-iors, so far, its concerned work is very little. As one of the effective control methods, im-pulsive control can be directly or indirectly used for eliminating bifurcation or chaos from a complex dynamical system. Utilize the pulse to contr or anti-control the bifurcation or chaotic system are our research objects.
     Through a comprehensive analysis and summary of the research history and actuality of bifurcation and chaos, we have conducted a systematic and thorough investigation into the fundamental theory and application of the bifurcation or chaos control by using the nonlinear dynamics theory, and the chaos and bifurcation theory and so on modern nonlinear science analysis methods and the impulse control theory.The main achievements and conclusions in this dissertation are obtained as follows:
     The stability of discrete impulsive control system was discussed. Based on the theory of impulsive differential, the stability of discrete impulsive control system was studied by using Lyapunov method and some lemmas. Utilizing Lyapunov function proved asymp-totic stability of discrete impulsive system and the essential conditions to this kind of sta-bility have been researched. The theoretical results were verified by an example.
     The method of impulsive control bifurcation in a nonlinear system was discussed. The stability of the system was proved by using Lyapunov function. The stability condi-tions have been derived. The simulation results confirmed this method validity.
     The bifurcation and chaos behavior of small-world networks model has been investi-gated. The parameter conditions of bifurcation and chaos producing was deduced. An im-pulsive hybrid control method was proposed to control the bifurcations and stabilize the period orbits embedded in the chaotic attractor of a small-world network. Theoretical cal- culations and simulation results showed that the period doubling bifurcations can be de-layed or eliminated completely. The period doubling route to chaos is therefore at least delayed to greater parameter values.The unstable period orbits embedded can be stabilized and a p-period orbit can be controlled to desired orbits by adjusting control parameters.
     The problem of analysis and control of bifurcations and chaos has been studied in a TCP-RED congestion control system model. We study the bifurcation and chaotic behav-ior of the TCP-RED system which may cause heavy oscillation of average queue length and induce network instability. We propose an impulsive control method for controlling bifurcations and chaos in the TCP-RED system, which is a simple approach improving the performance of the RED router queue management mechanism by adjusting the control parameters. The simulation experiments show that this method can obtain the stable aver-age queue length without sacrificing the advantages of RED.
     The method of anti-control bifurcation via impulsive control has been researched. The bifurcation producing condition and anti-control of bifurcations method were dis-cussed. The simulation results showed the complex dynamics under the periodically im-pulsive control alters the bifurcations and chaos orbits of the system. The existence of a new multiple periods doubling bifurcation route to chaos and considerably modified bi-furcation structures and ranges of chaotic behavior are demonstrated by periodic impulses control. Anti-control bifurcations can be viewed as to design bifurcations into a system via impulsive control when such dynamical behaviors are desirable.
     The problem of anti-control chaos in discrete system has been investigated. An anti-control of chaos strategy was proposed to drive a periodic motion of a discrete system into a chaotic motion by using an impulsive control method. The simulation results showed the method is effective and successfully realized to anti-control of chaos in the discrete system by the method. Some different ways confirmed nonlinear systems can be divered from stable period motion to random chaotic motion by the control method.
     Finally, a summary has been done for all discussion in the dissertation. The research works in further study are presented.
引文
[1] Chen G. Chaos, Bifurcation, and their control. In The Wiley Encyclopaedia of Elec-trical and Electronics Engineering, ed, Webster J, New York: Wiley, 1999, 3: 194-218.
    [2] Chen G. Controlling Chaos and Bifurcations in Engineering Systems. CRC Press, Boca Raton, FL:1999.
    [3] Chen G, Moiola J L, Wang H O. Bifurcation control: theories, methods, and applica-tions. Int. J. of Bifurcation and Chaos, 2000, 10: 511-548.
    [4] Chen G, Dong X. From Chaos to Order: Perspectives, Methodologies, and Application. Singapore: World Scientific Series on Nonlinear Science Series A, 1998.
    [5] Chen G. Chaos: Control and Anti-control, IEEE Circuits and Systems Society News-letter, March 1998, 1-5.
    [6]曹建福,韩崇昭,方洋旺.非线性系统理论及应用(第2版).西安:西安交通大学出版社, 2006.
    [7] Abed E H, Fu J H. Local feedback stabilization and bifurcation control: Part I. Hopf bifurcation. Syst. Contr. Lett., 1986, 7: 11-17.
    [8] Abed E H, Fu J H. Local feedback stabilization and bifurcation: Part II. Stationary bi-furcation. Syst. Contr. Lett., 1987, 8: 467-473.
    [9] Chen X, Gu G, Martin P, Zhou K. Bifurcation control with output feedback and its applications to rotating stall control. Automatic, 1998, 34: 437-443.
    [10] Gu G, Sparks A G, Banda S S. Bifurcation based nonlinear feedback control for ro-tating stall in axial flow compressors. Int. J. Contr., 1997, 6: 1241-1257.
    [11] Yabuno H. Bifurcation control of parametrically excited buffing system by a com-bined linear-plus-nonlinear feedback control, Nonlin. Dyn., 1997, 12: 263-274.
    [12] Kang W, Gu G, Sparks A, Banda S S. Bifurcation test functions and surge control for axial flow compressors. Automatic, 1999, 35: 229-239.
    [13] Gu G, Chen X, Sparks A G, Banda S S. Bifurcation stabilization with local output feedback, SIAM. J. Contr. Optim, 1999, 37: 934-956.
    [14] Wang H O, Abed E H. Bifurcation control of a chaotic system. Automatic, 1995, 31: 1213-1226.
    [15] Abed E H, Wang H O. Feedback control of bifurcation and chaos in dynamical Sys-tems. In Nonlinear Dynamics and Stochastic Mechanics, eds, Kliemann W and Sri Namachchivaya N, CRC Press, Boca Raton, FL:1995, 153-173.
    [16] Abed E H, Wang H O, Tesi A. Control of bifurcation and chaos. In the Control Handbook. Eds, Levine W S, CRC Press, Boca Raton, FL, 1995, 951-966.
    [17] Chen D, Wang H O, Chen G. Anti-control of Hopf bifurcation through washout fil-ters, Proc. 37th IEEE Conf. Decision and Control, (Tampa, FL), 1998. 16-18: 3040-3045.
    [18] Wang H O, Chen D, Bushnell L G. Control of bifurcations and chaos in heart rhythms. Proc. 36th IEEE Conf. Decision Control, San Diego, CA, 1997, 1(1): 395-400.
    [19] Wang H O, Chen D, Chen G. Bifurcation control of pathological heart rhythms, Proc. IEEE Conf. Contr. Appl., Italy, 1998, 2(2): 858-862.
    [20] Berns D W, Moiiola J L, Chen G. Feedback control of limit cycle amplitudes from a frequency domain approach. Automatica, 1998, 34: 1567-1573.
    [21] Kang W. Bifurcation and normal form of nonlinear control systems, Parts I and II. SIAMJ. Contr. Optim, 1998, 36: 193-232.
    [22] Moiiola J L, Chen G. Hopf bifurcation Analysis: A Frequency Domain Approach. World Scientific, Singapore, 1996.
    [23] Berns D W, Moiiola J L, Chen G. Predicting period-doubling bifurcations and multi-ple oscillations in nonlinear time-delayed feedback systems. IEEE Trans. Circuits Syst. I, 1998, 45: 759-763.
    [24] Moiola J L, Berns D W, Chen G. Feedback control of limit cycle amplitudes. Proc. IEEE Conf. 36th Decision and Control, San Diego, CA, 1997, 2(2): 1479-1485.
    [25] Moiola J L, Chen G. Controlling the multiplicity of limit cycles. Proc. IEEE Conf. 37th Decision and Control, 1998, 3(3): 3052-3057.
    [26] Basso M, Evangelisti A, Genesio R, Tesi A. On bifurcation control in time delay feedback systems. Int. J. Bifurcation and Chaos, 1998, 8: 713-721.
    [27] Moiola J L, Desages A C, Romagnoli J, A. Degenerate Hopf Bifurcations via feed-back system theory-higher-order harmonic balance. Chem. Eng. Sci. 1991, 46: 1475-1490.
    [28] Genesio R, Tesi A, Wang H O, Abed E H. Control of period doubling bifurcations using harmonic balance. Proc. Conf. Decis. Contr., San Antonio, 1993, 1: 492-497.
    [29] Mees A I, Chua L O. The Hopf bifurcation theorem and its applications to nonlinear oscillations in circuits and systems. IEEE Trans. Circuits Syst, 1979, 26: 235-254.
    [30] Moiola J L, Colantonio M C, Donate P D. Analysis of static and dynamic bifurcation from a feedback systems perspective. Dyn. Stab. Syst. 1997, 12: 293-317.
    [31] Moiola J L, Berns D W, Chen G. Controlling degenerate Hopf bifurcations. Latin American Appl. Res., 1999, 29: 213-220.
    [32] Abed E H, Wang H O, Chen G. Stabilization of period doubling bifurcations and implications for control of chaos, Physica D. 1994, 70: 154-164.
    [33] Chen G, Fang J Q, Hong Y, Qin H. Controlling Hopf bifurcations: The Continuous Case, ACTA Physica China. 1999, 8: 416-422.
    [34] Chen G, Fang J Q, Hong Y, Qin H. Controlling Hopf bifurcations: The Discrete Case, Discrete Dynamics in Nature and Society, 2000, 5: 29-33.
    [35] Chen G, Liu J, Yap K C. Controlling Hopf bifurcations. Proc. Int. Symp. Circ. Syst., Monterey, CA, 1997, III639-642.
    [36] Alvarez J, Curiel L E. bifurcations and chaos in a linear control system with satu-rated input. Int. J. bifurcation and chaos, 1997, 7: 1811-1822.
    [37] Brandt M E, Chen G. Feedback control of a quadratic map model of cardiac chaos. Int. J. Bifurcation arid Chaos, 1996, 6: 715-723.
    [38] Cui F, Chew C H, Xu J, Cai Y. Bifurcation and chaos in the buffing Oscillator with a PID controller, Nonlin. Dynam., 1997, 12: 251-262.
    [39] Lowenberg M H, Richardson T S. Derivation of non-linear control strategies via numerical continuation. Proc AIAA Atmospheric Flight Mechanics Conference, 1999, AIAA-99-4111, 359-369.
    [40] Moore F K, Greitzer E M. A theory of post-stall transients in axial compressors: Part I development of the equations. ASME J. Engr. Gas Turbines and Power, 1986, 108: 68-76.
    [41] Streit D A, Krousgrill C M, Bajaj A K. Combination parametric resonance leading to periodic and chaotic response in two-degree-of-freedom systems with quadratic nonlinearities. J. Sound & Vib., 1988, 124: 470-480.
    [42] Wang X F, Chen G. Chaotification via arbitrarily small feedback controls: theory, method, and application. Int. J of Bifur. Chaos, 2000, 10: 549-570.
    [43] Calandririni G, Paolini E, Moiola J L, Chen G. Controlling limit cycles and bifurca-tion, in Controlling Chaos and Bifurcations in Engineering Systems, ed. Chen G, CRC Press, Boca Raton, FL: 1999, 200-227.
    [44] Bleich M E, Socolar J E S. Stability of periodic orbits controlled by time-delayed feedback. Phys. Lett., 1996, A210: 87-94.
    [45] Ji J C, Leung A, Y, T. Bifurcation control of a parametrically excited buffing system. Nonlinear Dynamics 2002 27: 411-417.
    [46] Wang X F, Chen G, Yu X H. Anti-control of continuous-time systems by time-delay feedback. Chaos, 2000, 10: 771-779.
    [47] Vieira M S, Lichtenberg A J. Controlling chaos using nonlinear feedback with delay. Phy. Rev.,1996, E54: 1200-1207.
    [48] Pyragas K. Control of chaos via extended delay feedback. Phys. Lett., 1995, A206: 323-330.
    [49] Kittel A, Parisi J, Pyragas K. Delayed feedback control of chaos by self-adapted de-lay time. Phys. Lett, 1995, A198: 433-436.
    [50] Chen G, Liu J, Nicholas B, Ranganathan S M. Bifurcation dynamics in discrete-time delayed\feedback control systems. Int. J. Bifurcation and Chaos, 1999, 9: 287-293.
    [51] Konishi K, Ishii M, Kokame H. Stabilizing unstable periodic points of one-dimensional nonlinear systems using delayed-feedback signals. Phys. Rev., 1996, E54: 3455-3460.
    [52] Mareels I M Y, Bitmead R R. Nonlinear dynamics in adaptive control: Chaotic and periodic stabilization. Automatic, 1986, 22: 641-665.
    [53] Mareels I M Y, Bitmead R R. Nonlinear dynamics in adaptive control: Chaotic and periodic stabilization analysis II. Automatic, 1988, 24: 485-497.
    [54] Praly L, Pomet J B. Periodic solutions in adaptive systems: The regular case. Proc. IFAC 10th Triennual World Congress, 1987, 10: 40-44.
    [55] Pyragas K. Continuous control of chaos by self-controlling feedback. Phys. Lett. 1992, A174: 421-428.
    [56] Pyragas K, Tamasevicius A. Experimental control of chaos by delayed self-controlling feedback. Phys. Lett, 1993, A180: 99-102.
    [57] Ydstie B E, Golden G C. Bifurcation and complex dynamics in adaptive control sys-tems. Proc. 25th IEEE Conf. Decision and Control, Athens, 1986, 24(1): 2232-2236.
    [58] Ydstie B E, Golden M P. Chaos and strange attractors in adaptive control systems. Proc. IFAC World Congress, 1987, 10: 127-132.
    [59] Ydstie B E, Golden M P. Chaotic dynamics in adaptive systems. Proc. IFAC Work-shop on Robust Adaptive Control, Newcastle, 1998, 88/15, 14-19.
    [60] Dibernardo M. An Adaptive Approach to the Control and Synchronization of Con-tinuous-Time Chaotic Systems. Int. J. of Bifurcations and Chaos, 1996, 6: 557-568.
    [61] Wang H O, Abed E H. Robust control of period doubling bifurcations and implica-tions for control of chaos. Proc. 33rd IEEE Conf Decision and Control,1994, 4(4): 3287-3292.
    [62]乔宇,王洪礼,竺致文,沈菲.电力系统的分叉控制研究.力学学报, 2002, 34: 195-198.
    [63]罗晓曙,陈关荣等.状态反馈和参数调整控制离散非线性系统的倍周期分叉和混沌.物理学报. 2003, 52: 790-794.
    [64]唐驾时,符文彬.基于开环控制的平衡点分叉控制方法[J].华南理工大学学报(自然科学版) , 2003, (S1)7: 122-123.
    [65]符文彬,唐驾时.基于状态反馈参数激励系统的超谐共振分叉控制[J].物理学报, 2004, (09): 2889-2893 .
    [66]符文彬,唐驾时.强迫Duffing振动系统的主共振鞍结分叉控制[J].振动工程学报, 2004, (03): 265-268 .
    [67]符文彬,唐驾时.含平方项非线性动力系统的分叉研究[J].湖南大学学报(自然科学版), 2004, (01): 99-102.
    [68]钱长照,唐驾时.一类非自治时滞反馈系统的分叉控制.物理学报, 2006,(02): 617-621.
    [69]梁建术,陈予恕,梁以德.周期分叉解的鲁棒控制[J].应用数学和力学, 2004, (03): 239-246 .
    [70]梁建术,陈予恕,梁以德. Robust control of periodic bifurcation solutions. Applied Mathematics and Mechanics, 2004, (03): 263-271.
    [71]徐鉴,陆启韶.非自治时滞反馈控制系统的周期解分叉和混沌[J].力学学报, 2003, (04): 443-451.
    [72] Wang H O, Hong Y, Bushnell L. Nonsmooth bifurcation control: from fractional power control to trumpet bifurcation. Proceedings of the 40th IEEE Conference on Decision and Control, 2001, 3(3): 2181- 2186.
    [73] Li T, Yorke J. Period three implies chaos. Amer. Math. Monthly, 1975, 82(10): 985-992.
    [74] Marotto F R. Snap-Back repellers imply chaos in Rn [J]. J. of Math. Anal. And Appl., 1978, 63: 199-223.
    [75] Devaney R L. An introduction to chaotic dynamical systems, 2nd Edition, Addison- Wesley Publishing Company, Reading, MA, 1989.
    [76] Hassard B D, Kazarinof N D and Wan, Y H. Theory and Applications of Hopf Bi-furcation. London: Cambridge University Press, 1981.
    [77] Banks J, Cairens G, Davis G, et al. On Devaney’s definition of chaos. Amer. Math. Monthly. 1992, 99(4): 332-334.
    [78]倚恩,斯图尔特著,潘涛泽.上帝掷骰子吗-混沌之数学.上海远东出版社, 1996.
    [79]郝柏林.分叉、混沌、奇怪吸引子、湍流及其它.物理学进展, 1987, 3(3): 392-437.
    [80]程极泰著.混沌的理论与应用.上海科学技术出版社, 1991.
    [81] Celikovsky S, Chen G. On a Generalized Lorenz Canonical Form of Chaotic System, Int. J. of Bifurcation and Chaos, 2002, 12(8): 1789-1812.
    [82] Ott E, Grebogi C and Yorke J A. Controlling Chaos. Phy. Rev. Lett., 1990, 64: 1196-1199.
    [83]吕金虎,陆君安.混化时间序列分析及其应用.武汉:武汉大学出版社, 2002.
    [84] Lu, J, Zhang, S. Controlling Chen's chaotic attractor using backstepping design based on parameters identification. Phys. Lett. A, 2001, 256: 148-152.
    [85] Sanchez E N, Perez J P, Martinez M, Chen G. Chaos stabilization: An inverse opti-mal control approach. Latin Amer. Appl. Res.: Int. J, 2002, 32: 111-114.
    [86] Hong, Y, Huang, J, Xu, Y. On an output feedback finite-time stabilization problem, IEEE Trans Automatic Control, 2001, 46: 305-309.
    [87] Nitsche G, Dressler U. Controlling chaotic dynamical system using delay coordi-nates. Physica D, 1992, 58, 153-164
    [88] Hunt E R, Johnson G. Keeping chaos at bay, Chaotic dynamics and control in elec-tronic circuits (Advanced technology/tutorial). IEEE Spectrum, 1993, 30: 32-36.
    [89] Chen D S, Wang H O, Chen G. Anti-Control of Hopf Bifurcations. IEEE Trans. on Circuits and System- I, 2001, 48(6): 661-671.
    [90] Chen G, Lai D. Feedback control of chaos. Int. J. Bifurcation and chaos.1996, 6: 1314-1349.
    [91] Chen G, Lai D. Anticontrol of Chaos via Feedback, Proc. Of IEEE Conf. the 36th On Decision and Control San Diego, December, 1997, 1(1): 367-372.
    [92] Wang X F, Chen G. On feedback anticontrol of discrete chaos, Internat. J. Bifurca-tions Chaos, 1999, 9: 1435-1441.
    [93]胡刚,萧井华,郑志刚.混沌控制.上海:上海科技教育出版社, 1998.
    [94] Miliman V D, Myshkis A D. On the stability of motion in presence of impulses, Si-berian Math J. 1960, 1: 233-237.
    [95] Myshkis A D, Samoilenko A M. System with impulses with prescribed moments of time. Math. Subornik. 1967, 74:202-208.
    [96]刘永清,关治洪.测度型脉冲大系统的稳定镇定与控制(第一版).广州:华南理工大学出版社, 1996.
    [97] Lakshmikantham V, Bainov D D, Simeonov P S. Theory of Impulsive Differential Equations. Singapore: World Scientific, 1989.
    [98] Bainov D D, Simeonov P S. Systems with Impulse Effect: Stability, Theory and Ap-plications. Halsted Press, New York, 1989.
    [99] Lakshmikantham V, Liu X Z. Stability Analysis in Terms of Two Measures. Singa-pore: World Scientific, 1989.
    [100] Liu X Z. Stability Results for Impulsive Differential Systems with Applications to Population Growth Models. Dynamics and Stability of Systems.1994, 9: 163-174.
    [101] Angelova J, Dishliev A. Optimization Problems for Impulsive Models from Popula-tion Dynamics.Manuscript, Bulgaria, 1994.
    [102] Liu X Z. Impulsive stabilization and applications to population growth models. Rocky Mountain J of Math.1995, 25(1): 381-395.
    [103] Liu X Z, Zhang S. A cell population model described by impulsive PDEs existence and numerical approximation. Computers Math. Appl., 1998, 36(8): 1-11.
    [104] Liu X Z, Rohlf K. Impulsive control of a Lotka-Volterra system. IMAJ of Math. &Information, 1998, 15: 296-284.
    [105] Ballinger G, Liu X Z. Permanence of population growth models with impulsive ef-fects. Math. Comput. Modeling, 1997, 26(12): 59-72.
    [106] Liu X Z, George B. Boundedness for impulsive delay differential equations and ap-plications to population growth models. Nonlinear Analysis, 2003, 53: 1041-1062.
    [107] Yang T. Impulsive Control Theory, Springer, Berlin, 2001.
    [108] Li, Z G, Wen, C Y, Soh, Y C. Analysis and design of impulsive control systems. IEEE Trans. Autom. Control. 2001, 46 (6): 894-897.
    [109] Bainov D D, Simeonov P S. Impulsive Differential Equations Asymptotic Properties of the Solutions and Applications [M]. Singapore: World Scientific, 1995.
    [110] Liu X. Stability theory for impulsive differential equations in terms of two different measures [M].Lecture Notes in Pure and Applied Mathematics. New York: Marcel Dakker.1991, 127: 375-384.
    [111] Kaul S K, Liu X. Generalized variation of parameters and stability of impulsive sys-tems [J]. Nonlinear Analysis. 2000, 40: 295-307.
    [112] Ye H, Miche A N, Hou L. Stability analysis of systems with impulse effects [J]. IEEE Trans on Autom. Control, 1998, 43 (12): 1719 - 1723.
    [113] Mahmouda G M, Turchettic G. Approximate first-order solutions of non-linear dynamical mappings. Physica A. 2002, 312: 369 -380.
    [114] Brant M E, Chen G. Bifurcation control of two nonlinear models of cardiac activity. IEEE Trans. On Circ. Sys.-I. 1997, 44: 1031-1034.
    [115] Chen G, Moiola J L. An overview of bifurcation, chaos and nonlinear dynamics in control systems. J. Franklin Institute, 1994, 331B: 819-858.
    [116]张锦炎.常微分方程几何理论与分支问题(第二次修订本).北京:北京大学出版社出版, 2000.
    [117] Watts D J, Strogatz S H. Collective dynamics of small-world networks. Nature. 1998, 393: 440-442.
    [118] Newman M E J, Watts D J. Scaling and percolation in the small-world network model. Phys Rev E. 1999, 60: 7332-7342.
    [119] Moukarzel C F. Spreading and shortest paths in systems with sparse long-range connections. Phys Rev E. 1999, 60: 6263-6266.
    [120] Watts D J. Small-Worlds: The Dynamics of Networks Between Order and Random-ness. Princeton, NJ: Princeton University Press, 1999.
    [121] Newman M E J, Morre C, Watts D J. Mean-field solution of the small-world net-work model. Phys Rev Lett. 2000, 84: 3201-3204.
    [122] Yang X S. Chaos in small-world networks. Phys Rev E. 2001, 63: 046206.
    [123] Lima R, Pettini M. Suppression of chaos by resonant parametric perturbations. Phys Rev A. 1990, 41(2): 726-733.
    [124] BraimanY, Goldhirsch. Taming chaotic dynamics with periodic perturbations. Phys Rev Lett. 1991, 66: 2545-2549.
    [125] Chen G, Dong X. On feedback control of chaotic continuous-time systems. IEEE Trans Circ Sys-I.1993, 40: 591-601.
    [126] Chen G R. On some controllability for chaotic dynamics control. Chaos Solit. Fract. 1997, 8(9): 1461-1467.
    [127] Rajasekar S, Murreali K L. Control of chaos by nonfeedback methods in a simple electronic circuit system and the Fitz Huge-Nagumo equation. Chaos, Solitons & Fractals 1997; 8(9): 1554–1558.
    [128] Chen G R, Yu X H. On time delayed feedback control of chaos. IEEE Trans Circ Sys-I. 1999, 46: 767–772.
    [129] Yang L, Liu Z R, Chen G R. Chaotifying a continuous-time system via impulsive input. Int. J. Bifurcation and Chaos. 2002, 12: 1121-1128.
    [130] Luo X S, Chen G R, Wang B H, Fang J Q. Hybrid control of period-doubling bifur-cation and chaos in discrete nonlinear dynamical systems. Chaos Solit. Fract. 2003, 18: 775-783.
    [131]郝柏林.从抛物线谈起:混沌动力学引论.上海:上海科技教育出版社, 1993.
    [132] Alligood K T, Sauer T D, Yorke J A. Chaos: an introduction to dynamical systems. Springer-Verlag, New York, 1996.
    [133] Jacobson V. Congestion avoidance and control. Proc. ACM SIGCOMM, 1998, 18(4): 314-329.
    [134] Firoiu V, Borden M. A study of active queue management for congestion control. In Proceedings of IEEE Infocom. 2000, 3(3): 1435-1444.
    [135] Floyd S, Jacobson V. Random early detection gate-ways for congestion avoidance [J]. IEEE/ACM Trans on Networking. 1993, 1(4): 397-413.
    [136] Ranjan P, Abed E H. Nonlinear instabilities in TCP-RED. Proceedings of IEEE In-focom, 2002, 2: 185-191.
    [137] Floyd S. Recommendation on using the‘gentle’variant of RED. 2000, http://www.aciri.org/floydlred/gentle.html.
    [138] Socolar J E S, Sukow D W, Gauthier D J. Stabilizing unstable periodic orbits in fast dynamic systems. Phys. Rev. E. 1994, 50(40): 3245-3 248.
    [139] Erlathis M, Semke J, Mahdavi J, Ott T. The macroscopic behavior of the TCP con-gestion avoidance algorithm. Computer Communications Review. 1997, 27(3): 633-643.
    [140] Hepanha J P, Bohacek S, Obrxzka K, Lee J. Hybrid Modeling of TCP congestion control. Lecture Notes in Computer Science. 2001, 2034: 291-304.
    [141] Veres A, Boda M. The chaotic nature of TCP congestion control. Proc. of Infocom, 2000, 3(3): 1715-1723.
    [142] Wang H O, Abed E H. Control of Nonlinear Phenomena at the Inception of Voltage Collapse. Proceedings American Control Conference, San Francisco, June, 1993, 2071-2075.
    [143] Wang H O, Abed E H, Hamdan M A. Bifurcations, Chaos, and Crises in Voltage Collapse of a Model Power System. IEEE Transactions on Circuits and Systems-I, 1994, 41: 294-302.
    [144] Dong Chen, Wang H O, Howle L E, Gustafson M R, Meressi T. Amplitude control of bifurcations and application to Rayleigh-Benard convection. Proc. 37th IEEE Conf. Decision Contr., Tampa, FL, 1998, 2(2): 1951-1956.
    [145] Chen D, Wang H O, Chin W. Suppressing cardiac alternans: Analysis and control of a border-collision bifurcation in a cardiac conduction model, Proc. 1998 IEEE Intl Symp. Circuits and Systems, Montery, CA. 1998, 3: 635-638.
    [146] Chen G R, Keng C Yap, Lu J. Feedback control of Hopf Bifurcations. Proc. Int. Symp. Circuits Systems, Monterey, CA, 1998, III, 639-642.
    [147] Chen G, Moiola J L, Wang H O. Bifurcations: Control And Anti-Control. IEEE Trans. On Circ. Sys.-I. 1999, 10: 4-31.
    [148]方锦清.非线性系统中混沌的控制与同步原理及其应用前景(一).物理学进展, 1996, 16(l): 1-74.
    [149]方锦清.非线性系统中混沌控制方法、同步原理及其应用前景(二).物理学进展, 1996, 16(2): 137-201.
    [150]方锦清.驾驭混沌与发展高新技术.北京:原子能出版社, 2002.
    [151] Yang T, Chua L O. Impulsive stabilization for control and synchronization of chaotic systems: Theory and application to secure communication. IEEE Trans. on CAS, 1997, 144(10): 976-988.
    [152] Yang T, Chua L O. Impulsive control and synchronization of nonlinear dynamical systems and application to secure communication. Int. J. Bifurcation and Chaos, 1997, 7(3): 645-664
    [153] Guckenheimer J, Holmes P. Nonlinear Oscillations, Dynamical Systems and Bifur-cations of Vector Fields, Springer-Verlag, Berlin, 1983.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700