用户名: 密码: 验证码:
深海水下分离器液控系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深海水下分离器液压控制系统主要用于控制水下分离器上各阀门的开启和关闭,实现控制各个进出口油气水的流量和压力等,从而保证水下分离器高效安全的工作。本文按照“先选执行机构,后设计液压管线及液压附件”的方法,通过理论计算、理论推导和动态仿真分析研究了深海水下分离器的液压控制系统。
     首先介绍了水下分离器的机械结构和液压系统,阐述了研究水下分离器液压控制系统的目的和意义。确定出液压控制系统总体结构为:水上液压控制系统、液压管线及水下液压控制系统。接着根据液压控制系统的设计方法,通过理论计算,确定出执行机构、水上蓄能器和水下蓄能器的容积;同时对控制回路内多个控制阀进行了结构设计和参数计算。然后对液压软管建立数学模型,通过理论推导,推导出长软管的液阻、液容和液感特性,得出长软管的液阻特性。最后借助液压仿真软件AMESim对定压输出减压阀和换向阀进行了仿真研究,得出减压阀可以保证液压油压力的稳定,换向阀换向动作迅速,输出流量大,能够及时进行换向。根据液压控制系统原理图建立了系统的仿真模型,并进行了详细的动态仿真。从仿真结果得出,执行机构能够在规定时间内对阀门的开度进行及时的开启和关闭。同时还仿真分析了当系统出现故障时,无法顺利的关闭执行机构,启动HPU泄压阀,对执行机构进行泄压。通过仿真分析得出,泄压阀可以在规定的时间内关闭多个执行机构,保证系统的安全。
The deepwater subsea separator hydraulic control system was mainly used to control the valves on subsea separator, opening and closing the valves to control flow and pressure of import and export, so as to ensure the separator efficiency and security work. In this paper, based on the methods of“First elected actuators, after the design of hydraulic lines and hydraulic accessories”, through theoretical calculations, theoretical analysis and dynamic simulation analysis of the subsea separator hydraulic control system.
     Firstly, the paper introduced the mechanical structure and hydraulic system of subsea separator, identified the overall structure of the hydraulic control system as follows: surface hydraulic control systems, long hose and subsea hydraulic control system. Secondly, according to the design method of hydraulic control system, the paper calculated the liquid volume of actuators, surface accumulator stacks and subsea accumulator stacks, designed the structure of a number of control valves in hydraulic control circuits. Then the paper built mathematical modeling of the long hose and focused on theoretical derivation and analysis of fluid resistance, fluid capacitance and liquid inductance characteristies of the long hose. Finally, the paper used the hydraulic system simulation software AMEsim did the math modeling and simulation research of constant output pressure relief valve and reverse valve, simulation results telled that pressure relief valve could guarantee the stability of the hydraulic oil pressure, revers valve reversed action quickiy, output flow, prompted for revers. According to the hydraulic control system, the paper established the system schematic of the simulation model and carried out a detailed simulation study. Obtained from the simulation results, actuators could open and shut valve within the stipulated time. Also simulation when the system fails, obtained from the simulation results, relief valve could be closed actuators within a specified time, ensured the safety of the system.
引文
[1]王玮,孙丽萍,白勇.水下油气生产系统[J].中国海洋平台,2009,24(6):41-45
    [2]张振国.海洋石油工业的现状和前景[J].海洋技术,2001,13(4):71-74
    [3]李璐.海洋石油工业的发展[J].科技创新导报,2007,33:153
    [4]李长春、连琏.水下生产系统在海洋石油开发中的应用[J].海洋工程,1995,Vol.13 No.4:25-30
    [5]肖祖骐、李长春.海上油气集输[M].上海:上海交通大学出版社,1993.1
    [6]丁艺、陈家庆.深水海底油水分离的关键技术分析[J].过滤与分离,2009,Vol.19 No.4:10-15
    [7]赵永胜、张善严、朱楠.喇、萨、杏油田生产气油比变化规律[J].大庆石油地质与开发,1998,17(1):22-26.
    [8] Jarle Michaelsen. Innovative Technology for Ultradeepwater Gravity-Based Separators[C]. OTC15175, presented at the Off-Shore Technology Conference held in Houston, Texas, U.S.A, 5-8 May 2003.
    [9] B. Bringedal, T. Ingebretsen, K. Haugen. Subsea Separation and Reinjection of Produced Water[C]. OTC 10967, persented at the Offshore Technology Conference held in Houston, Texas. U.S.A, 3-6 May 1999.
    [10]曾宪锦.海上油气田生产系统[M].北京:石油工业出版社,1993.10
    [11]牟永春,李志彪,袁玉堂等.关于深海工程技术研究几个问题的探讨[J].石油工程建设,2008,34(6):26-29
    [12]喻西崇,谢彬,金晓剑等.国外深水气田开发工程模式探讨[J].中国海洋平台,2009,24(3):52-56
    [13] M. Theobald, BP Exploration Operating Co. Ltd. And C.Lindsey-Carran,BP America Inc. Benefits of All-Electric Subsea Production Control Systems [A]. Offshore Technology Conference, 17106
    [14] S. G.. O Mahony. The Dynamic Performance of Subsea Hydraulic Control Systems[J]. The Soeiety for Underwater Technology,1989,20
    [15]周美珍,程寒生,余国核.水下执行机构的液压控制研究[J].中国海洋平台,2009,24(3):31-34
    [16] G..S.Stivers, Cameron Iron Works, Inc. Electro-Hydraulic Control Systems for Subsea Applications, SPE-European Spring Meeting, SPE3762,1972,3:1-2.
    [17] A Karlsen, K Gustavsson, BrasNor.MUXCOM-A New Subsea Control Concept For Very Deep Water. Offshore Europe 89 Meeting, SPE 19227/1,1989(9)
    [18]陈家庆.海洋油气开发中的水下生产系统(一) [J] .石油机械,2007,35(5): 54-58
    [19]陈家庆.海洋油气开发中的水下生产系统(二) [J] .石油机械,2007,35(9): 150-155
    [20] Horn T, Bakke W, Eriksen G.. Experience in operating world’s first subsea separation and water injection atation at Troll oil field in the North Sea. OTC 15172,presentation at the Offshore Technology Conference Held in Houston, Texas, U. S. A,2003-05-05~08
    [21] Michaelsen J. Innovative technology for ultradeepwater gravity-based separators. OTC 15175,Presentation at the Offshore Technology Conference Held in Houston, Texas,U. S. A , U. S. A,2003-05-05~08
    [22] Caetano E F, do Vale 0 R, Tomes F R, et al. Field experience with multiphase boosting system at Campos Basin, Brazil. OTC 17475,Presentation at the Offshore Technology Conference held in Houston, Texas, U. S. A, 2005-05-02-05
    [23] Peixoto G A,Ribeiro G A S, Barros P R A, et al. VASPS Prototype in Marimba field-Workover and Restart. SPE 95039,Presentation at the Latin American and Caribbean Petroleum Engineering Conference, Rio de Janeiro, 2005-06-20~23
    [24] do Vale O R, Garcia J E,Villa M .VASPS installation and operation at Campos Basin. Stig Gustafson, William Bakke Norsk. OTC 14003,Presentation at the Offshore Technology Conference Held in Houston, Texas, U. S. A, 2000-05-06-09
    [25] Rodrigues R , Soares R, de Matos J S, et al. A new approach for subsea boosting-pumping module on the seabed. OTC 17398,Presentation at the Offshore Technology Conference Held in Houston, Texas, U. S. A, 2005-05-02-05
    [26] Brouwer J M,Epsom H D. Twister supersonic gas conditioning for unmanned platforms and subsea gas processing. SPE 83977,Presented at Offshore Europe 2003 Held in Aberdeen, UK, 2003-09-02-05
    [27]何策,程雁,额日其太.天然气超音速脱水技术评析.石油机械,2006,34 (5):70- 72
    [28]牟永春,李志彪,袁玉堂等.关于深海工程技术研究几个问题的探讨[J].石油工程建设,2008,34(6):26-29
    [29]薛强.墨西哥湾深水油田工程选型分析[月.中国海上油气工程,1999,11(5):64-66
    [30]吕福亮,贺训云,武金云等.深海油田开发工程简析-以安哥拉吉拉索尔油田为例[J].石油天然气学报,2008,30(2):600-602
    [31] Birkeland E, Jernsletten J,Olsen G, et al. An efficient wellstream booster solution for deep and ultradeep water oil fields.OTC 16447 , Presentation at the Offshore Technology Conference Held in Houston, Texas, U. S. A, 2004-05-03-06
    [32]张波.开发海上深水边际油田的尖端技术装备(一)[J].石油机械,1999,27(4):46-50
    [33]张波.开发海上深水边际油田的尖端技术装备(二)[J].石油机械,1999,27(5):49 51
    [34]李华凤.近海油田水下生产设施液压控制系统设计及仿真研究[D].浙江杭州:浙江大学,2010
    [35]邓东生.我国海洋石油用管的发展前景[J].石油矿场机械,2004,33(5):79-80
    [36]周美珍,程寒生,余国核.水下执行机构的液压控制研究[J].中国海洋平台,2009,24(3):31-34
    [37]章宏甲,黄谊等.液压传动[M].北京:机械工业出版社,2000,20-61
    [38]赵琦.蓄能器及其工作回路的计算机辅助设计[D].河北秦皇岛:燕山大学,2001
    [39]宋鸿尧,丁忠尧等.液压阀设计与计算[M].机械工业出版社,北京,1979:260-290.
    [40]杨思明.海上平台泄压排放系统的探讨[J].中国海上油气(工程),1999,11(2):22-23
    [41]刘富山.井口平台压力泄放系统的优化[J].中国海上油气(工程),2001,13(1):16-17
    [42]罗志昌.流体网络理论[M].北京:机械工业出版社,1988:10-20
    [43]胡燕平,彭佑多,吴根茂.液阻网络系统学[M].北京:机械工业出版社,2002
    [44]蔡廷文.液压系统现代建模方法[M].北京.中国标准出版社,2002
    [45]蔡亦钢.流体传输管道动力学[M].浙江:浙江大学出版社,1990,6-16.
    [46]张勇,程琦.软管集中参数模型的建立和仿真研究[Jl.机械工程与自动化,2007,3:4-6.
    [47]秦家升,游善兰.AMESim软件的特征及其应用[J].工程机械,2004(12):6-8.
    [48]李谨,邓卫华.AMESim与MATLAB/Simulink联合仿真技术及应用[J].情报指挥控制系统与仿真技术,2004,26(5):61-64.
    [49]余佑官,龚国芳,胡国良.AMESim仿真技术及其在液压系统中的应用[J].液压气动与密封,2005(3):28-29.
    [50]郑智忠,王会义,祁雪乐.气压ABS压力调节单元的建模与分析[J].机床与液,2005(8):117-118.
    [51] AMESim7.0用户手册[M]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700