用户名: 密码: 验证码:
控制热力学条件下的矿物、岩石电学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电导率是重要的地球物理参数。模拟地球内部条件下的矿物、岩石电导率测量是了解地球内部物质组成及物理化学性质的有效手段,同时,还可以为野外大地电磁测量结果的解释提供依据。在YJ—紧装式六面顶压机上,对原有的矿物、岩石电性测量系统进行了进一步的改进:建立了一套以Solartron 1260阻抗/增益—相位分析仪为测试仪器,使用Mo电极和Mo盾来控制样品氧逸度的测量系统,该系统的氧逸度环境为Mo—MoO_2,接近IW缓冲对。石英(人造水晶)、橄榄石、纯橄榄岩、辉石岩、二辉橄榄岩、巨晶辉石的电导率测量是在新的测量系统下获得的,而辉长岩的电导率测量是基于LCR仪为测量仪器的测试系统下获得的。
     在压力为1—3GPa、温度为675K—1600K、频率为10~8—0.1Hz、氧逸度为Mo—MoO_2的条件下,对不同方向石英(人造水晶)的电学性质进行了研究。复阻抗平面上出现了反映样品本身性质的阻抗弧和反映样品与电极之间扩散的直线。石英的电导率随温度增加而增加,随压力的变化比较微弱。石英的导电机制主要为离子导电,载流子可能为碱金属离子和氢离子,这些碱金属离子和氢离子主要在平行于光轴的通道中运动。在相同的温度和压力条件下,α石英的电导率和c轴的夹角有关,石英的电导率随着夹角的增大而减小,表现出了强烈的各向异性。对各个方向石英在发生了相变前后的电导率进行了研究,发现α石英转变为β石英后,电导率并没有突变,仍然随着温度的增加而增加。
     在压力为1—2GPa、温度为563-1173K、频率为12—10~5Hz的条件下研究了辉长岩的阻抗。结果发现辉长岩复阻抗的实部随频率的增加而减小,而虚部随频率增加先增大后减小;相角随频率增加而减小。在复阻抗平面上出现了反映颗粒内部的阻抗弧,该阻抗弧出现在高频段。实验室获得辉长岩在地壳的压力和温度(1.0GPa和893K)条件下的电导率值为1.77×~(-4)S/m,而高导层的电导率值为0.01—0.1S/m,二者相差了2—3个数量级,推断辉长岩不能在下地壳形成高导层。
     在压力为3.0GPa、温度为1299—1600K、频率为10~6—0.1Hz、氧逸度为Mo—MoO_2条件下,对不同颗粒粒度的橄榄石电导率进行了测量。在复阻抗平面上均
    
    出现了反映颗粒内部电响应的阻抗弧,这些阻抗弧随着温度的增加而减小。而反
    映颗粒边界导电机制的阻抗弧并不明显,两种阻抗弧出现在不同的频率范围内,
    反映颗粒内部导电机制的阻抗弧出现在频率较高的范围内,而反映颗粒边界导电
    机制的阻抗弧出现在频率相对低的范围内。不同粒度橄榄石在3.OGPa条件下的
    电导率随着温度的增加而增加,它们的激化烩介于1.03一2.lleV之间。
     在压力为l一3GPa、温度为1282一z544K、频率为0.1一lo6Hz、氧逸度为
    Mo一MoOZ的条件下,对纯橄榄岩的电导率进行了测量。在复阻抗平面上出现了
    反映颗粒内部电响应和颗粒边界电响应的阻抗弧。反映颗粒内部导电的阻抗弧出
    现在较高的频率段,随着温度的增加,这些阻抗弧逐渐收缩。颗粒边界的阻抗弧
    出现在相对低的频率段。纯橄榄岩的电导率随着温度增加而增加,随压力变化比
    较微弱。对颗粒边界的电导率研究表明,颗粒边界的电导率高于颗粒内部的电导
    率,总电导率则小于颗粒内部和颗粒边界的电导率,颗粒边界并没有增强总电导
    率。纯橄榄岩的激化能为1 .62ev,而激化体积为o.67c扩/mol,指前因子为5125/m。
    利用实验所获得的拟合参数,建立了地球内部200一400km处的电导率模型,并
    同地球物理模型进行了对比,在温度和氧逸度的合理波动范围内,实验室电导率
    模型和地球物理模型吻合的很好。
     在压力为z一ZGPa、温度为1228一r584K、频率为0.2一106Hz、氧逸度为
    Mo一MoO:条件下,测量了天然和热压辉石岩、热压巨晶辉石、二辉橄榄岩的电
    导率。结果发现,在复阻抗平面上出现了反映颗粒内部电响应和颗粒边界电响应
    的阻抗弧,反映颗粒内部导电的阻抗弧出现在较高的频率段,随着温度的增加,
    这些阻抗弧逐渐收缩。颗粒边界的阻抗弧出现在相对低的频率段。辉石岩、二辉
    橄榄岩、巨晶辉石电导率随着温度增加而增加,随压力变化比较微弱。天然辉石
    岩和热压辉石岩颗粒边界的电导率高于它们各自颗粒内部的电导率,而总电导率
    则小于颗粒内部和颗粒边界的电导率,颗粒边界并没有增强总电导率。辉石岩一
    二辉橄榄岩一纯橄榄岩的电导率依次减小,这可能是与它们的铁含量有关。天然
    辉石岩的电导率与热压辉石岩的电导率的差异可能与样品中的水(氢)含量的不
    同有关。
Electrical conductivity is an important geophysical parameter. Measurements of the electrical conductivity of minerals and rocks from the Earth's interior provide a powerful tool for probing physical and chemical properties and composition of the deep earth, and help us to interpret magnetotelluric data. A new measurement system for electrical conductivity in an YJ-3000t press fitted with a wedge-type cubic anvil was set up on the basis of the old one. A solartron 1260 impedance/Gain phase analyzer was used in the new system; Mo electrodes and a Mo shield were also used to keep oxygen fugacity close to the Mo-MoO2, which is similar to that of iron-wustite (IW). The high accuracy of electrical conductivity measurement could be reached with this new system, and oxygen fugacity could be well controlled.
    Electrical conductivities of quartz, olivine, dunite, Iherzolite, pyroxenite, and megaaugite were measured by virtue of the new system; whereas, the electrical conductivity of gabbro was measured by means of the old one.
    An interesting outgrowth of the present study is the measurement of the complex impedance of a series of quartz plates with different orientations. Measurements were made over the frequency range 0.1 tol06 Hz at 1-3 GPa and 600 -1600 K. The complex impedance plot displays one arc and one straight line at each temperature; they correspond to different conduction process or mechanism at different range of frequency, and have different relaxation time, respectively. The high-frequency arc represents bulk properties of the sample. The straight line is characteristic of diffusional processes at the sample-electrode interface. The phase angle displays a strong dependence on frequency; the impedance magnitude decreases with frequency. The electrical conductivity of quartz increases with temperature, but pressure has weak effect on the electrical conductivity. Conductivity mechanism of a -quartz is ionic, and alkali and hydrogen ions moving in channels parallel to the c-axis are the predominant current carriers. The
     electrical conductivity of quartz decreases with increasing angle to c axis at the same temperature and pressure due to decreasing of the channel size. There is no sudden change in the conductivity at the
    
    
    
     transition point.
    The complex impedance of gabbro was determined at 1-2 GPa and 593 - 1173 K, over a frequency range 12 to l5 Hz. The real part of the complex impedance decreases with frequency; the imaginary part of the complex impedance increases with frequency to the maximum, and then decreases with frequency; and phase angle decreases with frequency increasing. The grain interior arc occurs at highest frequency range. The electrical conductivity value of the gabbro is 1.77X l0-4S/m at 1.0 GPa and 893 K, which is 2-3 orders magnitude lower than that of high conductivity layer in the lower crust, so gabbro could not form the high conductivity layer.
    The polycrystalline olivine compacts were synthesized at 130 MPa and 1473 K for 2.5 hours. The complex electrical impedance of polycrystalline olivine compacts was determined at 3 GPa and 1273-1573 K, and at the fo2 of Mo-MoO2 over a frequency range 0.1 to 106Hz. The arcs representing grain interior conduction mechanisms appear on all complex impedance plots, and occur at high frequency rang and contract with temperature. However, those arcs representing grain boundary and occurring at low frequency range were observed only in a small number of experimental runs. The phase angles display a strong dependence on frequency; the impedance magnitudes decrease across the entire frequency spectrum. The activation enthalpies lie in the range of 1.03-2.11eV.
    The complex electrical properties of dunite were measured over the frequency range from 0.1-106Hz, at 1-3 GPa and 1282-1544K, and at the fo2 of Mo-MoO2. Complex plane plots show separate effects of grain interior and grain boundary conductivity. Grain interior transport controls the response above ~100 Hz, whereas grain boundary transport dominates between ~100 and 0.1 Hz. The electr
引文
1. Akaogi M, Yusa H, Shiraishi K et al. Thermodynamic properties of a -quartz, coesite, and stishovite and equilibrium phase relations at high pressures and high temperatures. J Geophys.Res. 1995,100: 22337~22347.
    2. Akimoto S, Fujisawa H. Demonstration of the electrical conductivity jump produced by the olivine-spinel transition. J Geophys Res., 1965,70:443~449.
    3. Anderson D L, Bass J D. Mineralogy and composition of the upper mantle, Geophys. Res.Lett., 1984,11:637~640.
    4. Arculus R J. Oxidation status of the mantle: past and present.Ann.Rev.Earth Planet.Sci, 1985,13:75~95.
    5. Bahr K, Olsen N, Shankland T J. On the combination of the magnetotelluric and the geomagnetic depth sounding method for resolving an electrical conductivity increase at 400km depth. Geophys Res Lett, 1993, 20:2937~2940.
    6. Banks, R J. Geomagnetic variations and the electrical conductivity of the upper mantle. Geophys J R Astron.Soc, 1969, 17, 457~487.
    7. Bohlen S R and Boettcher A L. The quartz=coesite transformation: A precise determination and the effects of other components. J Geophys Res, 1982, 87, 7073~7078.
    8. Bradley R S, Jamil AK, Munro D C. The electrical conductivity of olivine at high temperatures and pressures. Geochimica et Cosmochimica Acta, 1964, 28:1669~1678.
    9. Cemic L, Will G, Hinze E. Electrical conductivity measurements on olivine Mg_2SiO_4-Fe_2SiO_4 under defined thermodynamic conditions. Phys.Chem.Minerals, 1980, 6:95~107.
    10. Coes L. A new dense crystalline silica. Science, 1953, 118:131~132.
    11. Constable S, Duba A. Diffusion and mobility of electrically conducting defects in olivine. Phys.Chem.Minerals, 2002, 29:446~454.
    12. Constable S C, Duba A. The electrical conductivity of olivine, a dunite, and the
    
    mantle. J Geophys Res., 1990,95:6967~6978.
    13. Constable, S, Shankland T J, Duba A. The electrical conductivity of an isotropic olivine mantle.J Geophys Res., 1992, 97:3397~3404.
    14. Dobson D P, Richmond N C, Brodholt J P. A high -temperature electrical conduction mechanism in the lower mantle phase (Mg, Fe) O. Nature, 1997, 275:1779~1781.
    15. Duba A. Electrical conductivity of olivine. J Geophysics.Res, 1972,77:2483~2494.
    16. Duba A.G, Boland J N, Ringwood A E. The electrical conductivity of pyroxene. Journal of Geology. 1973, 81:727~735.
    17. Duba A G, Wanamaker B J.DAC measurement, of perovskite conductivity and implications for the distribution of mineral phases in the lower mantle.Geophys Res Lett,1994, 21(15): 1643~1646.
    18. Duba A, Peyrormeau J, Visoeehas F et al. Electrical conductivity of magnesiowutite/perovskite produced by laser heating of synthetic olivine in the diamond anvil cell. J Geophys Res, 1997,102(B12):27723~27728.
    19. Duba A, Nieholls I A. The influence of oxidation state on the electrical conductivity of olivine. Earth Plan.Sci.Lett, 1973,18:59~64.
    20. Duba A, Heard H C, Schock R N. Electrical conductivity of olivine at high pressure and under controlled oxygen fugacity. J Geophys Res., 1974,79,1667~1673.
    21. Duba A, Constable S C. The electrical conductivity of lherzolite. J Geophys Res., 1993, 98:11885~11899.
    22. Duba A G, Shankland T J. Free carbon electrical conductivity in the Earth's mantle. Geophys Res Lett, 1982, 9:1271~1274.
    23. Duffy, T S, Anderson D L. Seismic velocities in mantle minerals and the mineralogy of the upper mantle. J Geophys.Res., 1989,94:1895~1912.
    24. Dubrovinsky L S, Saxena S K, et al, Experimental and theoretical identification
    
    of a new high pressure phase of silica. 1997, Nature, 388:362~365.
    25. Dvorak Z, Schloessin H H. On the anisotropic electrical conductivity of enstatite as a function of pressure and temperature. Geophysics, 1973, 38:25~36.
    26. Egbert G D, Booker J R. Very long period magnetotellurics at Tucson observatory: Implications for mantel conductivity. J Geophys Res, 1992,97,15099~15112.
    27. Fei Y.,Bertka C M, 1999, Phase transitions in the Earth's mantle and mantle mineralogy, in Mantle petrology: field observations and high pressure experimentation, Y. Fei et l. eds., 189 ~ 207, special publication No. 6, Geochemical Society, Houston.
    28. Glover P W, Vine F J. Beyond KTB-electrical conductivity of the deep continental crust.Surv.Geophys., 1995,16:5~35.
    29. Glover P W. Graphite and electrical conductivity in the lower continental crust: a review. Phys.Chem.Earth, 1996,21 (4):279~287.
    30. Hirsch L M, Shankland T J. Quantitative olivine-defect chemical model: insights on electrical conduction, diffusion, and the role of Fe content, Geophys J Int., 1993,114:21~35.
    31. Hirseh L M, Shankland T J, Duba A G. Electrical conductivity and polaron mobility in Fe-bearing olivine. Geophys J Int., 1993,114:36~44.
    32. Hirsch L M, Wang C-Y.Eleetrieal conductivity of olivine during high-temperature creep. J Geophys Res., 1986, 91:10429~10441.
    33. Hirsch L M. The Fe-FeO buffer at lower mantle pressure and temperatures. Geophys Res Lett., 1991,18:1309~1312.
    34. Hirsch L M, Wang C-Y. Electrical conductivity of olivine during high-temperature creep. J Geophys Res, 1986,91 (B 10): 10429~10441.
    35. Hinze G, Will G, and Cemic L. Electrical conductivity of measurements on synthetic olivines and on olivine, enstatite and diopside from Dreiser Weiher, Eifel (Germany) under defined thermodynamic activities as a function of temperature and pressure. Phys. Earth Plan. inter, 1981, 25:245~254.
    
    
    36. Hood L L, Herbert F and Sonett C P. The deep lunar electrical conductivity profile: structural and thermal inferences. J Geophys.Res1982, 87:5311~5326.
    37. Huebner J S, Dillenburg R G. Impedance spectra of hot, dry silicate minerals and rock: Qualitative interpretation of spectra. American mineralogist, 1995, 80:46~64.
    38. Hughes H. The pressure effect on the electrical conductivity of peridot. J Geophys.Res., 1955, 60,187-191.
    39. Ito, E., Katsura, T. A temperature profile in the mantle transition zone.Geophys.Res.Lett, 1989,16,425~428.
    40. Jain H and Nowick A S. Electrical conductivity of synthetic and natural quartz crystals, J Appl.Phys., 1982,53(1): 477~484.
    41. Jones A G. Electrical conductivity of the continental lower crust .In: Fountain D M, Arculus R J and Kay W R ed. Continental lower crust. Amsterdam: Elsevier, 1992,81~142.
    42. Kariya K A, Shankland T J. Electrical conductivity of dry lower crustal rocks. Geophysics, 1983, 48:52~61.
    43. Katsura T, Sato K, Ito E. Electrical conductivity of silicate perovskite at lower mantle conditions. Nature, 1998, 395:493~495.
    44. Karato S. 1990,The role of hydrogen in the electrical conductivity of the upper mantle,Nature,347:272~273.
    45. Kern H, Gao S,Jin Z, et al.Petrophysical studies on rocks from the Dabie ultrahigh-pressure(UHP) metamorphic belt, Central China: implications for the composition and delamination of the lower crust. Tectonophysics, 1999, 301:191~215.
    46. Kingam K J, Cohen R E., Hemley R J. Transformation of stishovite to a denser phase at lower-mantle pressures. Nature, 1995, 374:243~245.
    47. Kobayashi Y, Maruyama H. Electrical conductivity of olivine single crystals at high temperature. Earth and planetary science letters, 1971,11:415~419.
    48. Lacam A. Pressure and composition dependence of the electrical conductivity of
    
    iron-rich synthetic olivines to 200kbar. Phys.Chem.Minerals, 1983,9:127~132.
    49. Lastovickova M. A review of laboratory measurements of the electrical conductivity of rocks and minerals. Phys.Earth Plan.Inter, 1991,66:1~11.
    50. Li X, Jeanloz R. Electrical conductivity of (Mg, Fe) SiO3 perovskite and perovskite-dominated assemblage at lower mantle condtions. Geophys Res Lett., 1987,14:1075~1078.
    51. Li X, Jeanloz R. Laboratory studies of the electrical conductivity of silicate perovskites at high pressures and high temperature, J Geophys Res., 1990, 95:5067~5078.
    52. Li X.and Ming L. Pressure dependence of the electrical conductivity of (Mg_(0.9)Fe_(0.1)) SiO_3 pervskite. J Geophys.Res., 1993,98:501~508.
    53. Li B, Gwanmesia G D, Liebermann R C, Sound velocities of olivine and beta polymorphs of Mg_2SiO_4 at Earth's transition zone pressures..Geophysical Research Letters, 1996, 23: 2259~2262.
    54. Lupis C H P. Thermodynamics of Materials. North-Holland, New York, 1983, P.134.
    55. McLeod M G.. Magnetospheric and ionospheric signals in magnetic observatory monthly means. Electrical conductivity of the deep mantle. J Geophys Res, 1994, 99:13577~13590.
    56. Meyer H O A. Inclusions in diamonds. In Mantle Xenoliths(ed P.H. Nixon), 1987, pp.501~522, John Wiley&Sons.
    57. Mirwald P W and Massonne H J. The low-high quartz and quartz-eoesite transition to 40kbar between 600℃ and 1600℃ and some reeormaissance data on the effect of NaAIO2 component on the low quartz-coesite transition. J Geophys. Res, 1980, 85:6983~6990.
    58. Mirwald P W, Getting I C, Kennedy G C. Low-friction cell for piston-cylinder high-pressure apparatus. J Geophys Res, 1975, 80:1519~1525.
    59. Olhoefl G R.Eleetrieal properties of granite with implications for the lower crust. J Geophys.Res, 1981,86:931~936.
    
    
    60. Olsen N. The electrical conductivity of the mantle beneath Europe derived from C-responses from 3 to 720 hr. Geophys J. Int., 1998,133:298~308.
    61. Omura K. Change of electrical conductivity of olivine associated with the olivine-spinel transition. Phys Earth Planet Inter., 1991, 65:292~307.
    62. Omura K, Kurita K, Kumazawa M. Experimental study of pressure dependence of electrical conductivity of olivine at high temperature, Phys. Earth Planet Inter., 1989,57:291~303. ~,
    63. Raab S, Hoth P, Huenges E, et al. 1998, Role of sulfur and carbon in. the electrical conductivity of the middle crust, J Geophys Res, 103(B5): 9681~9689.
    64. Ringwood A E. 1975, Composition and petrology of the Earth's Mantle, New York: McGraw-Hill.ChS.
    65. Roberts J J, Duba A G. Transient electrical response of San Quintin dunite as a function of oxygen fugacity changes: information about charge carders. Geophys Res Lett., 1995, 22:453~456.
    66. Roberts J J, Tyburczy J A. Frequency dependent electrical properties of polycrystalline olivine compacts. J Geophys Res., 1991, 96:16205~16222.
    67. Roberts J J, Tyburczy J A. Frequency dependent electrical properties of dunite as functions of temperature and oxygen fugacity. Phys.Chem.Minerals, 1993,19:545~561.
    68. Robert J J, Tyburezy J A. Impedance spectroscopy of single and polyerystalline olivine: Evidence for grain boundary transport. Phys.Chem.Minerals, 1993, 20:19~26.
    69. Sato H. High temperature a.c.electrical properties of olivine single crystal with varying oxygen partial pressure: implications for the point defect .chemistry. Phys.Earth.Plan Inter., 1986, 41:269~282.
    70. Schock R N, Duba A G; Heard H C. The electrical conductivity of polycrystalline olivine and pyroxene under pressure.In:Manghnani M,Akimoto S(eds) High-pressure research: application in Geophysics.Academic,San Diego, 1977, 39~51.
    
    
    71. Schock R N, Duba A G, Shankland T J. Electrical conduction in olivine. J GeophysRes, 1989, 94: 5829~5839.
    72. Sehultz A, Kurtz R D Chave A D et al. Conductivity discontinuities in the upper mantle beneath a stable craton. Geophys Res Lett, 1993,20,2941~2944.
    73. Shankland T J, Duba A G, Mathez E A, et al. Increase of electrical conductivity with pressure as an indicator of conduction through a solid phase in midcrustal rocks. J Geophys Res., 1997,102(B7): 14640~14650.
    74. Shankland T J, Waft H S. Partital melting and electrical conductivity anomalies in the upper mantle. J Geophys Res., 1977,82:5409~5417.
    75. Shankland T J, Duba A G. Standard electrical conductivity of isotropic, homogenous olivine in the temperature range 1200℃-1500℃ .Geophy J Int., 1990, 103:25~31.
    76. Shankland T J, Peyronneau J, Poirier J P. Electrical conductivity of the Earth's lower mantle. Nature, 1993,366:345~453.
    77. Shankland T J, Ander M E. Electrical conductivity, temperature, and fluids in the lower crust .J Geophys Res., 1983, 88(B11): 9475~9484.
    78. Sinogeikin S V, Katsura T, Bass J D. Sound velocities and elastic properties of Fe-bearing wadsleyite and ringwoodite. J Geophys Res, 1998,103(B9):20819~20825.
    79. Stesky R M, Brace W F. Electrical conductivity of serpentinized rocks to 6 kilobars. J Gephys.Res, 1973,78,7614~7621.
    80. Stishov S M, Popova S V. A new dense modification of silica. Geochemistry(USSR). 1961,10:923~926.
    81. Teter D M, Hemiley R J, Hafner J.High pressure polymorphism in silica. Phys.Rev.Lett. 1996, 69, 3647~3649.
    82. Tsuchida Y, Yagi T. A new post-stishovite high-pressure polymorph of silica. 1989, Nature, 340:217~220.
    83. Tyburczy J A, Roberts J J. Low frequency response of polycrystalline olivine
    
    compacts grain boundary transport. Geophys Res Lett., 1990,17:1985~1988.
    84. Verhoogen J. Ionic diffusion and electrical conductivity in quartz, Amer.Mineral, 1952,37,637-655.
    85. Waff H S. Theoretical considerations of electrical conductivity in a partially molten mantle and implications for geothermometry. J Geophys Res, 1974,79(26):4003~4010.
    86. Wanamaker B J. Point defect diffusivities in San Carlos olivine derived from reequilibration of electrical conductivity following changes in oxygen fugacity. Geophys Res Lett., 1994, 21:21~24.
    87. Wanamaker B J, Duba A G. Electrical conductivity of San Carlos olivine along (100) under oxygen-and pyroxene-buffered conditions and implications for defect equilibria. J Geophys Res., 1993, 98:489~500.
    88. Watson E B. Immobility of reduced carbon along grain boundaries in dunite.Geophys.Res.Lett, 1986,13: 525~532.
    89. Will G, Cemie L and Hinze E et al. Electrical conductivity measurements on olivines and pyroxenes under defined thermodynamic activities as a function of temperature and pressure. Phys Chem. Minerals, 1979,4:189~197.
    90. Xu Y S, Poe B T, Shankland T S. Electrical conductivity of olivine, wadsleyite, and Ringwoodite under upper-mantle conditions. Science, 1998,280:1415~1418.
    91. Xu Y S, McCammon C, Poe B T. The effect of alumina on the electrical conductivity of silicate perovskite. Science, 1998,282:922~924.
    92. Xu Y S, Shankland T J, Duba A G. Pressure effect on electrical conductivity of mantle olivine. Phys.Earth planet. Inter., 2000, 118:149~161.
    93. Xu Y S, Shankland T J, Poe, B T. Laboratory-based electrical conductivity in the Earth's mantle. J Geophys.Res., 2000,105:27865~27875.
    94. Xu Y S, Shankland T J. Electrical conductivity of orthopyroxene and its high pressure. Geophys Res Lett, 2000,26(17): 2645~2648.
    95. Xu M-Y, Jain H, Notis M R. Electrical properties of opal. Amer Mineral, 1989,74:821~825.
    
    
    96. Yagi T and Akimoto S. Director determination of coesite,stishovite transition by in-situ X-ray measurements. Tectonophysics, 1976, 35:259~270.
    97.邓晋福等,汉诺坝玄武岩中超镁铁岩包体及其推导的上地幔性质,矿物岩石学论丛,1988,地质出版社。
    98.高平,杨僻元,李艳军,等.秦岭-大别山壳幔岩石高温高压下的电性特征.地质科学,1998,33(2):195~202.
    99.高平,郭才华,刘若新,等.华北地壳岩石物理性质与低速高导层,现今地球动力学研究与应用,北京:地震出版社,1994,344~357.
    100.郭才华,高平,宋瑞卿等.高温高压下碳酸岩电性的实验研究,地震地质,1987,9(1):72~76.
    101.顾芷娟,郭才华,张彦波等.高温高压下花岗岩和条纹长石电导率变化,地球物理学进展,1993,8(4):239~243.
    102.顾芷娟,郭才华,李彪,等.壳内低速高导层成因初步探讨.中国科学(B辑)1995,25(1):108~112.
    103.刘顺,熊大和.超高压下氧化物电导率测量及下地幔电导率的讨论.地球物理学进展,1993,8(2):27~31.
    104.刘刚,王先彬,李立武,张家口大麻坪碱性玄武岩内地幔岩包体气体成分的初步研究.科学通报,1996,41(19):1775~1777.
    105.柳江琳,白武明,孔祥儒.高温高压下花岗岩、玄武岩和辉橄岩电导率的变化特征,地球物理学报,2001,44:528~533.
    106.金振民,Borch R S, Green H W.尖晶石二辉橄榄岩高温高压变形实验及其上地幔动力学的意义,中国上地幔特征与动力学论文集,地震出版社,1990,102~111.
    107.金振民.我国高温高压实验研究进展和展望,地球物理学报,1997,40(增):70~81.
    108.沙树勤.地质学研究中的地球物理基础.(第一版)北京:地质出版社,1991.118~121.
    
    
    109.王多君,李和平,刘丛强,等.高温高压下纯橄岩电导率的实验研究.科学通报,2001,46(19):1659~1661.
    110.谢鸿森等,著,地球深部物质科学导论。北京:科学出版社,1997,42~53.
    111.谢鸿森,杨受业,徐惠刚,等,高温高压下铁橄榄石电导率测量。中国科学院地球化学研究所集刊(第二号),北京:科学出版社,1985,128~132.
    112.徐有生.地幔矿物岩石的电导率研究进展,地学前缘,2000,7(1):229~237.
    113.熊大和,刘顺.1994,氧化镍、二氧化钛高压相变及电导率压力效应,地球物理学报,37(1):120~123.
    114.朱茂旭,谢鸿森,郭捷等.高温高压下蛇纹石电学性质的阻抗谱分析,中国科学(D),2000,30(6):634~641.
    115.朱茂旭,谢鸿森,赵志丹等.大别超高压榴辉岩高温高压下电导率实验研究,地球物理学报,2001,44.93~102.
    116.朱茂旭,高温高压下含水矿物和水饱和岩石电学性质实验研究,中国科学院地球化学研究所博士学位论文,贵阳,1999.
    117.周文戈,谢鸿森,赵志丹,等.0.7~1.8GPa,室温~1120°C条件下α-β石英相变的弹性参数,自然科学进展,2002,12(8):866~968.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700